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The Beer-Lambert law is unquestionably the most important
law in optical spectroscopy and indispensable for the qualita-
tive and quantitative interpretation of spectroscopic data. As
such, every spectroscopist should know its limits and potential
pitfalls, arising from its application, by heart. It is the goal of this
work to review these limits and pitfalls, as well as to provide
solutions and explanations to guide the reader. This guidance
will allow a deeper understanding of spectral features, which
cannot be explained by the Beer-Lambert law, because they

arise from electromagnetic effects/the wave nature of light.
Those features include band shifts and intensity changes based
exclusively upon optical conditions, i. e. the method chosen to
record the spectra, the substrate and the form of the sample. As
such, the review will be an essential tool towards a full
understanding of optical spectra and their quantitative inter-
pretation based not only on oscillator positions, but also on
their strengths and damping constants.

1. Introduction

The Bouguer-Beer-Lambert (BBL) law, as it is presented in many
spectroscopy textbooks,[1–5] raises high expectations in its users.
The most serious, and quite understandable, expectation certainly
is that it is exact – meaning that it provides an accurate
description of the effects arising from interaction between light
and matter. Therefore, any deviation from it is usually interpreted
as variation of the chemical interactions in the sample or a change
in molecular structure on the level of a unit cell. All these effects
would typically result in a changed energy difference between the
electronic/vibrational states, which undoubtedly can serve as a
valid explanation for the observations. Unfortunately, a correct
interpretation of absorption spectra is not as simple. Basically, all
factors that influence band position, height and shape can be
divided into three different groups. One group indeed can be very
well summarized as chemical interactions. However, there is a
second group of wave optics based effects, which comprises all
phenomena resulting from the wave nature of light. As we will
demonstrate within this review, these have tremendous influence
on the spectra as well. Therefore, to be able to make any
deductions about the chemical nature of the sample or use the
data for quantification, it is vital to correct the spectra for these
effects beforehand.

In this review, all these so-called chemical interactions will not
play any role and will be excluded from discussion. The same
holds true for any deviations from the BBL law, which are caused
by instrumental errors, e.g. insufficient resolution, detector non-
linearity etc. We explicitly focus on deviations, which are caused
by the fact that the BBL law is often only remotely compatible
with electromagnetic theory. The notion that the BBL law is not
consistent with electromagnetic theory might seem strange to
most readers, in particular, because often derivations suggest

exactly this compatibility, like, e.g. the linear connection between
the differential change of intensity and intensity itself as well as
the distance travelled by the light. That this connection is not
generally correct is not obvious.

Since originally, we were also firm believers that this
compatibility is a given, a short historical overview starting with
Beer’s work and concerning the development of the BBL law and
electromagnetic theory might allow to understand the sources of
confusion and from where the incompatibilities arose.

1.1. Historical Overview

The work of Pierre Bouguer and Johann Heinrich Lambert
dealing with spectrophotometry of the atmosphere was well
known to August Beer as can be seen from his book Grundriss
des photometrischen Calcüles which was published in 1854.[6]

Accordingly, Beer described this part of the Beer-Lambert law
as following from the simplest assumption that the loss of the
intensity of light transmitted through an infinitesimally thin
layer of a homogeneous medium is proportional to this
intensity and to the layer thickness. This leads to a differential
equation provided by Bouguer, and, in its final mathematical
form, by Lambert, the solution of which, reads:

ð1Þ

Here, I0 is the initial intensity of the light, I(d) is the intensity
after travelling the distance d in the medium and α is its
Napierian absorption coefficient. In fact, Beer used the words
transmitted through, but it is important to emphasize that he
considered this as an approximation. Since Bouguer and
Lambert dealt with the absorption of the atmosphere, reflection
losses did not need to be considered, because the index of
refraction of air is very close to unity and transmitting through
the atmosphere becomes in good approximation equivalent to
propagating within. As we will see later on, this makes a very
important difference. Accordingly, two years earlier, in his
seminal paper about the determination of absorption of red
light in colored liquids, Beer corrected for reflection losses,
before concluding that transmittance stays constant, within
experimental errors, as long as the product of the volume
fraction of the solute and the thickness of the cuvette, φ · d,
stays constant.[7]

Beer did not introduce the molar concentration c (which is
the product of the volume fraction and the inverse partial molar
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volume), neither did he combine eqn. (1) with the law found by
him, nor did he introduce the quantity absorbance. In fact, Beer
also wrote a comprehensive book about optics published in
1853, in which he excluded absorption from the discussion
right from the start, since space, air, water and glass are
completely transparent and colorless. In addition, it is easy to
assess the modifications which are necessary for absorption.[8] It
is pure speculation at this point, but if he had not died so
young, he might have formulated the Bouguer-Beer-Lambert
law by himself. Instead, it took much longer before the law that
we know as BBL law was formulated (for an overview of the
developments, cf. Figure 1).

Five years after Beer’s seminal paper, in 1857, Bunsen and
Roscoe made a big step towards the modern formulation of the
BBL law.[9] The topic of Bunsen’s and Roscoe’s paper was the
photochemical absorption of light. Despite the different path-
way of the absorbed energy, the law concerning the absorption
of light is the same. The way in which they expressed the
absorptivity a is given by:

ð2Þ

It seems that the next 50 years, important steps to further
develop eqn. (2) were exclusively made in photochemistry. In
1888, Hurter defined the (optical) density as the natural
logarithm of the opacity, which is defined as 1� I/I0 and equal to
the absorbed fraction of light, if reflectance is neglected.[10]

Twelve years later, in 1900, Luther defined the German term

Extinktion,[11] which is equivalent to the quantity absorbance, as
the natural logarithm of opacity.

In spectroscopy, it seems it took some time until this
definition was used. The reference for spectroscopy at that time
was Kayser’s handbook which consisted of four volumes with
about 2400 pages altogether. In the third volume, Kayser
introduced several different formulations of the absorption law,
but the modern formulation was not among them.[12] It seems
that the first time the modern formulation was used in which
the Bouguer-Lambert law and Beer’s law were merged, was
again a paper from Luther published in 1913.[13] Accordingly,
the absorbance A is given by

ð3Þ

in which ɛ is the molar decadic absorption coefficient, so that
ɛ ·c=a.

In parallel to the developments in spectroscopy and photo-
chemistry, also the field of optics made important progress. The
most important step was unquestionably Maxwell’s theory, which
led to interpreting light as electromagnetic wave.[14] The con-
sequences of this finding were, however, not as drastic as one
might think. Snell’s law, e.g., was derived under the assumption
that light is an elastic wave and so were the early attempts to
explain the change of the index of refraction with the color or the
frequency/wavelength of light. While first derivations did not
include the phenomenon of absorption, it was Helmholtz who
understood, as early as 1875, its importance to describe anom-
alous dispersion (which usually means the range of the index of
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refraction, where it decreases with increasing frequency around
and due to absorption bands. Most of the time the index of
refraction decreases with decreasing frequency; in addition, points
can be found in a spectrum where dispersion is zero).[15] While
Helmholtz did not take into account Maxwell’s findings, Max
Planck’s flavor of dispersion theory was well grounded on
electromagnetic theory.[16] At this time, the physicists were already
well aware of the fact that absorption and dispersion are two sides
of the same coin. Therefore it is not surprising that Max Planck
also investigated the consequences of dispersion theory on Beer’s
law in detail in his original formulation (which is that transmittance
is constant when φ ·d stays constant).[17] Certainly, Planck could
not derive the concentration dependence of absorbance, since
this was a widely unknown quantity at that time, but he could
already show that for strong absorption Beer’s law cannot hold. It
is remarkable that such an important finding of a Nobel laureate
could have been forgotten, but in light of the golden twenties in
physics, which culminated in the discovery and formulation of
quantum mechanics this might be understandable.

While Beer’s part of the BBL law remained therefore merely
an empiric law, it was known to the infrared spectroscopists of
this time that the Bouguer-Lambert part is a, sometimes very,
rough approximation. Explicitly, this was emphasized in the
work of Marianus Czerny, a former PhD student of Heinrich
Rubens (known for the “reststrahlen” method) who investigated
the infrared spectrum of thin cuts of NaCl in order to compare
the experimental results with those obtained from dispersion
theory.[18] In addition, this is also detailed in one of the first
books about infrared spectroscopy authored by Clemens
Schaefer and Frank Matossi.[19] After 1945 the infrared commun-
ity split and the knowledge of the former researchers prevailed
in the community where inorganic crystals or layered materials
are of primary interest. In contrast, Coblentz’s school became
prevalent for the interpretation of spectra of organic and
biological samples, while infrared spectrometers were trans-
lated from the lab to a marketable product.[20]

2. Deviations between the Bouguer-Lambert
Law and Electromagnetic Theory: Non-linear
Thickness Dependence

It may be obvious from the historical overview, but we want to
emphasize explicitly that the BBL law and spectroscopy on the
one hand and electromagnetic theory founded on Maxwell’s
equations and dispersion theory on the other hand were
developed at the same time. Being chemists by training, we know
from our experience that it seems that in depth knowledge of
Maxwell’s equations or dispersion theory is not necessary for
evaluating spectra using the BBL law. The BBL law appears to be a
condensed form of all that is important to know for understanding
absorption and one can solidly rely on it. Often this may be indeed
the case. But sometimes subtle or less subtle deviations from the
BBL law occur, which cannot be explained either by chemical
interactions or as hardware-related. A theoretical comparison
between the BBL law and electromagnetic theory indeed suggests
that the BBL law is approximately correct under certain circum-
stances, while it can be completely inappropriate under other
conditions. One of these conditions under which the BBL generally
fails is related to the absorbance derived from reflection spectra of
layers on highly reflecting materials (transflection spectra). Such
spectra seem on first view to resemble transmission spectra. For
biomedical applications of infrared spectroscopy, e.g., substrates
like CaF2 are too expensive and not mechanically stable enough to
fit into the standard protocol of the pathologist. Therefore, it
seems that transflection is not only the appropriate technique to
choose, but the ideal solution for the particular demands. For
transflection, a highly reflecting substrate is used, e.g. gold, silver
or aluminum coated glass slides. However, when transflection
spectra of layers with different thicknesses are compared, it
becomes obvious that absorbance (defined in this case as log10

(R0/R), where R is the reflectance with and R0 the reflectance
without the layer) has a completely unexpected dependence from

Figure 1. Timelines of important historical developments for the development of the (Bouguer-)Beer-Lambert law in its current form.
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the layer thickness which is not at all linear as one might have
expected. Not only that absorbance does not increase linearly
with the thickness, it can even decrease! Consequently, the relative
intensity ratio of two bands does not stay constant with changing
thickness (as it would be the case, if the BBL law were valid), which
strongly hinders spectral interpretation. A second unexpected
behavior relates to the peak positions, which can be both, blue- or
redshift, with increasing thickness. Both effects can interact and
generate asymmetric peak shapes. For larger thicknesses, these
effects are so substantial that the reflectance approaches that of
an indefinitely thick layer where the incident light does not reach
the highly reflecting substrate. Even satellite peaks can appear
which are not directly linked to a vibrational mode. In the context
of the BBL law, none of these effects can be explained. The reason
is that for the BBL law to hold, the intensity in the absence of
absorption must not change. In particular, it must not depend on
the distance from the interface between layer and incidence
medium or between layer and substrate. This is obvious, because
what should decrease the intensity if nothing is absorbed? To
make matters worse, the intensity can not only decrease but
increase up to a value twice as high as the originally incident
intensity.[21,22] To understand this seemingly strange behavior of
light, one has to go one step back and consider that light intensity
is nothing else but the electric field strength squared, i.e. the
electric field intensity. Based on Maxwell’s wave equation, we
know that parts of the properties of light are explained by defining
it as an electromagnetic wave which can be described by electric
and magnetic field changes perpendicular to its propagation
direction. A phenomenon that can be understood only in the

wave picture, is the occurrence of interference, cf. Figure 2. The
related effects are due to the fact that waves can superimpose
each other and their amplitudes add vectorially so that the
resultant amplitude can take on any value from the mere addition
(constructive interference) to the difference (destructive interfer-
ence; in particular, if the amplitudes are equal, the resulting
amplitude ranges from twice the amplitude to zero). Accordingly,
if the sample consists of a slab of finite thickness (e.g. a free-
standing film), a part of the propagating wave within the slab is
transmitted after it hits the second boundary (the surface or
interface between layer and exit medium), but another part is
reflected. It is this reflected part that interferes with the forward
travelling part, even for non-coherent light as it is emitted from a
light bulb or a black body. The resulting interference leads to
electric field intensities that differ depending on the location
within the slab, the wavelength and the thickness of the slab. For
particular relations between wavelength and thickness standing
wave patterns occur. The electric field intensity can therefore
become everything between zero and twice of the original value
at certain points within the slab. Now, since absorption is
proportional to the electric field intensity, it is reduced or
increased depending on whether at the particular wavelength/
frequency the interference is overall destructive or constructive.
Changing the thickness means that the interference patterns
change within the layer/slab. Thereby, a linear dependence of
absorbance from thickness cannot occur. In addition, the position
of maximum absorbance is determined not only by the wave-
length or frequency where the absorption constant is at maximum
but is also influenced by the electric field intensity. It is the

Figure 2. The phenomenon of wave interference. a) scheme of the sample geometry. b) the two extreme cases of interference. c) formation of a standing
wave. d) electric field map of a freestanding non-absorbing layer and the spectral positions of corresponding fringes in the reflectance and transmittance
spectrum. e) electric field map of a freestanding absorbing layer having an absorption peak every 200 cm� 1. All absorptions have the same peak value of the
absorption coefficient (true absorption). The resulting spectrum shows strongly altered peak intensities, peak shapes and positions (apparent absorption).
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product of absorption coefficient and electric field intensity that
determines the position of the maximum absorption and this
product does not necessarily have its maximum at the same
wavelength or frequency as the absorption coefficient. This effect
is responsible for the shift of the maxima and, in the extreme case,
for the appearance of satellite peaks. Note that this effect is not
limited to thin layers. As we will see later, it also plays a role for
particles and leads to so-called sphere modes and shape effects in
general.

We want to emphasize again that the position of the
maximum absorption can shift without any structural changes on
the level of molecular structure or unit cell. A multitude of
different optical effects can cause such shifts. A direct conse-
quence is that the position of the absorbance maximum does in
general not agree with the energy difference between two
quantum mechanical states of the oscillators of a material of
interest. Deriving this energy difference often requires comparably
complex spectral evaluation procedures based on electromagnetic
theory (chemometrics will therefore be unable to provide these!).
Overall, it is astonishing that we allow matter to behave like waves
in order to understand the absorption process, but by using the
BBL law we deny the same to light and, thereby, negate its wave
properties! In the following, we will investigate the errors that we
commit if we use the BBL law instead of electromagnetic theory
for some common techniques in some more detail and discuss
how we can correct them.

2.1. Layers on a Highly Reflecting Substrate – Transflection

In principle, it is known since a comparably long time that
absorbance derived from transflection measurements shows
strong deviations from the BBL law.[23] Over the decades, the
effect was observed and described several times.[22,24–29] To
illustrate it, it is of advantage to think of a hypothetic material
which has absorptions every 200 wavenumbers with the same
peak absorption coefficient, which means that the oscillators
are of equal strength. We then place a layer of this hypothetic
material with a thickness of, say, 5 microns on a gold substrate
and calculate the electric field strengths and intensities as well
as the reflectance, the absorbance and so-called absorptance,
which is defined as 1-R-T. Since the transmittance is zero for
gold layers thicker than about 50 nm, the absorptance is given
in this case simply by 1-R. The result is displayed in Figure 3 a).
As can be seen, the absorptance peaks do not display equal
intensity, albeit they are caused by equally strong oscillators. In
contrast they show a modulation. This modulation is a
consequence of the varying electric field intensities. For not too
strong peaks the modulation is depending on the average
electric field intensity of the layer at a certain wavenumber
since absorption (in the sense of a process) is proportional to
it.[22] For absorbance we find that its dependence on the electric
field intensity is non-linear (except for small absorbances, since
it can be shown that in the limit of very small absorption
coefficients and thicknesses the values of absorbance and
absorptance become increasingly similar). These non-linear
changes of the absorbance with thickness have also been

illustrated on the example of the C=O vibration of Poly(methyl
methacrylate) (PMMA). In this example the changes of the band
position and the shape changes are clearly visible. For thicker
layers, the dependence of the absorbance of the thickness
becomes nearly chaotic and the bands begin to even split.[30]

While for thinner layers the absorbance can be corrected
comparably easy,[31] the correction for thicker layers is more
complicated.[30] So far, the only method to properly correct the
absorbance is based on electromagnetic theory.

2.2. Layers on a Substrate with High Index of Refraction –
Transmission

Common substrates with refractive indices higher than many
potential layers, including organic or biologic layers, are, e.g., in
the infrared spectral range Si, ZnSe or ZnS. Those materials are
transparent, so that transmission spectra can be recorded. Due
to their comparably high index of refraction they also still have
a high reflectance. Since absorbance in case of transmittance
measurements is defined as

ð4Þ

the problem arises that intensity losses through reflectance are
erroneously increasing the absorbance. Because the index of
refraction is a function of the wavenumber/wavelength/fre-
quency, it is usually not possible to correct this problem by
subtracting a constant from the absorbance calculated from
eqn. (4). It seems that an easy solution to this problem would
be to measure the transmittance of the substrate T with the
layer and the transmittance of the substrate without layer T0
and then calculate the absorbance by

ð5Þ

This is unfortunately not possible. The reason is that the
transmittance spectrum of the substrate with the layer shows
an undulating, wave-like baseline, with so-called interference
fringes, in contrast to that of the substrate. Sometimes it is
argued that this undulating baseline is caused by the fact that
light is actually reflected and transmitted multiple times.
Recurrently, these multiple reflections were made also respon-
sible for deviations from the BBL law.[24,32–35] Indeed, if the
surface/interface of a layer is transmitted by light, part of the
light is reflected from this first surface that is hit by the light.
The part of the light that is transmitted through the surface
then hits, after passing through the layer, the backside surface
of the layer. Again, the difference between the indices of
refraction of the layer and the air causes a part of the light to
be reflected. This part travels back to the first surface, where
again a part is reflected and travels in the original direction
until it hits the backside and so on and so forth. The same,
however, also happens in case of the substrate, the spectra of
which (usually) do not show any undulating baseline. There are
two differences between layer and substrate, which are
responsible for the disappearance of interference fringes in the
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substrate spectra. Firstly, usually the substrate is much thicker
than the layer. The larger thickness leads to a much shorter
wavelength of the undulations, usually so short that the fringes
are spectrally not resolved (for thin Si substrates, however, a
resolution of 1 cm� 1 may be enough to render the undulations
visible). Secondly, often thickness variations are present. These
shift the undulations so that on average they are cancelled. For
layers with their usually smaller thickness, however, this is

usually not the case. The undulations are caused by interfer-
ence, which is why they are also called interference fringes. In
case of highly reflecting metals as substrates (or thin layers of
them on glass) they are suppressed, which is why measuring in
transflection originally seemed to be advantageous, because
one could get rid of the baseline undulations. Many different
methods have been devised to remove the fringes, like rough-
ening of the surfaces which is not recommended because of

Figure 3. Interference effects in layers on different substrates. The panels A show the true absorptivity spectra which were used as input. The panels B show
the corresponding field maps as function of position and wavenumber. The panels C show the resulting apparent absorptivity spectra. The panels on the left
illustrate the interference effects for a 5 μm thick film on gold, into which the electric field can nearly not penetrate. The center panel shows the same for an
identical film on silicon. For the film on CaF2 (right panel), we assumed a thickness of 2 μm.
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the increase of scattering leading to diffuse reflection, a further
reason for deviations from the Beer-Lambert law, which cannot
be removed analytically (which is why it is beyond the scope of
this review). Another method is the removal of the fringes in
the Fourier-transformed spectrum,[36] which seems to be very
elegant, because in the ideal case in this spectrum only one
point needs to be removed. Also, the wave-like baseline could
be fitted with functions based on sine and cosine and this fit
can then be subtracted from the absorbance spectrum.[37,38]

These methods certainly remove the baseline, but as we already
know from transflection, interference also changes band
intensities, shifts peaks and changes band shapes and the same
also happens in the transmittance spectra of layers on highly
reflective substrates (cf. Figure 3),[39] and, by the way, also in
case of freestanding films.[21,40] Accordingly, applying these
methods would just take care of a small part of the problem.
Fortunately, there are different methods to remove not only the
fringes, but also the other effects caused by interference.[39,41–44]

These are so far all based on electromagnetic theory.

2.3. Layers on Index-matched Substrates – Transmission

A convenient way to get rid of the unwanted influences of wave
interference seems to be the employment of index-matched
substrates like CaF2 for organic or biological films. Indeed, if
transmission spectra of such films on CaF2 are recorded, it seems
that no fringes are present. Only closer inspection reveals that
they are in fact still there, but, as in case of transflection, of very
minor intensity. It therefore appears that the problem is indeed
solved. Recently it has been shown that this is not the case.[28,45]

The reason is that absorption is inseparably connected to a
change of the index of refraction (anomalous dispersion), which is
the stronger the stronger absorption is.[45] Therefore, an index-
matched substrate may have exactly the same index of refraction
in the region where the layer is transparent, but this match is lost
in spectral regions where the layer shows absorption. The
deviations from the Beer-Lambert law for layers with a thickness
of about 1 μm amount to about 30%, but they decrease with
layer thickness (see Figure 3), e.g. for layers of more than 4 μm
below 5%, which might be tolerable. Peak shifts are comparably
small and usually below 2 cm� 1. Below about 1000 cm� 1, CaF2
begins to strongly absorb. It is possible to use it as a substrate
down to about 800 cm� 1, but in this spectral region the deviations
are much stronger than in the regions above. A way to correct
spectra, again on the basis of optical theory, has been introduced
by us.[45]

2.4. Thin Cuvettes – Transmission

If cuvettes are thick, i.e. if the distance between the sides of the
cuvette wall is millimetre-thick like in UV-Vis spectroscopy, it is
possible to use eqn. (5) where T0 is the transmission of the cuvette
with solvent. While it seems an intuitive way to correct
experimental spectra, this is not possible for thin cuvettes as they
are often used in infrared spectroscopy. Their thicknesses are in

the range of some ten μm and often it is the spectrum of the
liquid material that is of interest and not a solution. In this case
one might think that the spectrum of the empty cuvette would be
the reference spectrum or blank, but then the difference in
refractive index between the cuvette walls and the air leads again
to interference fringes which change when the cuvette is filled
with a liquid. The fringes in the spectrum of the empty cuvette
can be used to determine the actual thickness of the cuvette, but
they are unwanted in the spectra of the liquid. Also, as for thin
films, they are an indication that deviations from the BBL can be
expected.[46,47] The reference spectrum that must be used is that of
the cuvette material, which when ideally transparent, can be of
arbitrary thickness. An algorithm for the removal of fringes was
suggested already in 1975 by Hawranek et al.[48] This algorithm
determines the function of the complex index of refraction, the
real part of which is the refractive index and the imaginary part is
constituted by the absorption index which is given by
kð~vÞ ¼ að~vÞ=ð4p~v log10 eÞ and builds the basis from which many
of the in other sections introduced correction methods are
derived. In principle, every correction of the absorbance requires a
determination of the optical constants n and k, i.e. either the
complex index of refraction function or the dielectric function.
Note that, even if no apparent fringes are present for the filled
cuvette, this does not mean that interference is not at play. In this
case the same applies as for films on an index-matched substrate
(previous section) – the interference fringes are suppressed in
non-absorbing regions, but around bands errors may be sub-
stantial and might need correction. It may as well be that the
usual thickness of such cuvettes is large enough to marginalize
errors, but this is speculation as long as a corresponding
investigation has not been carried out.

2.5. Attenuated Total Reflection

The attenuated total reflection (ATR) technique distinguishes
itself from other techniques by the fact that textbooks indeed
mostly honour the fact that measurements by ATR inherently
produce deviations from the BBL law. Maybe this is the case
because the early literature about ATR already clearly pointed
out these deviations. Here we want to emphasize the seminal
work of Hansen.[49] Accordingly, the equation

ð6Þ

where R0 is the reflectance of the unloaded ATR accessory and
R the reflectance when the sample is in contact with the ATR
crystal, is to a good degree usable only for weak absorptions,
i. e. for absorptions with an index of absorption smaller than
about 0.1. This is a severe limitation, because even organic and
biological materials with their comparably weak absorptions do
have many bands that are much stronger. In particular if they
feature C� O, C=O or O� H functional groups, but also C� H
bands can be over the limit, e.g. the stretching vibrations in
Polyethylene. For biological samples in particular the amide I
band must be mentioned, the peak value of which is about 2.5
times higher than the limit.[50] This limitation seems to be
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counterintuitive. Usually ATR spectroscopy is used in particular
to investigate strong bands, as those lead to the problem that
only very thin layers can be investigated in transmission,
otherwise transmittance becomes too low. But this is not the
only challenge when ATR spectra shall be investigated
quantitatively. While ATR spectra displayed in � log10R following
eqn. (6) look on the first view very similar to those gained from
transmittance absorbance, they are not. It is not only that the
intensities especially for lower wavenumbers need to be
corrected, since the so-called effective thickness (this is the
thickness which leads to absorbance values equal to those from
transmission experiments) increases with decreasing
wavenumber.[51] It can also be shown by electromagnetic theory
that ATR absorbance is a function of the index of refraction and
the penetration depth (the thickness at which the evanescent
wave is reduced to 1/e of its original intensity), which is itself a
function of the index of refraction. This means that the
absorbance band maxima are redshifted towards the maxima of
the index of refraction and that the band shapes can strongly
change.[52–55] A simple way to reduce this problem is to use high
index ATR crystal materials like Si and Ge and to apply high
angles of incidence. Unfortunately, this means that the
penetration depths and, thereby, the overall intensities are
reduced and by that the sensitivity of the method. On the other
hand, this helps to avoid the use of the ATR method out of its
specifications, which means that ATR spectra become ordinary
(external) reflectance spectra. What are these specifications?
First and foremost, the angle of incidence must be larger than
the critical angle θc which is given by

ð7Þ

n2 is the index of refraction of the sample and n1 that of the
ATR crystal. If e.g. the crystal consists of diamond or ZnSe (both
have about the same index of refraction of 2.4) and the angle of
incidence is 45°, then the index of refraction of the sample
must be smaller than 1.7. This means that this very popular
combination of crystal and angle of incidence cannot be used
e.g. for charcoal, because it is then external reflection which is
measured and there is no longer a zero baseline, since such
spectra resemble more the index of refraction than the index of
absorption function. Even when the index of refraction of a
sample in the transparency region between MIR and Vis is lower
than the limit, there is a persisting problem introduced by
dispersion. As we have already discussed, every absorption is
accompanied by a change of the refractive index. Therefore,
several overlapping weak bands or a medium strong band like
a C=O vibration leads to a spectral range for which the critical
angle is larger than 45° for said ATR crystals.[54] This means that
a part of the radiation in this spectral range is actually
transmitted into the sample, but not absorbed. It is, however,
only possible to measure the percentage of absorption of the
(total) reflection and not if this is solely due to absorption. In
other words, it is not possible to determine if the spectrum
switches in some region from an ATR spectrum to an external
reflection spectrum. Consequently, the measured absorbance
values in ranges with a higher critical angle than the actual

angle of incidence (cf. eqn. (7)) can be much higher than they
actually are. Again, this is not a problem if electromagnetic
theory is used to evaluate the spectra. Corresponding proce-
dures automatically take into account reflection losses that are
due to transmission. The only problem is that for the correction
the polarization state of the incident light must be known.
Unfortunately, most of the modern accessories do not allow a
polarizer to be used and the optics of the instruments lead to
the fact that light cannot be assumed to be naturally polarized,
so that the polarization state remains unknown. This is also a
knockout-criterion for the use of ATR with inorganic materials.
Their absorptions and corresponding changes of the index of
refraction are usually so strong that ATR spectra must be
corrected by procedures based on electromagnetic theory to
render them interpretable.

Overall, it is important to realize that absorbance calculated
from reflectance (reflectance absorbance, � log10(R/R0)) is differ-
ent from that computed from transmittance (transmittance
absorbance, � log10(T/T0)). Furthermore, � log10(R/R0) based on
transflection might be different from that obtained from ATR
measurements. Transmittance absorbance depends on the
nature of the substrate, if it is not freestanding. An overview of
these differences is provided in Figure 4 for PMMA and Spinel
based on calculated spectra (for Spinel the substrates and the
ATR-crystal were assumed to be transparent).

Figure 4. Comparison of the influence of sample geometry, technique and
substrate on absorbance spectra (film thickness 1 μm and 500 nm for Au).
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3. Deviations between Beer’s Law and
Dispersion Theory: Non-linear Concentration
Dependence

In the last section, we discussed the dependence of the
absorbance from the electric field intensity. While a strong
dependence was obvious, absorbance was not linearly depend-
ing on it. If we keep this dependence in mind and focus on the
right part of eqn. (3),

ð8Þ

then the question arises, which of the quantities on the right
side of the relation can be linked to the electric field intensity. It
certainly cannot be the thickness nor can it be the concen-
tration. The only quantity that remains is the molar absorption
coefficient, which, however, is known to be a substance specific
quantity, and, as such cannot depend on the electric field
intensity. So apparently, the left side depends on the electric
field intensity, while the right does not. What is our mistake? To
find it, it must be emphasized that this part of the BBL law is
empiric. Sometimes it is suggested that the linear concentration
dependence simply follows from the fact that the molar
absorption coefficient can be calculated by[56,57]

ð9Þ

where σAbs is the absorption cross section of an absorbing
moiety like a molecule and NA is Avogadro’s constant. This does
not solve the problem, but merely shifts it, as it implies that
absorption cross sections are specific quantities and that they
are additive. So it seems that we are caught in a circular
argument. Absorbance is additive on the molar level and
linearly depending on the concentration because when the
absorption cross sections of one mole of molecules are added
then the molar absorption coefficient results. This reasoning
cannot directly be checked for a single molecule, but what we
can do is e.g. to check the additivity of the absorption cross
sections of small spherical particles by numerically solving
Maxwell’s equations with methods like the Finite Difference
Time Domain (FDTD) method,[58] as the theoretical results agree
very well with experiments.[59]

3.1. Non-additivity of the Absorption Cross-sections of Small
Spheres

While the absorption and scattering cross-sections of a single
sphere can be calculated from analytical formulas provided by
Gustav Mie,[60] numerical methods are needed once the spheres
are no longer isolated from each other. This already is an
indication that there is some kind of interaction between
neighboring spheres and scattering is one reason for strong
deviations from Beer’s law.[61] We can reduce this interaction by
choosing spheres that are very small compared to the wave-
length. In this limit, scattering is very low. E.g., for two spheres

of amorphous SiO2 with a radius of 125 nm, the scattering cross
section is about 1% of the absorption cross section in the range
around the Si� O stretching vibrations (7.7–10 μm
wavelength).[58] In the extreme case, the minimal distance
between two spheres is zero, so that they touch each other. In
this case, three different principal arrangements have to be
considered, cf. Figure 5. For the first two arrangements, a light
wave is impinging perpendicularly to a connecting line
between the centres of the spheres. The two arrangements
differ concerning the polarization of the wave, which is either
parallel to the connecting line or perpendicular to it. The third
arrangement assumes that the light wave is impinging along
the connecting line, so that the second sphere is directly behind
the first – it can be said that the first shadows the second.[58]

The numerical calculations show that for any of three
principal arrangements the absorption cross section is less than
twice that of a single sphere, the value we would assume if
absorption cross sections were additive. Accordingly, the
presence of a second sphere changes the absorption cross
section of the first and vice versa. The effect becomes smaller
with increasing distance between the (centres of the) spheres,
and can be said to vanish for a distance of about 8 times the
radius.[58] This distance is a function of the strength of the
absorption band; therefore, it can vary from band to band. In
other words, for weaker bands the distance will be smaller, for
stronger bands larger. This result corresponds to observations
of deviations from Beer’s law (i. e. the linear dependence of
absorbance from concentration) for solutions where the
adherence to Beer’s law can change from band to band.[62] As a
rule of thumb, this kind of interaction should vanish for
densities lower than about 1% of that of a condensed phase,
which is essentially the density of gas at standard conditions
which can be considered as ideal. Quite interesting is that the

Figure 5. Calculated field maps for a) one sphere b–d) two touching spheres
with a radius of 125 nm of amorphous SiO2 at 1142 cm

� 1. For a–c) light is
incident perpendicular, along the line of view and the arrows indicate the
polarization direction. In case of d) light is incident from the right. The lower
panel shows the corresponding absorption cross section spectra (in case of
a) twice that of the single sphere).
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absorption cross section of the arrangement where one sphere
shadows the other is practically the same as the configuration
where the incident light as well as the polarization direction are
both perpendicularly to the connecting line between the
centres of the spheres. Obviously the concept of shadowing,
which seems to be behind the so-called absorption
flattening,[56,63,64] and is often invoked to explain deviations from
Beer’s law, is a misconception in this context. Indeed, shadows
belong to the realm of ray optics where the wavelengths are
small compared to the dimensions of the objects. Once it is the
other way around, i. e. the objects are small compared to the
wavelength, the wave bends around the first object and
interacts with the object behind, nearly as if the first object
were transparent. The situation is very comparable to that in
acoustics, where for bass sounds the source cannot be easily
located as the waves bend around obstacles, while high
frequency sounds can be shadowed by objects in the line of
sight and, thereby, weakened in intensity, which allows localiz-
ing their origin.

With regard to Beer’s law, it is also instructive to study how
the spectral features change if we investigate the spectrum of a
single sphere in dependence of its radius/volume. For very
small sphere radiuses and weak absorption, the absorption
cross sections scale in good approximation linearly with the
volume of the sphere, cf. Figure 6. For larger spheres,
absorption increases less strong, since part of the light is
reflected and travels larger distances inside the sphere (for
stronger absorption light may no longer be able to be trans-
mitted). Even larger deviations are generated when the sphere
size is no longer small compared to the wavelength, because
then scattering becomes the dominating effect over absorption
in removing part of the light from the primary light wave.
Again, the sphere modes play a strong role and strong
variations of the baseline can appear as well as changes of the
absorption band shapes away from the symmetric shape

towards a more dispersion-like shape.[65] Such inhomogeneities
can strongly alter absorbance spectra, in particular for biological
samples consisting of tissue or bacterial cells.[66,67] Shape effects
may then also play a role.[68] Unfortunately, there is no analytical
way to correct such features. It seems, however, that their
influence on the spectra is diminished the higher the densities
of the scattering centres are.[69]

3.2. Derivation of Beer’s Law from Electromagnetic Theory
and Dispersion Theory

As we have already discussed, there must be a connection
between the concentration dependence of absorbance and
dispersion theory, and it was just because absorbance was not
yet a popular quantity that Max Planck did not derive this
dependence. In fact, Max Planck would have found that
concentration is not linearly depending on concentration in
general for two reasons; one reason is linked to Maxwell’s
theory and a second reason is that the applied electric field (of
the incident light wave) is generally not the same as that which
is actually effective. For the moment, we neglect this second
reason and just focus on the first. To understand this first
reason, we need to introduce some basic concepts from
electromagnetic theory. On a macroscopic level we will view
matter as a continuum while on the microscopic level we know
that matter consists of moieties, i. e. molecules or unit cells,
which constitute dipole moments ~p that are linked linearly for
not too high electric field strengths to these fields:

ð10Þ

In eqn. (10) and in the following, α is the mean polarizability
of the moiety (and not the Napierian absorption coefficient!). In
the ideal case, the different moieties do not show interaction.
The macroscopic property, the polarization~P, is then simply the
microscopic dipole moment multiplied by the number of dipole
moments per unit volume N:

ð11Þ

On the other hand, the macroscopic equivalent to eqn. (10)
is given by,

ð12Þ

where χ is the electric susceptibility and ɛ0 the vacuum
permittivity. If we put (10) into (11) and equate the result with
eqn. (12), we obtain:

ð13Þ

If we solve for χ and use that χ=ɛr� 1, where ɛr is the
relative dielectric constant, we get:

ð14Þ
Figure 6. Calculated normalized absorption cross sections of PMMA spheres
of different radius in comparison with the true absorbance spectrum of
PMMA.
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This seems to be nowhere close to Beer’s law (eqn. (8)), but
the molar concentration is readily introduced, since N is already
a concentration, and it is linked to the molar concentration by
N=NA ·c. Therefore,

ð15Þ

At this point we make use of the result of Maxwell’s wave
equation according to which the relative dielectric constant is
related to the index of refraction n by ɛr=n2:

ð16Þ

For small c;
ffiffiffiffiffiffiffiffiffiffiffi
1þ c
p

� 1þ c=2. Accordingly,

ð17Þ

If we include absorption, the index of refraction becomes
complex n̂ ¼ nþ ik and the same is true for the polarizability. If
we focus only on the imaginary part, eqn. (17) transforms into,

ð18Þ

Finally, we use the connection between absorbance and the
index of absorption,

ð19Þ

To arrive at Beer’s law:[70,71]

ð20Þ

Thus, according to electromagnetic theory, it is not the
index of absorption, which is proportional to the concentration,
but the imaginary part of the mean polarizability. Indeed, if we
would not use the approximation that simplifies (16) to
eqn. (17), we would find that the molar absorption coefficient is
a function of the inverse index of refraction, and, therefore,
itself a function of concentration. For small concentrations, we
see from eqn. (16) that the refractive index stays close to unity
and Beer’s empiric law will hold good, cf. Figure 7.

To understand the limits in a more quantitative way, it is
possible to model the wavenumber dependence of the polar-
izability, or, in other words, to determine the dispersion of the
polarizability. To do this, a representation of a transition from
one quantum state to a higher level by a harmonic oscillator
can be assumed. This model works well for vibrational modes,
but can also be employed for electronic states as long as those
are localized (the model usually does not work well for solids
like semiconductors, but may represent an electronic excitation
of a molecular entity satisfactorily). The harmonic oscillator is
characterized by a resonance position ~v0, which is the same as

for unforced vibrations. Under the effect of an electric field, this
oscillation is driven with a strength proportional to the square
of the charge q and to the inverse of the reduced mass μ.
Accordingly, the dispersion of the dielectric function can be
modeled as,[71]

ð21Þ

with S*2 ¼ q2NA=ðme0Þ, wherein S* is the molar oscillator
strength. Eqn. (21) may look familiar to many readers and alien
at the same time. The familiarity is based on the relationship of
this so-called Lorentz oscillator to the Lorentz profile that is
omnipresent in optical spectroscopy to model absorbance
spectra, e.g. to achieve peak separation in case of overlapped
bands. The Lorentz profile has been derived by Hendrik Lorentz
from the Lorentz oscillator under the same constraint that was
applied to get from eqn. (16) to (17).[72,73] In other words,
employing a Lorentz profile instead of a Lorentz oscillator is
nothing else but to assume strict linearity between absorbance
and concentration. Under this assumption, the damping
constant becomes the half width of the absorbance band and
the oscillator strength the absorbance amplitude. The Lorentz
profile inherits the symmetric shape from the band of the
imaginary part of the relative dielectric function.

If the approximation that converts a Lorentz oscillator to a
Lorentz profile is not valid, i. e. if the molar oscillator strength
squared times the concentration becomes too large, the
Lorentz oscillator leads to asymmetric absorbance bands the
maxima of which are blue shifted compared to the oscillator
position, cf. Figure 7. The intuitively accessible reason is that the
molar absorption constant, and, by that, the absorbance, is a
function of the inverse index of refraction. The inverse index of
refraction has a maximum that is blue shifted relative to the

Figure 7. Comparison between the concentration dependence of absorb-
ance predicted by Beer’s law and by the classical damped harmonic
oscillator (CDHO) model (often also termed Lorentz- or Drude-Lorentz
model). The deviation from linearity disappears, if instead the peak values
the dependence of the area of the band is plotted over concentration (for
c ·d=const., the band area is also constant).
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oscillator position and is asymmetric, which is why absorption
bands become correspondingly modulated when the oscillator
strengths becomes too high. For symmetry forbidden transi-
tions in the UV, as well as for many oscillators of organic and
biological materials the Lorentz profile is a good approximation
even for neat materials, whereas infrared bands of inorganic
materials are usually so strong that the use of a Lorentz profile
is justified rarely. This is also the reason why absorbance as a
quantity is usually not used to display the infrared spectra of
inorganic materials.

At this point it may be justified to adopt another view and
discuss the role of the molar absorption coefficient. We have
already seen in the preceding section that the absorption cross
section in the special case of small spheres is depending on the
polarization and the distance of the spheres as well as from
their volumes. Correspondingly, the molar absorption coeffi-
cient cannot be a specific quantity, because it depends on the
concentration and the optical properties of the sample. In this
section we have made some implicit assumptions which include
the absence of anisotropy (our medium is isotropic in the sense
that a scalar dielectric function is sufficient to describe it). We
also have assumed that our medium is continuous and
homogeneous. Nevertheless, we found that even under these
conditions the molar absorption coefficient is not a specific
quantity, since it is inversely proportional to the index of
refraction. This dependency alone causes it actually to be not a
material but a wave property. On the first view, this may seem
as a meaningless distinction, but for good reason it is the
complex index of refraction that enters Maxwell’s wave
equation and not the dielectric constant/function. In more
complex settings, like in case of anisotropic materials, the
simple correlation ɛr=n2 is no longer valid and for the same
material parameters (the same dielectric function tensor) optical
properties like the size of certain domains relative to the
wavelength of light may factor in. Under these conditions, ɛr=
n2 may not even be valid for isotropic, i. e. randomly oriented
systems.[74]

3.3. Integrated Absorbance

In former times one of the most often discussed reason for
deviations from Beer’s law was (insufficient) spectral resolution.
If the molar absorption coefficient is known only for the peak
value, a spectral resolution not small enough relative to the
peak width may seem to be the major cause of deviations.
From the last section it is, however, obvious that Beer’s law is
generally not valid pointwise. Therefore, it seems that a
convenient solution, which is to determine the band area
instead of the peak values,[75–77] is also not correct. Indeed, if
Beer’s law were valid for every spectral point, it is easy to show
that the integrated absorbance, i. e. the area under the peak,
would be proportional to the concentration.[78] Since this is only
approximately the case of what use would be the extra effort to
determine the peak area? If a band is indeed symmetric,
something which a band fit with a Lorentz profile could prove,
then taking the band area instead of the peak value may be

able to decrease the error. On the other hand, if a band fit has
been carried out, the integration of a band is actually no longer
needed, because this fit determines the oscillator parameters,
and, among them, the oscillator strength, the square of which is
proportional to concentration. The same is certainly correct for
asymmetric bands when for the band fit a Lorentz oscillator is
employed instead the Lorentz profile.[78] Since band fits are
usually not used in this respect, the concept may seem strange.
There is a way to independently prove that it is correct. In
spectroscopy often the so-called Kramers-Kronig relations are
used.[79] These relations connect the real part of a complex
function with the imaginary part and vice versa. They hold at
the same time for the complex dielectric function, the complex
index of refraction function and the complex function of the
polarizability. Based on the Kramers-Kronig relations and the
dispersion relations from which the former have been obtained
originally, so-called sum rules can be derived.[80] One of these
sum rules deals with the index of absorption, and it states that
the integral over the product of wavenumber and index of
absorption is proportional to the squared oscillator strength.
This product is nothing else, apart from a constant, but the
absorbance, which establishes the equality between integrated
absorbance and oscillator strength squared. The latter, however,
is proportional to the concentration, which proves that Beer’s
law still holds with regard to the squared oscillator strength(s)
and the absorbance band area.[78] To come back to the problem
of resolution, the former conclusion points out that there is
actually no problem, since even when the measured intensity is
not spectrally resolved, it is still proportional to the concen-
tration, and even more so, if a band is asymmetric, as long as its
spectral range is fully covered (cf. Figure 7). Unfortunately, this
conclusion is only correct as long as local fields do not play a
role, something which will be discussed in the next section.

3.4. Beyond Beer’s Law – The Clausius-Mosotti and the
Lorentz-Lorenz Relations

It might not be obvious, but from eqn. (17) one can conclude
that for small variations the index of refraction is predicted to
be also linearly depending on concentration.[81] This is in
principle known for nearly as long as Beer’s law. In contrast to
the latter, the corresponding law was not formulated for the
concentration, but for the density instead. The constant of the
corresponding law is called the Gladstone-Dale constant,
referring to John Hall Gladstone and Thomas Dale who
suggested this law.[82] We recently showed that a related law
formulated for the concentration still works at resonance.[81]

Interestingly, there is a law corresponding to eqn. (16), also
dealing with the dependence from density instead of concen-
tration, which is called the Newton-Laplace rule.

Finally, there is a third law in this regard, which is called the
Lorentz-Lorenz relation and it also deals with the dependence
of the index of refraction from the density, but it can be derived
in the same way as eqns. (16) and (17).[83] The result then reads:
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ð22Þ

Since absorption and refraction are closely connected, it is
instructive to examine how the Lorentz-Lorenz relation evolves
from the Gladstone-Dale and the Newton-Laplace rule, to see
what the corresponding levels of theory for absorption are.
First, the assumption behind Lorentz-Lorenz is that matter is no
continuum. Instead, microscopic entities like molecules con-
stitute it. The new aspect, which was so far not considered, is
that the applied electric field induces a dipole moment locally
which interacts with the dipole moments around it, so that
those are changed. This variation again induces changes in the
first dipole moment and so on and so forth. As a result, the
local electric field is higher than the one applied on the
macroscopic level. There are different theories to calculate the
local field, but if we assume the local field of Lorentz, then
eqn. (13) is changed into,

ð23Þ

the result of which is the Clausius-Mosotti relation for the
dielectric constant and the Lorentz-Lorenz relation for the
squared refractive index. While both relations are usually used
in transparent regions, they certainly hold in absorbing regions
as well. Therefore, the complex index of refraction is employed
in eqn. (22). Before we discuss the consequences, let us first
derive approximate formulae for small concentrations. In this
case, the index of refraction is not very different from unity. We
can therefore assume that under this condition n̂2 þ 2 � 3 and
relation (22) simplifies to

ð24Þ

which is the complex equivalent to eqn. (16). Accordingly, the
solution gained under the assumption that the local field is the
same as the macroscopically applied field and corresponds to
the Newton-Laplace rule. The equivalent to the Gladstone-Dale
rule is then obtained by the assumption that

ffiffiffiffiffiffiffiffiffiffiffi
1þ c
p

� 1þ c=2,

ð25Þ

which is nothing else but Beer’s law if we focus on its imaginary
part. From the preceding section we know that it is, depending
on the molar oscillator strength, valid up to densities of about
1/10 of the density of the neat substance. For higher densities,
the next level of the theory (eqn. (24)) predicts the bands to
become asymmetric and the peaks to shift to the blue. What
are the consequences of a local electric field different from the
applied? Following Max Planck’s and Hendrik Lorentz’s work on
dispersion theory,[16,17,72] there is only one consequence which is
a redshift instead of a blueshift (cf. Figure 8c). This redshift is
depending on the molar oscillator strength and the concen-

tration of the single oscillator both Planck and Lorentz
assumed.[83] Accordingly, except from a few (less than a handful)
of textbooks, the opinion is that the same is also true for
systems of more than one oscillator. Only Max Born pointed out
in his famous textbooks, that this is in general not correct.[84,85]

Instead, macroscopically a system of coupled oscillators results,
in which both, the resonance position as well as the strength of
an oscillator depends on those of all oscillators located
elsewhere in a spectrum and their concentrations. Those of you
familiar with the dispersion relations and dispersion analysis
(the sophisticated form of band fitting), may ask the question,
how is it possible then to fit those coupled systems with the
same relations that are based on uncoupled oscillators? It has
been shown already in 1925, that it is always possible to
mathematically recast the dispersion relations amended by the
Lorentz-Lorenz theory to the original forms.[86] However, the
correspondingly altered squared oscillator strength is then no
longer proportional to the concentration. This challenge cannot
be met by integration of the band area in general. Usually
however, the oscillator strengths of the bands in the UV-Vis
spectral region are much stronger than those in the infrared
region. Accordingly, while the latter are strongly influenced by
the former, the area of all bands in the UV-Vis might still be
proportional to the concentration, while the resonance posi-
tions are strongly redshifted,[83], cf. Figure 8 d). For the infrared

Figure 8. Upper panel: Concentration dependence of the absorbance
according to the different levels of theory. Lower panel: Absorbance band
position, intensity and shape changes for different concentrations for
c ·d=const. and levels of theory. b) CDHO, c) CDHO with redshift propor-
tional to the squared oscillator strength, d) full Lorentz-Lorenz model and e)
full Lorentz-Lorenz model assuming a solution in a solvent with the same
dielectric background (please note the different scale of e)).
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bands, the local field effect leads to a strong increase of the
intensity by a factor on the order of 100%. In other words, if the
same amount of oscillators would not be in condensed form
(i. e. like in a gas, with d much larger, but c ·d kept constant), the
absorbance would be about less than half.[83] From another
point of view, the increased local field strength, leads to an
even stronger increased electric field intensity to which
absorption is proportional. This means that absorbance for neat
materials in a condensed state can be a meaningless quantity.
Instead one might have to analyze the data by dispersion
analysis employing eqn. (22).

The good news is that as long as the oscillators are
suspended in vacuum, and the effects discussed in section 3.1
concerning the non-additivity of the absorption cross sections
are negligible, local field effects are still predicted to not set in
strongly earlier than at a density of 10% of the neat condensed
phase,[83] cf. Figure 8 a). The situation is somewhat different if
the oscillators are located in a solvent (Figure 8 e)). At this
point, we still do not take any chemical interactions into
account, i. e. we assume that the process of dissolving only
means the dissolved molecules are placed in the holes between
the molecules of the solvent without changing the polarizability
of solvent or solute (no chemical reactions with the solvent, no
association of molecules of the solute etc.). This is a situation
that can be modelled with eqn. (22). The usual assumption then
is that the polarizabilities of the solvent and the solute
weighted by their mole fraction are simply additive. Even if we
assume that we focus on a band of the solute with no overlap
with the band of the solvent, the absorptions are strongly
coupled and the increase of the local field will considerably
alter oscillator strength and redshift bands of the solute,
whereas the bands of the solvent will be blue shifted relative to
the neat solvent. The former effect was noted as early as 1878
and is called Kundt’s rule (Kundtsche Regel).[87] When Kundt
noticed that different solvents cause different redshifts, he
empirically investigated the probable cause of the effect and
found that the stronger the index of refraction is and the
stronger its dispersion, the stronger is the redshift of the band
of a solute. In other words, since absorption and change of the
index of refraction are two sides of the same coin, the stronger
the absorption of the solvent is (in other spectral regions), the
more the band of the solute is redshifted (Kundt had no
possibility to quantify peak values). Aside from the bandshift,
the change of the absorption with increasing concentration is
much stronger than without the solvent, which means that the
molar absorption coefficient function measured in a solvent can
be much greater than that without solvent. Additionally,
deviations from linearity can start earlier,[83] but most probably
not earlier than the effect that causes the non-additivity of the
absorption cross sections. All in all, it is not generally necessary
to force a straight line through experimental values of the
absorbance in dependence of concentration. As long as the
change of concentration does not become too small, e.g. a
Gaussian regression can be employed for quantitative
analysis.[88]

3.5. Thick Cuvettes and Pellets – Transmission

It is nevertheless well known that in spectrophotometry eqn. (5)
quite often leads to a straight line, which means that Beer’s law
is applicable. To make this work, merely from the perspective of
optical deviations from the Beer-Lambert law, concentrations
should be less than about 1% of the neat substance (higher
for weaker absorptions – lower for stronger ones) based on the
issues discussed in the preceding sections. Furthermore,
cuvettes need to be thick so that any coherence related effects,
as they were discussed for thin cuvettes, do not occur. This
alone, however, does not suffice. If one would use the BBL law
as it is presented in textbooks, i. e. according to eqn. (3), it
would not work. Instead, eqn. (5) has to be employed.[40] The
reason for this is that the transmittance of the solution requires
to be normalized by ratioing it to the transmittance of the pure
solvent. If optical theory is applied to this case, it can be shown
that only the ratio decays exponentially with concentration as
required, but only if some further prerequisites are met.[40] One
of these is that the index of refraction of the solvent (or of the
pellet material – for pellets in principle the same applies as for
thick cuvettes) should be as close to unity as possible. The
second requirement is that the index of refraction of the
solution must not be too different from that of the solvent. As it
is obvious from the preceding section, this also limits the
concentration of the solute.

3.6. Sample Heterogeneity and Mixing Rules

Sample heterogeneity and resulting consequences were already
discussed in several sections. It must be emphasized that the
simple relations provided in sections 3.2–3.4 are based not only
on the precondition that the medium is macroscopically and
microscopically isotropic, but also that it is perfectly homoge-
neous. For real samples this is never the case and, therefore
absorption cross sections are not additive, even though the
heterogeneities are small compared to the resolution limit (i. e.
they would not be visible under a microscope). In section 3.1
we also touched upon what happens when the heterogeneities
are no longer small compared to wavelength, but the onset of
scattering is only one effect that leads to deviations from the
Beer-Lambert law. If we assume samples that consist of two
different constituents, the simplest mixing rule according to the
Lorentz-Lorenz model would be that[89,90]

ð26Þ

where φ1 and φ2 are the volume fractions of the constituents 1
and 2. This corresponds to the simplified form of eqn. (25) and
is consistent with Beer’s law if there is no volume excess due to
mixing[40] (note, however, that for many techniques, a simple
mixture of the absorption indices or, equivalently, the absor-
bances, without considering the refractive index is not
sufficient![90]). The corresponding form to eqn. (24) would be[89]

ð27Þ
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and the form related to the Lorentz-Lorenz relation (22) is[89,91]

ð28Þ

It is obvious that these mixing rules are no longer
compatible with Beer’s law, and not only because we use the
volume fraction (which is connected to the molar concentration
in ideal systems via ci=φi ·di/Mi with density di of the neat
compound and its molar mass Mi), cf. Figure 9. A serious
consequence is e.g. that absorbance spectra do no longer show
an isosbestic point, even if they are genuine two component
systems.[92]

The latter mixing rule is not the only one, which has been
developed over the centuries, because simulated spectra based
on the mixing rules quite often do not resemble the actual
spectrum well. Further mixing rules are the Onsager-Böttcher
theory,[93] the Maxwell Garnett model and the Bruggeman
formula,[94] to name just the most important. For all these
mixing rules, it is required that the regions or domains where
one constituent is the only or the dominating one, are small
compared to the wavelength (�1/10 λ) and/or the resolution
limit of light, i. e. the sample is micro-homogeneous. In other
words, if spectra taken with a microscope from different
locations of the sample differ significantly from each other,
then these mixing rules are not sufficient (micro-heterogeneous
sample). The reason is that the transmittance T and reflectance
R of a larger area or volume of the sample are always area or
volume averaged quantities:[89,95]

ð29Þ

Here φi represents either the volume fraction (transmit-
tance) or the fraction of the surface area (reflectance) of

microscopically large domains completely consisting of either
component 1 or 2. If components 1 and 2 are not completely
immiscible or if the domains are not or not all larger than the
resolution limit, then the mixing rules become even more
complicated, whereas if the conditions are fulfilled, eqn. (29) is
readily extendable to more than 2 components, as are
eqs. (26)–(28).

The immediate consequence of (29) is that Beer’s law
cannot hold for microscopically heterogeneous samples, since

ð30Þ

The deviations can be considerable even for weak oscil-
lators, in particular if the volume fractions of the different
materials are of the same order (cf. Figure 9).[89] In this case, the
bands strongly flatten for micro-heterogeneous samples com-
pared to micro-homogeneous samples with the same composi-
tion (this might explain the band flattening which is often
erroneously explained with shadowing, cf. section 3.1). For
larger layer thicknesses or oscillator strengths, the spectra can
be altered to the point where the original components are no
longer recognizable. The special case where the second
material is transparent had already been treated in 1952.[96]

Probably because it was shown later that the errors in case of
pressed pellets were small,[97] (which is no argument, because
for pressed pellets, the sample powder should consist only of
particles small compared to wavelength, so that above theory
does not apply!) this problem did not get the attention it
deserves. It might seem that it can be relieved by using imaging
methods, but this requires to perform imaging at the resolution
limit, otherwise the spectra of the pixels are averaged according
to eqn. (29) and corresponding errors will result at the borders
between substances.

4. Some Further Challenges Regarding the
Bouguer-Beer-Lambert Law

4.1. Introducing Anisotropy – Linear Dichroism Theory

In addition to heterogeneity, a further complication is the fact
that most molecules or unit cells are anisotropic. Based on a
simple model it can be shown that in this case absorbance is
not related linearly to concentration.[98] Usually linear dichroism
theory is applied to systems where anisotropy plays a role,[99,100]

which not only inherits all shortcomings detailed so far, but is
strictly applicable only to molecules of a gas. According to this
theory, it is only the angle between transition moment and
light polarization that determines absorption. Gases, however,
are not anisotropic. Liquids and solids, on the other hand, have
interfaces. Since only the electric field components tangential
to the interface are continuous, a second angle becomes
important and influences absorption, which is the angle of the
transition moment relative to the interface.[101] As a conse-
quence, linear dichroism theory is a limiting theory the perform-

Figure 9. Absorbance spectra for a 5 μm thick two-component layer on CaF2
with φ1=0.75 according to Beer’s law (eqn. (26), orange curve), the
assumption of a zero local field of Lorentz (eqn. (27), turquoise curve),
according to Lorentz-Lorenz (eqn. (28), violet curve) and for micro-heteroge-
neous mixing (eqn. (29), green curve).
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ance of which improves with vanishing anisotropy and band
strength. For C=O vibrations deviations of up to 50% are
possible.[102] In case of inorganic materials with their usually
much stronger absorptions linear dichroism theory is generally
inadequate. In fact, it was already obsolete long before it was
founded.[101,103] A wave-optics based treatment of anisotropy is
nowadays usually based on 4×4 matrix formalisms,[104–106] and
used, e.g., in generalized spectroscopic ellipsometry. These
formalisms automatically also take into account the interference
effects described in the previous sections.

4.2. Circular Dichroism and 2D Correlation Absorption
Spectroscopy

Neither in literature related to circular dichroism spectroscopy
nor to 2D correlation spectroscopy any consequences of the
absorbance being non-linearly related to sample thickness or to
concentration have ever been investigated. The, to our best
knowledge, only paper which discusses such deviations from
the BBL law for circular dichroism completely focuses on
chemical interactions as sources for errors.[107] Similar to bio-
logical samples, however, (chiral) Mie scattering as a source of
error, e.g. resulting from large biopolymers, has been
discussed.[108] For most measurements performed with liquids in
cuvettes with cm thickness deviations, if noticed, can be
assumed to be small for the reasons detailed in section 3.6, but
as soon as thin cuvettes need to be used as in the IR spectral
region, interference effects will come into play (cf. section 2.4).
For solid samples, and in particular if plasmonic enhanced chiral
detection schemes are employed,[109] converting transmittance
into absorbance loses meaningfulness, but instruments often
only use this quantity.

One of the predominant features of 2D correlation spectro-
scopy is that it is extremely sensitive to non-linearity.[110] In
particular in the asynchronous spectra, thickness and concen-
tration related non-linearity can be detected much more easily.
In this context, it is required to investigate the spectral
signatures of non-linearity that is inherent to absorbance to
avoid misinterpretation. So far, this challenge has seemingly not
been realized, but investigations to quantify the influences are
dearly needed and in progress.

5. Conclusion and Outlook

The Bouguer-Beer-Lambert law shares an important property
with the ideal gas law, which is that it is a limiting law that is
accurate only under some very restrictive preconditions. For
gases, it is correct only for comparably large distances between
the molecules, another commonality with the ideal gas law.
Even when chemical interactions are excluded, there is a
cornucopia of different sources of error spectroscopists should
be well aware of. Compared to the Bouguer-Beer-Lambert law,
the ideal gas law has one big advantage – thanks to its name –
it is never mistaken as being correct in reality. Given the
multitude of potential pitfalls and sources of error, our

suggestion would be to rename the BBL law to ideal absorption
law to make it clear that in many situations a more
sophisticated data treatment and careful interpretation is
necessary.

If on the other hand, such a sophisticated data treatment is
ensured, i. e. electromagnetic theory is applied, it becomes
possible to understand band shifts and the intensities of
spectra. The latter would finally render the next big step in
spectroscopy possible, which was anticipated more than six
decades ago, but never took place in a widespread manner,
namely a fully quantitative evaluation of optical spectra.
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