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Background: The ginsenoside Rg3, one of active components of red ginseng, has chemopreventive and
anticancer potential. Cancer stem cells retain self-renewal properties which account for cancer recur-
rence and resistance to anticancer therapy. In our present study, we investigated whether the stan-
dardized Korean Red Ginseng extract (RGE) and Rg3 could modulate the manifestation of breast cancer
stem cellelike features through regulation of self-renewal activity.
Methods: The effects of RGE and Rg3 on the proportion of CD44high/CD24low cells, as representative
characteristics of stem-like breast cancer cells, were determined by flow cytometry. The mammosphere
formation assay was performed to assess self-renewal capacities of breast cancer cells. Aldehyde dehy-
drogenase activity of MCF-7 mammospheres was measured by the ALDEFLUOR assay. The expression
levels of Sox-2, Bmi-1, and P-Akt and the nuclear localization of hypoxia inducible factor-1a in MCF-7
mammospheres were verified by immunoblot analysis.
Results: Both RGE and Rg3 decreased the viability of breast cancer cells and significantly reduced the
populations of CD44high/CD24low in MDA-MB-231 cells. RGE and Rg3 treatment attenuated the expres-
sion of Sox-2 and Bmi-1 by inhibiting the nuclear localization of hypoxia inducible factor-1a in MCF-7
mammospheres. Suppression of the manifestation of breast cancer stem cellelike properties by Rg3
was mediated through the blockade of Akt-mediated self-renewal signaling.
Conclusion: This study suggests that Rg3 has a therapeutic potential targeting breast cancer stem cells.
� 2018 The Korean Society of Ginseng, Published by Elsevier Korea LLC. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

According to 2012 global statistics, breast cancer is the second
death malignancies in the women worldwide [1]. Although several
therapeutic options have been suggested for patients with breast
cancer, the incidence and relapse of this malignancy are still fore-
casted to continuously increase [2]. Interestingly, patients retaining
CD44high/CD24low breast stem-like cancer cells have a higher
recurrence rate than those having CD44low/CD24high nonestem
breast cancer cells [3]. The conventional treatment of various tu-
mors has been largely unsuccessful which may be due to the sur-
vival of cancer stem cells (CSCs) present in a small proportion of
cancer cell population within a tumor microenvironment. CSCs are
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considered to confer resistance to anticancer therapy as well as
enhanced tumor growth, metastasis, and recurrence [4]. In this
context, CSC-targeted therapies, which accentuate their efficacy in
eliminating the fundamental cause of cancer rather than tumor
bulk, have attracted special attention [5].

Self-renewal capacity is critical for maintaining features of
stem-like cancer cells and sustaining mother stem cell property [6].
Upregulation of Bmi-1 and Sox-2 expression has been recognized
as molecular signature in stem-like breast cancer cells [7,8]. Bmi-1
is a polycomb group family protein involved in the maintenance of
CSCs as an epigenetic modifier [9]. Bmi-1 is highly expressed in
stem-like breast cancer cells and is indispensable for regulation of
self-renewal signaling [8,10]. Sox-2, a regulator of cell fate during
, Gwank-gu, Seoul 08826, Republic of Korea.
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development, also plays a role in the maintenance of CSCs. It has
been reported that the overexpression of Sox-2 in CSCs presents the
coherent induction of self-renewal signaling, eventually leading to
tumor progression [11]. Based on these findings, Bmi-1 and Sox-2
are considered to lie in the central node of self-renewal machin-
ery of CSCs.

Recently, red ginseng extract (RGE) has been used in Asian
countries because of its remedial potential in the management of
various symptoms as well as maintenance or improvement of
health [12e15]. Among the different components of RGE, ginse-
nosides are identified to be responsible for the majority of its bio-
logical activities. Notably, some ginsenosides in raw ginseng are
converted into different forms by the heat treatment during the
RGE production [16,17]. Rg3 is one such archetype of RGE which is
barely detected in raw ginseng, but its content markedly increases
through the steaming process. Considering these perspectives, it
could be suggested that the increased content of Rg3 constitutes a
principle axis of the enhanced pharmacological activities of RGE.

It has been reported that the ginsenoside Rg3 has the cytotoxic
activity toward cancer cells [18]. Rg3 exerts direct anticancer effects
by inhibiting tumor growth and inducing apoptotic cell death
[19,20]. Nonetheless, the mechanism by which Rg3 regulates the
signal transduction pathway involved in the maintenance of CSCs
and manifestation of their properties still remains to be largely
explored. Therefore, we have examined the effects of the ginse-
noside Rg3 on manifestation and maintenance of breast cancer
stem cellelike properties in the context of its novel anticancer
activity.

2. Materials and methods

2.1. Reagents and antibodies

The standardized Korean Red Ginseng extract powder and 20-
(S)-Rg3 (purity: 96.1%) were supplied by the Korean Ginseng Cor-
poration (KGC; Daejeon, Korea). The main components of the RGE
powder are 1.91 mg/g ginsenoside-Rg1, 2.17 mg/g Re, 1.56 mg/g Rf,
1.71 mg/g Rh1, 1.67 mg/g Rg2s, 9.14 mg/g Rb1, 4.16 mg/g Rc,
3.38 mg/g Rb2, 1.36 mg/g Rd, 2.37 mg/g Rg3s, and 1.11 mg/g Rg3r.
The water content is 5.29% of the total weight. Cell culture medium
was purchased from Gibco BRL (Grand Island, NY, USA), and fetal
bovine serum (FBS) was obtained from GenDEPOT (Barker, TX,
USA). Primary antibodies for Bmi-1, Sox-2, P-Akt (S473), Akt, and
extracellular signal-regulated kinases (ERK) were supplied by Cell
Signaling Technology (Danvers, MA, USA). Antibodies against
Lamin B1, P-ERK, and b-actin were purchased from Santa Cruz
Biotechnology (Dalls, TX, USA). Antibodies against CD24 and hyp-
oxia inducible factor-1a (HIF-1a) were purchased from BD Bio-
sciences (Bedford, MA, USA). Antibody against CD44was purchased
from eBioscience (San Diego, CA, USA). The Akt inhibitor
(LY294002) was a product of TOCRIS (Bristol, United Kingdom).

2.2. Cell culture

Human breast cancer (MCF-7 and MDA-MB-231) cell lines ob-
tained from the Korean Cell Line Bank (Seoul, Korea) were main-
tained at 37�C in a humid atmosphere of 5% CO2/95% air in Roswell
Park Memorial Institute (RPMI) and complete Dulbecco’s Modified
Eagle’s Medium (DMEM) complete media, respectively [21]. Each
medium contains 10% FBS and 1% antibiotics.

2.3. Mammosphere formation assay

MCF-7 and MDA-MB-231 cells were cultured in a serum free
DMEM/F12 medium supplemented with B27 (Gibco), 20 ng/mL
epidermal growth factor (Sigma-Aldrich, St. Louis, MO, USA), 20 ng/
mL basic fibroblast growth factor (PeproTech, Rocky Hill, NJ, USA),
and 4 ng/mL heparin (Sigma-Aldrich) [22]. Primary mammo-
spheres were seeded at a density dependent on cell types in
100 mm ultralow attachment plates (Corning, NY, USA) for 7
consecutive days, and the cells were maintained by addition of the
medium every 2e3 days. To culture secondary mammospheres,
primary mammospheres were gently collected and spheres were
dissociated into a single-cell suspension using 40 mm strainer.
Single cells were counted and then seeded again for another 5 days
by addition of medium every 2e3 days. Using the same experi-
mental method, tertiary mammospheres were generated with or
without treatment of RGE or Rg3. The number of mammospheres
formed (>100 mm) was counted at indicated times under a
microscope.

2.4. Flow cytometry analysis

Cells were collected and dissociated with Accutase solution
(Sigma-Aldrich). After washing with phosphate buffered saline
(PBS) and suspension in Hank’s Buffered Salt Solution (HBSS)
solution containing 2% FBS and 0.1% Tween-20, cells were stained
with CD24-PE and CD44-APC incubated in rotator at 4�C.
Following dissociation into single cells by using 40 mm strainer,
the proportion of CD44high/CD24low cells were measured using BD
FACSCalibur (Becton Dickinson Biosciences, San Jose, CA, USA).

2.5. ALDEFLUOR assay

The ALDEFLUOR kit (StemCell Technologies, Durham, NC, USA)
was used to measure the cells that express aldehyde dehydroge-
nase (ALDH) enzyme activity. The vehicle-treated MCF-7 mam-
mospheres were incubated with an ALDH specific inhibitor,
diethylaminobenzaldehyde, to assess background fluorescence. The
sorting gates were established by eliminating the cells stained
positive with ALDH in a negative control group following the
method described by Ginestier et al [23]. Samples were analyzed by
the FACSCalibur (Becton Dickinson Biosciences).

2.6. Western blot analysis

To obtain the protein sample from cell lysates, cells were
washed with cold PBS and suspended in cell lysis buffer ac-
cording to the procedure described earlier [21]. For nuclear and
cytosolic extractions, cell pellets were suspended in hypotonic
buffer [10 mM HEPES (pH 7.8), 1.5 mM MgCl2, 10 mM KCl,
0.5 mM dithiothreitol, 0.2 mM phenylmethylsulfonyl fluoride
(PMSF)]. After incubation for 10 min on ice and centrifugation at
5,200 g for 6 min, supernatant was collected as a cytosolic
fraction. The residual pellets were suspended in hypertonic
buffer [20 mM HEPES (pH 7.8), 1.5 mM MgCl2, glycerol, 420 mM
NaCl, 0.5 mM dithiothreitol, 0.2 mM PMSF, and 0.2 mM EDTA]
and incubated on ice for 30 min. Protein samples were subjected
to immunoblot analysis, as described previously [21].

2.7. Transient transfection of HIF-1a siRNA

Tertiary MCF-7 mammospheres were seeded in 6-well ultralow
attachment plate (5 � 103 cells/mL) in mammosphere culture
media. HIF-1a siRNA was transfected into mammospheres with
lipofectamin RNAiMAX reagents (Invitrogen, Carlsbad, CA, USA)
following the method described by Kim et al [21]. Human HIF-1a
siRNA sequence was 50eGUGGUUGGAUCUAACACUAe30 (forward)
and 50eUAGUGUUAGAUCCAACCACe30 (reverse). siRNA
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Fig. 1. Effects of RGE on viability and stemness properties of breast cancer cells. (A) MCF-7, MDA-MB-231, and MCF-10A cells were treated with RGE (0.5, 1 or 5 mg/mL) or vehicle for
48 h. The data are presented as means � SD. (B) At the tertiary mammosphere state, cells cultured in a 96-well ultralow attachment surface plate were treated with RGE (1 or
2.5 mg/mL) for 5 days. The number, the size, and the shape of mammospheres were examined by phase-contrast microscopy. Illustrations are the representative phase-contrast
photomicrographs of mammospheres, and the graph bars are presented based on the number of mammospheres bigger than 100 mm. The values are presented as means � SD
(n ¼ 3). (C) MDA-MB-231 cells treated with 1 or 2.5 mg/mL of RGE for 48 h were stained with anti-CD44-APC and anti-CD24-PE. Flow cytometric dot plots represent changes in the
proportion of CD44high/CD24low cells. Quadrant analysis of fluorescence intensity of gated cells in FL2 and FL4 channels was from 10,000 events. Numerical values in the cytogram
indicate the percentage of gated cells in each quadrant. The values are expressed as means � SD (n ¼ 3).
APC, allophycocyanin; RGE, red ginseng extract; SD, standard deviation.
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Fig. 2. Effects of Rg3 on viability and stemness properties of breast cancer cells. (A) MCF-7, MDA-MB-231, and MCF-10A cells were treated with Rg3 (25, 50 or 100 mM) for 72 h. The
data are presented as means � SD. (B) On tertiary mammosphere formation, Rg3 was treated twice at an interval of 2 days during the 5 days of maintenance. The number, the size,
and the shape of mammospheres were examined by phase-contrast microscopy. Pictures are the representative phase-contrast photomicrographs of mammospheres, and the graph
bars are presented based on the number of mammospheres bigger than 100 mm. The values are presented as means � SD (n ¼ 3). (C) MCF-7 mammospheres were subjected to the
ALDFLUOR assay, followed by flow cytometry to detect cells with the ALDH activity. Tertiary MCF-7 mammospheres were treated with Rg3 (25 mM) twice at an interval of 2 days
during the 5 days of maintenance. An ALDH inhibitor, DEAB was used to assess the background fluorescence. Quadrant analysis of fluorescence intensity of gated cells in FL1
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oligonucleotide targeting HIF-1a was purchased from Bioneer
(Daejeon, Korea).

2.8. Cell viability assay

Cells were seeded in 8,000 cells per well in a 48-well plate. One
day after seeding, the cells were incubated with RGE and Rg3,
following the method described by Kim et al [24]. The absorbance
was measured at 570 nm using a microplate reader (Bio-Rad Lab-
oratories, Hercules, California, USA).

2.9. Statistical analysis

Data were represented as the mean� standard deviation of
three independent experiments. Statistical analysis between
groups was determined by the Student’s t test. A value p< 0.05 was
considered to be statistically significant.

3. Results

3.1. RGE reduces the viability and attenuates stemness of breast
cancer cells

First, we investigated the effects of RGE on the viability of hu-
man breast cancer (MCF-7 and MDA-MB-231) cells and normal
mammary epithelial (MCF-10A) cells. Treatment of these cells with
RGE at relatively low concentrations (0.5 and 1 mg/mL) did not
affect the cell viability. However, incubation with 5 mg/mL of RGE
for 48 h resulted in cytotoxic effect in both breast cancer cell lines
and to a lesser extent, in normal mammary epithelial MCF-10A cells
(Fig. 1A). Therefore, in determining the effects of RGE on self-
renewal activity of stem-like breast cancer cells, noncytotoxic
concentrations (1 and 2.5 mg/mL) were used. The mammosphere
formation assay is widely used to identify stem cells based on the
self-renewal activity [25]. To generate mammospheres, breast
cancer cells were cultured in ultralow attachment surface plates
enriched with serum-free stem cell media through serial passages.
MCF-7 and MDA-MB-231 mammospheres were then incubated
with RGE (1 and 2.5 mg/mL) for 5 days. As a result, RGE treatment
significantly inhibited the number and the size of mammospheres
in MCF-7 and MDA-MB-231 cells (Fig. 1B). These results suggest
that RGE could inhibit self-renewal ability of stem-like breast
cancer cells. The different cell populations within a tumor can be
identified using the signature of specific proteins expressing on the
surface of particular cells [26]. For example, CD44high/CD24low

breast stem-like cancer cells promote the tumorigenesis in breast
cancer tissue [3]. When MDA-MB-231 cells were treated with RGE
(1 and 2.5 mg/mL) for 48 h, the proportion of the CD44high/CD24low

cell population was decreased in a concentration-dependent
manner, indicating that RGE abrogated the manifestation of
breast cancer stem cellelike properties (Fig. 1C).

3.2. Rg3 reduces the viability of breast cancer cells and alleviates
their stemness properties

Rg3 is one of the major components of RGE and has chemo-
preventive/chemotherapeutic potential [20,27,28]. The distinct
biological activities of red ginseng have been considered to arise
from a change in the chemical constituents that occurs during the
steaming process [16]. In an initial experiment, the effect of Rg3 on
channels was from 10,000 events. Numerical values in the plots indicate the percentage of g
48 h were stained with anti-CD44-APC and anti-CD24-PE. Flow cytometric dot plots repre
rescence intensity of gated cells in FL2 and FL4 channels was from 10,000 events. Numeric
values are expressed as means � SD (n ¼ 3).
ALDH, aldehyde dehydrogenase; APC, allophycocyanin; DEAB, diethylaminobenzaldehyde;
the cell viability of breast cancer cells was examined. MCF-7 and
MDA-MB-231 cells were incubated with different concentrations of
Rg3 (25, 50, or 100 mM) for 72 h. This concentration range was
based on other reports [19,24]. As shown in Fig. 2A, Rg3 reduced the
viability of both MCF-7 and MDA-MB-231 cells in a concentration-
dependent manner whereas it barely caused cytotoxicity to normal
mammary epithelial (MCF-10A) cells. After confirming that RGE
treatment inhibited the self-renewal capacity of MCF-7 and MDA-
MB-231 mammospheres, a similar effect was assessed for Rg3
treatment. Treatment of MCF-7 and MBA-MB-231 tumorspheres
with different concentrations of Rg3 (10, 25, and 50 mM) reduced
the number and the size of spheres (Fig. 2B). The aldefluor assay
measuring the oxidation of intracellular aldehydes is widely used to
identify the stem-like breast cancer cells with elevated ALDH ac-
tivity [23]. The stem-like breast cancer cells containing ALDH-
positive subpopulation have the capacity to self-renew and
regenerate [23]. Rg3 (25 mM) was treated twice at 2-day intervals
for 5 days during the tertiary mammosphere formation. Dieth-
ylaminobenzaldehyde, a specific inhibitor of ALDH, was utilized for
measuring the background enzyme activity of the negative control
group. The ALDH activity, which was elevated in the absence of its
inhibitor, was markedly suppressed upon Rg3 treatment (Fig. 2C).
Subsequently, we examined the effect of Rg3 on the proportion of
CD24 and CD44 proteins expressed on the cell surface of MDA-MB-
231 cells. Rg3 treatment significantly reduced the proportion of
CD44high/CD24low cells (Fig. 2D).

3.3. RGE and Rg3 reduce the expression of self-renewal signaling
molecules in stem-like breast cancer cells

Self-renewal is the predominant property of CSCs that accounts
for the regeneration of the tumor in all aspects [10]. Bmi-1 is one of
the critical proteins in regulation of self-renewal signaling [29,30].
Overexpression or deregulation of Bmi-1 is frequently found in
human breast cancer tissues [5]. Moreover, upregulation of the
transcription factor Sox-2 is essential for self-renewal capability in
tumor initiating cells [31]. Because tertiary MCF-7 mammospheres
bear most of the fundamental features of CSCs, such as self-renewal
capacity, expression of Sox-2 and Bmi-1 in tertiary mammospheres
was compared to that of the parent breast cancer cells. Mammo-
spheres exhibited the increased protein expression of Sox-2 and
Bmi-1, which was decreased by RGE treatment (Fig. 3A). The con-
current results were observed in mammospheres derived from
MCF-7 (Fig. 3B) and MDA-MB-231 (Fig. 3C) cells treated with Rg3.
These findings suggest that RGE and Rg3 are likely tomodulate self-
renewal ability through inhibition of Sox-2 and Bmi-1 signaling in
stem-like breast cancer cells.

3.4. RGE and Rg3 inhibit phosphoinositide 3-kinase signaling in
MCF-7 mammospheres

In addition to Bmi-1 and Sox-2, Akt-related signaling molecules
have also been suggested as a master regulator of self-renewal
capability of CSCs [32]. Moreover, a recent study has proposed
the critical role of the ERK/mitogen-activated protein kinase
(MAPK) signaling pathway in drug resistance of cancer cells [33]. To
further verify the molecular basis for the inhibition of self-renewal
capacity by RGE and Rg3, their effects on the activity of Akt and ERK
in MCF-7 mammospheres were explored. As illustrated in Figs. 4A,
4B, treatment of RGE and Rg3 strongly inhibited the
ated cells in R1 quadrant. (D) MDA-MB-231 cells treated with Rg3 (10, 25 or 50 mM) for
sent changes in the proportion of CD44high/CD24low cells. Quadrant analysis of fluo-
al values in the cytogram indicate the percentage of gated cells in each quadrant. The

SD, standard deviation.
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phosphorylation of Akt which was constitutively overexpressed in
MCF-7 mammospheres. However, neither phosphorylation nor
expression of ERK was altered by RGE or Rg3 treatment under the
same experimental conditions.

3.5. The phosphoinositide 3-kinase pathway regulates self-renewal
signaling, and HIF-1a may be a potential modulator of Akt-
mediated self-renewal signaling in MCF-7 mammospheres

In order to investigate whether Akt can regulate self-renewal
activity of stem-like breast cancer cells, we used LY294002, a spe-
cific inhibitor of phosphoinositide 3-kinase (PI3K), an upstream of
Akt. The pharmacological inhibition of Akt abolished the expression
of Sox-2 and Bmi-1 (Fig. 5A) and further reduced the number and
the size of MCF-7 mammospheres (Fig. 5B). These results support
the notion that the PI3K signaling pathway modulates breast CSC-
like properties via regulation of self-renewal signaling. However, a
question that still needs to be addressed is how Akt regulates self-
renewal signaling. As seen in the present study, Akt acts as an
upstream signaling molecule that modulates the expression of Sox-
2 and Bmi-1. To validate the correlation between Akt and self-
renewal signaling, we examined a possible candidate signaling
molecule that could regulate downstream molecules, Sox-2 and
Bmi-1. Notably, HIFs have been reported to upregulate the
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expression of stem-cell associated molecules [34,35]. Among these,
HIF-1a is a well-known transcription factor which acts by binding
to the HIF-responsive elements present in the promotor of target
genes [36]. The nuclear accumulation of HIF-1a was higher in
mammospheres than in parent MCF-7 cells (Fig. 5C). In addition,
treatment of MCF-7 mammospheres with Rg3 or the Akt inhibitor
blocked the nuclear localization of HIF-1a. The ablation of HIF-1a
expression by use of siRNA attenuated the expression of Sox-2 and
Bmi-1 and reduced the number and the size of MCF-7 mammo-
spheres compared to those of control (Fig. 5D).

4. Discussion

It has been known that the presence of CSCs in tumor tissues
confers resistance to chemotherapeutic agents, which often leads
to recurrence in various human cancers [37]. Therapeutic drugs
used to treat breast cancer include cisplatin, doxorubicin, paclitaxel,
etc. Among them, paclitaxel acts by binding to microtubules with
high affinity to block disassembly of microtubules [38]. It has been
reported that the upregulation of class III b-tubulin augments the
resistance to paclitaxel treatment and cancer progression in
advanced breast cancer patients [39]. In addition, treatment of
human triple negative breast cancer with paclitaxel resulted in an
increase of HIF expression and its transcriptional activity, which
enriched the breast CSC population to acquire chemoresistance
through interleukin-6 and interleukin-8 signaling [40]. According
to the above study, the combinatorial therapy of HIF inhibitors and
paclitaxel was effective to overcome the resistance of CSCs [40].
Therefore, it has been suggested that the therapeutic effects of
traditional chemotherapy or radiotherapy could be improved by
employing combinational treatment targeting CSCs. In this context,
natural products are good candidates for combination with syn-
thetic chemotherapeutic drugs.

Rg3, a pharmacologically active ingredient of red ginseng, has
been extensively investigated in regard to chemotherapeutic as
well as chemopreventive effects exerted by itself or combination
treatment. There are several different types of ginsenosides pre-
sent in RGE. Approximately, 50 kinds of ginsenosides have been
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identified, and it has been reported that some ginsenosides are
converted into different forms by the heat treatment during the
RGE production [16,17]. As a representative RGE-derived ginse-
noside, Rg3 exerts cancer chemopreventive and antitumor effects
through multiple mechanisms. Rg3 exists in two stereoisomers,
20-(S)-Rg3 and 20-(R)-Rg3, depending on the orientation of the C-
20 hydroxyl group. According to Nag et al, this difference in the
stereochemistry produces different pharmacological effects [41].
It has been reported that the 20-(S)-Rg3 possesses better anti-
proliferative effects in cancer than 20-(R)-Rg3 counterparts
because of its orientation of the C-20 hydroxyl, making the
molecule act as a more efficient regulator of ion channels [41,42].
Rg3 inhibits the growth of colon cancer cell lines through atten-
uation of Wnt signaling [19]. Rg3 also induces apoptosis in human
leukemia by suppressing the PI3K/Akt pathway [20]. Several
studies have presented the synergistic and sensitizing effects of
Rg3 in bladder and prostate cancer when used in combination
with chemotherapeutic agents [43e45].

Notwithstanding the great efficacy of Rg3 in suppressing pro-
liferation or growth of cancer cells, its effect on the oncogenic po-
tential of CSCs remains largely unexplored. Some dietary cancer
preventive phytochemicals have the capacity to interfere with the



Fig. 6. Schematic representation of a proposed mechanism underlying the inhibitory effects of Rg3 on self-renewal signaling. Rg3, a major anticancer component of RGE, inhibits
the Akt-mediated self-renewal signaling which, in turn, modulates stem-like properties.
HIF-1a, hypoxia inducible factor-1a; RGE, red ginseng extract.
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various signal molecules which are essential for the maintenance of
CSCs [26]. For instance, curcumin, epigallocatechin gallate, and
genistein decrease the population of CSCs through downregulation
of STAT3, Hedgehog, and nuclear factor-kappa B (NF-kB) signaling
pathways [46,47]. Regarding the effects of different types of gin-
senosides present in RGE on CSCs, the ginsenoside Rb1 exerted
potent cytotoxicity in ovarian CSCs by targeting Wnt/b-catenin
signaling [6]. In addition, the ginsenoside Rh2 was reported to
inhibit the effect on the growth of the squamous skin cell carci-
noma by reducing the expression Lgr5, an intestinal epithelium
stem celleassociated marker [48]. In line with these previous re-
ports, our current study demonstrates the capability of Rg3,
another ginsenoside present in RGE, to inhibit stem-like breast
cancer cells. Notably, Rg3 can modulate the manifestation of cancer
stem cellelike features by suppressing the Akt-mediated self-
renewal activity.

Recent studies have revealed the central role of self-renewal
signaling involved in the maintenance of the cancer stem celle
like phenotype [6,49]. Among the stem celleassociated factors,
Sox-2 and Bmi-1 are of prime interest. Sox-2 plays a crucial role in
self-renewal activity mediated by epidermal growth factorere-
ceptor in pancreatic CSCs, and its ectopic overexpression enhances
the proportion of breast CSCs by activating the Wnt signaling
pathway [7,50]. Moreover, Sox-2 overexpression induces the
expression of other self-renewal markers, NANOG and OCT4, in
melanoma-initiating cells [31]. Furthermore, several reports have
proposed targeting self-renewal regulator, Bmi-1as Achilles’s heel
of CSCs [8,51]. Kreso et al [52] demonstrated that the immunode-
ficient mice transplanted with Bmi-1 knockdown human colorectal
cancer cells showed the reduced tumor growth as compared to
those harboring the functional Bmi gene. Bmi-1 also regulated the
cellular senescence in hematopoietic stem cells and involved in life
span extension through inhibition of the p16Ink4a-dependent
senescence signaling pathway [53]. In this context, Sox-2 and Bmi-
1 are considered the threatening dynamic duo in maintenance of
the cancer stem cellelike phenotype.

CSCs reside within specialized tumor microenvironment where
they remain in a quiescent state and go through different metabolic
pathways [54]. It is noteworthy that there is an intimate relation-
ship between HIFs and the metabolism of CSCs [34,35]. It has been
known that HIF-1a is involved in self-renewal activity and che-
moresistance of CSCs. Thus, the activation of HIF-1a that coincides
with glycolysis endows CSCs with the optimal metabolic pathway
to survive a hypoxic microenvironment [55]. In addition, HIF-1a
stimulates increased glycolytic flux through upregulation of tran-
scriptional activity of genes encoding enzymes, such as lactate
dehydrogenase A and pyruvate dehydrogenase kinase 1 [56].
Having demonstrated the vital role of hypoxic conditions in CSC
metobolism, a few studies have speculated an interesting cross-link
between the metabolic and self-renewal pathways of CSCs. Stabi-
lization of HIFs causes a metabolic reprogramming to encode
glycolytic enzymes and promote self-renewal [57]. Moreover,
Soeda et al [58] reported that CD133-positive cells show the self-
renewal activity through upregulation of HIF-1a. The results from
our present study demonstrate that HIF-1a modulates Sox-2 and
Bmi-1, but its implication in CSC metabolism remains elusive.

In summary, Rg3 inhibits self-renewal activity of breast steme

like cancer cells by blocking Akt-induced HIF-1a activation and
subsequent expression of Bmi-1 and Sox-2 (Fig. 6). Thus, Rg3 acts as
a potential agent for purging stemness capacity of breast CSCs.
Whether Rg3 has the same effects on themanifestation of stemness
properties of other types of CSCs and whether it could be applied
for clinical trial at an optial and/or safe concentration need further
investigation.
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