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ABSTRACT: Molecular property prediction holds significant  Sveotset NN

importance in drug discovery, enabling the identification of . D
biologically active compounds with favorable drug-like properties. —

However, the low data problem, arising from the scarcity of labeled

data in drug discovery, poses a substantial obstacle for accurate
predictions. To address this challenge, we introduce a novel
architecture, AttFPGNN-MAML, for few-shot molecular property
prediction. The proposed approach incorporates a hybrid feature =" GNN

representation to enrich molecular representations and model v, I:I

intermolecular relationships specific to the task. By leveraging Fingerprint

ProtoMAML, a meta-learning strategy, our model is trained and

adapted to new tasks. Evaluation on two few-shot data sets, MoleculeNet and FS-Mol, demonstrates our method’s superior
performance in three out of four tasks and across various support set sizes. These results convincingly validate the effectiveness of
our method in the realm of few-shot molecular property prediction. The source code is publicly available at https://github.com/
sanomics-lab/AttFPGNN-MAML.
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B INTRODUCTION often have scarce training data available. This poses challenges
for deep learning models in terms of prediction and modeling
accuracy because they typically require a large amount of data to
achieve optimal performance.

To address the issue of low data, few-shot learning has
emerged as a widely used framework. Extensive research efforts
have been devoted to exploring few-shot learning methods, with
a predominant focus on image data sets,”” and more recently,
these methods have been successfully applied to the domain of
drug discovery. Few-shot learning methods aim to mitigate the
impact of scarce labeled data by leveraging knowledge from a
large unlabeled data set or by effectively transferring knowledge
from related tasks. The methods within this framework can be
categorized into three primary classes:

One of the primary objectives in the field of drug discovery is to
identify biologically active compounds with favorable drug-like
properties, including acceptable absorption, distribution,
metabolism, excretion, and toxicity (ADME/Tox)." Conse-
quently, the development of highly accurate molecular property
prediction tools can significantly enhance the efliciency and
success rate of drug discovery.

In recent years, the application of deep learning techniques,
with a particular emphasis on graph neural networks (GNNs),
has led to notable advancements in predicting molecular
properties. GNNs are designed to work with molecular graph
representations, treating atoms and bonds as nodes and edges.
Various deep learning architectures, including graph convolu-

tional networks,” graph attention networks,” message-passing (1) data augmentation-based methods, which enhance the

neural networks (MPNN),4 AttentiveFP,” and directed available samples by generating new and diverse data
s . . . ) 10-12

MPNN,” are employed to aggregate node features effectively. points through various techniques;

Nonetheless, despite the enormous potential of GNN-based (2) embedding-based methods, which learn an embedding
deep .learm.ng .methods in molecular property prediction, thers space where samples sharing similar properties are
remains a significant challenge known as the low data problem. positioned closely to each other. For instance, in matching
This challenge refers to the limited availability of samples for networks,'® predictions are made based on attention

training, which can significantly impact the performance and
generalizability of these models. Typically, training a deep
learning model for molecular activity/property prediction
requires thousands of data points. However, in the context of
drug discovery, due to the high cost of experiments and
difficulties in data collection, the amount of available data for
training is often severely limited. This limitation becomes even
more pronounced when dealing with novel drug targets, which
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Figure 1. FS-Mol few-shot data set. This is a 2-way K-shot classification problem, where each task corresponds to an assay in ChEMBL.>® Molecules are

labeled as Active or Inactive based on their pIC50 or pECS0 values.

mechanisms operating on the embeddings. Prototype
networks'* generate prototype representations for each
class using the embeddings. These methods typically rely
on learning similarities between molecules.

(3) Optimization or fine-tuning-based methods, which
employ meta-optimizers to efficiently navigate parameter
space. For example, model-agnostic meta-learning
(MAML)" allows meta-optimizers to learn initial
weights, which can be adapted to new tasks through a
few optimization steps.

Within the field of drug discovery, several few-shot learning
methodologies have been proposed. Nguyen et al.'® conducted
an evaluation of the applicability of MAML and its derivatives
within GNNs. Guo et al.'” proposed the Meta-MGNN method,
which combines MAML with GNNs. This method incorporates
self-supervised modules and self-attentive task weighting to
enhance few-shot learning performance. Altae-Tran et al.'®
introduced the iterative refinement long short-term memory
(IterRefLSTM) method, enabling the mutual sharing of
information between the query set and support set, thereby
facilitating the iterative update of their embeddings. Property-
aware relation networks (PAR)' enriched cluster center
representations using attention mechanisms and learned
relationship graphs between molecules. Chen et al.”* proposed
a framework known as ADKF-IFT, which effectively combines
meta-learning and conventional deep kernels. Schimunek et al.”’
introduced the MHNfs method, which leverages large context
molecules to enrich molecular representations and achieve
superior few-shot molecular property prediction performance.
More recently, Ju et al.”> proposed hierarchically structured
learning on relation graphs (HSL-RG), which constructs global
relation graphs and utilizes self-supervised learning to acquire
transformation-invariant representations of molecules. Meng et
al.”® introduced motif-based task augmentation (MTA)
technique to enhance the generalization capability of MAML-
based methods, which generate new labeled samples through the
retrieval of highly relevant motifs. Stanley et al.** recently
established a benchmark data set tailored for few-shot drug
discovery, and they provided baseline results for a range of
methodologies.

Nevertheless, these aforementioned few-shot methods in drug
discovery have primarily focused on assessing the effectiveness

of various meta-learning algorithms within the field of drug
property prediction. There has been a limited emphasis on
incorporating of diverse molecular fingerprints to enrich
molecular representations and enhance the performance of
few-shot molecular property prediction. In this study, we
introduce a novel architecture, AttFPGNN-MAML, for few-shot
learning in drug discovery, which address this limitation by
incorporating a hybrid feature representation that enhances the
molecular representation and models intermolecular relation-
ships specific to the given task. Based on this task-specific
molecular representation, we use ProtoMAML,25 a meta-
learning strategy, to train our model and adapt to new tasks.

Our approach has been evaluated on two few-shot data sets,
MoleculeNet*® and FS-Mol.** In the MoleculeNet benchmark
data set, our method outperformed all other approaches on 3 out
of 4 tasks. Additionally, our method achieved the best
performance on FS-Mol data set at support set sizes of 16, 32,
and 64. These results demonstrate the superiority of our method
in few-shot learning settings.

B PROBLEM SETTING

In few-shot classification, we aim to train models using a diverse
set of training tasks and optimize their classification performance
across a wide range of testing tasks, including those that have not
been previously encountered.”’

During the few-shot training phase, a multitude of training
tasks D, = {T;}i, are presented, with each task T, comprising
two key components: a support set Tt‘Support and a query set
T\ query- The support set is composed of instances equipped with
features and corresponding labels, which serve as the basis for
model training. Subsequently, the model leverages the features
within the query set to predict the labels associated with those
instances. During the few-shot testing time, the model
encounters an entirely novel and unencountered task T,. In
this context, the model is tasked with predicting labels for the
query set T, g, all the while being granted access to the
features and labels of the support set T, spport-

Our primary focus lies in the domains of molecular property
classification and molecular activity classification. These
domains entail tasks such as forecasting the toxicity and side
effects of novel molecules, as well as predicting the bioactivity of

new compounds. To illustrate, let us delve into the molecular

https://doi.org/10.1021/acsomega.4c02147
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Figure 2. Overall flowchart of our approach. All molecules are fed into a GNN module, a molecule fingerprint module, and a linear layer to obtain fused
representations. Then, the instance attention module refines these fused representations within the same task to get task-specific representations.
Finally, a classifier layer computes the prediction for the query molecule based on these task-specific representations.

bioactivity prediction task. Here, each task, denoted as T; =
{Tl-‘supPom Ti,query}, represents an assay. Within both the support
and query sets, each sample (x, y) pairs a compound molecule
(x) for measurement with a binary experimental label (y)
denoting the molecular bioactivity (active or inactive). This task
can be categorized as a 2-way K-shot problem, where the “2-
way” signifies that each task involves two classes, and “K-shot”
denotes that we sample K molecules for each of these classes to
compose the support set. Figure 1 illustrates a typical few-shot
learning scenario in the FS-Mol data set.

B METHODOLOGY

The flowchart of our approach is presented in Figure 2. Within
this approach, the molecules in the support set and query set
initially undergo the GNN module and the molecule fingerprint
module to obtain two different molecular feature representa-
tions. Subsequently, these two molecular representations are
concatenated and fed into a fully connected layer to produce a
fused molecular representation. Following this, the representa-
tions of all molecules within the same task are further refined
through the instance attention module, yielding task-specific
representations of the molecules. Finally, based on the obtained
task-specific molecular representations, the entire model is
trained using the ProtoMAML meta-learning strategy. In the
subsequent part of this section, we will provide a comprehensive
introduction to each module and training strategy employed
within the model.

Graph Neural Networks. A molecule can be described as
an undirected graph G = (V, E), where V represents the nodes
(atoms), and the number of nodes is denoted as IVl = N. E
represents the set of edges (bonds), and the number of edges is |
El = M. Each node v; € V and edge ¢;; = (v, v;) € E is initially
assigned with attributes x, € R and ¢,; € R%, where dn and de

23942

represent the feature dimensions corresponding to nodes and
edges.

In the context of predicting molecular properties, the majority
of GNN-based models adhere to a message-passing paradigm.
This paradigm relies on three key functions—message passing
function, aggregation function, and update function—to
iteratively extract atomic features. The expression for the k-th
layer of the message-passing paradigm is as follows

1

mF = aggregate*({message®(hf ™", hf_l, e;): j € N(i)})

hE = update* ("1, m)

Here, message, aggregate, and update represent the message-
passing function, aggregation function, and update function,
respectively. hf represents the hidden state of node i within the k-
thlayer. ¢; represents the feature vector associated with the edge
connecting node j to node i. The set N(i) refers to the collection
of neighboring nodes linked to node i. Additionally, employing a
readout function enables the acquisition of the representation of

the complete graph
he = readout({hiK: v, € G})

where K represents the total number of iterations and readout
denotes a perturbation-invariant function over a set of nodes.”
Ultimately, a global embedding representation of the molecule is
achieved via GNNE.

Molecular Fingerprint. To complement the potentially
missing chemical and structural information in graph-based
representations and provide a more comprehensive depiction,
we introduce an additional molecular fingerprint module.
Molecular fingerprints serve as a method for encoding the
structures of compounds, effectively capturing the diverse and
subtle structural features inherent in molecules.

https://doi.org/10.1021/acsomega.4c02147
ACS Omega 2024, 9, 23940—23948
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Figure 3. Instance attention module. This module captures the relationships between different molecules within the same task, resulting in task-specific

molecular representations.

We use the mixed fingerprints as described in the FP-
GNN."* Our model employs three distinct fingerprints
[MACCS fingerprint,”> Pharmacophore extended reduced
graph (ErG) fingerprint,”* and PubChem fingerprint® due to
their complementargr and comprehensive representation of
molecular features.’® The following are brief descriptions of
these three fingerprints.

(1) MACCS fingerprint: It is a substructure-based molecular
fingerprint. MACCS fingerprint includes many prede-
fined SMARTS patterns, which is meaningful for drug
discovery. In this study, we have selected a short variant
with 1 + 166 bits.

(2) Pharmacophore ErG fingerprint: it is a two-dimensional
pharmacophore fingerprint that encodes molecular
properties using the ErG method.

(3) PubChem fingerprint: It is an 881-bit substructure-based
fingerprint that extensively covers a diverse array of
substructures.

We combine these three types of fingerprints together to
create a comprehensive molecular fingerprint representation

FP = concat(FPMACCS, FPpypchems FPEYG)

After obtaining the GNN molecular graph representation and
molecular fingerprint representation mentioned above, we use a
multilayer feedforward network to obtain the fused molecular
representation

P = MLP(concat(h®, FP))

Instance Attention. The Instance Attention module is
illustrated in Figure 3. In this module, we use multihead
attention®” on the fused molecular representations to capture
the relationships between molecules within the same task,
resulting in task-specific molecular representations.

Multihead attention is an attention mechanism module that
runs the attention mechanism multiple times in parallel. The
independently computed attention outputs are then concaten-
ated and linearly transformed to the desired dimension.
Intuitively, multihead attention allows us to focus on different

aspects of the sequence in various ways, such as capturing long-
term and short-term dependencies.

MultiHead(Q, K, V) = [head; ..; headh]WO

head; = attention(QW<, KWX, vw")

The attention employed here is the scaled dot-product
attention. In this attention mechanism, the output is derived as a
weighted sum of the values, with the weight assigned to each
value determined by the dot product of the query with the keys

K
attention(Q, K, V) = softma){Q ]V
Jn

In the above formula, all the W (W°, WS WX, W) are
learnable parameters. In our work, we set K and V as the fused
features of the molecules in the support set, i.e., Pypp0 and set Q
as the fused features of all molecules in the query set and support
set, i.e., contact (Pgueryy Poupport)-

Additionally, to consider the influence of molecular
categories, we add label embeddings to each molecular
representation as MHNfs.”' The molecules in the support set
are concatenated with all 1 or all —1 vectors according to their
respective categories, while the query molecules are con-
catenated with a vector of all 0 s.

ProtoMAML. After obtaining the task-specific molecular
representation g(x, 0), we use a linear classification layer to
classify the query samples.

p(ylx, S) = softmax (b + Wg(x, 9))

The entire model is trained using the ProtoMAML meta-
learning algorithm.

During the training phase, the learning algorithm first
compute new parameters using the support set of a particular
task. Then, it uses these new parameters to calculate the loss on
the query set for that task, which is used to update the model
parameters. This approach effectively learns an initial model
parametrization that can quickly adapt to new tasks.

23943 https://doi.org/10.1021/acsomega.4c02147
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During the inference phase, the model parameters can be
updated once or a few times based on the support set of a new
task. Subsequently, these updated parameters are then used for
making predictions on the query set.

In our approach, we initialize the classification layer
parameters based on the logits calculated in ProtoNet. In
ProtoNet, the classification probability is calculated as follows

p(y

clx)
softmax( —d¢(g(x, 0),v.))

_ €xXp — d(/’)(g(xr 9); V,;)
ZC'EC _d(/)(g(x) 0)7 VC/)

In the above formula, d represents the distance metric
function. When using the Mahalanobis distance as the distance
metric, the distance between query representation and
prototypical representation v, can be written as

d(/;(g(x; 0), Vc)) = (g(x) 0) — VC)TZ:I(g(x) 0) — Vc)

= (g(x, H)Zzl(g(x, 0) — ZVSZC_lg(x, 0)
+ VCTZC_IVC

1

where X, refers to the covariance matrix of molecular features
belonging to class c. So, here we initialize the parameter W in the
classification layer as —2v X' and initialize parameter b as
ve 27!, Note that we ignore the first term on the right-hand side
of the Mahalanobis distance expansion.

B RESULTS AND DISCUSSION

Benchmarking on MoleculeNet. Benchmark and Base-
lines. We conduct experiments on four commonly used public
benchmark data sets for few-shot molecular property prediction
(Tox21, Sider, MUV, Toxcast) to assess the performance of
various models. These four data sets are part of MoleculeNet,*® a
comprehensive benchmark designed for evaluating machine
learning approaches in the domain of molecular-related tasks.

Tox21—Designed to predict the Toxicity of Molecules. 1t is
a publicly accessible database established by the “Toxicology in
the 21st Century” program, aiming at assessing the toxicity of
various compounds. This data set comprises qualitative toxicity
measurements on 12 distinct biological targets, including
nuclear receptors and stress response pathways. Initially,
Tox21 was utilized in IterRefLSTM'® for the evaluation of
few-shot activity prediction, where the authors employed the
first 9 assays for meta-training and the last 3 assays for meta-
testing.

SIDER—Used to predict potential Side Effects of Drugs. It is
a database that compiles marketed drugs and adverse drug
reactions, categorized into 27 system organ classes. Similar to
Tox21, SIDER was also initially employed in IterRefLSTM"® for
evaluating few-shot activity prediction. In IterRefLSTM,"® the
researchers utilized the first 21 assays from the original data set
for meta-training and reserved the last 6 assays for meta-testing.

MUV—Used for the prediction of Molecular Activities. 1t is
a subset derived from PubChem BioAssay through refined
nearest neighbor analysis, and it is specifically crafted for
validating virtual screening techniques. This data set was also
initially used in IterRefLSTM'® for evaluating few-shot activity
prediction. In their evaluation, they selected the first 12 assays

from the original data set for meta-training and designated the
final 5 assays for meta-testing.

ToxCast—Designed to predict the Toxicological Effects of
Compounds. It contains toxicology data for an extensive library
of compounds obtained through in vitro high-throughput
screening, involving experiments across more than 600 tasks.
The data set was initially employed for few-shot activity
prediction evaluation in PAR," where the authors randomly
split the data set into 450 training assays and 167 testing assays.

We use the same task splits as describe in previous works'* ™
for our analysis and present the statistics of the four few-shot
benchmarks in Table 1.

Table 1. Statistics of Four MoleculeNet Few-Shot Data sets

# compounds ~ #tasks  # training tasks  # test tasks

Tox21 8014 12 9 3
SIDER 1427 27 21 6
MUV 93127 17 12 S
ToxCast 8615 617 450 167

We conduct a comparative analysis of our approach against
two categories of baselines across the four few-shot MoleculeNet
benchmark tasks.

(1) Methods without a pretrained molecular graph encoder,
such as HSL-RG~,**> ADKF-IFT,”° PAR," Iter-
RefLSTM,"® EGNN,*® TPN,” MAML," ProtoNet,'*
and Siamese."’

(2) Methods with a pretrained molecular graph encoder, such
as Pre-PAR + +MTA,”” HSL-RG,”” Pre-GNN,"" Meta-
MGNN,"” Pre-PAR," and Pre-ADKF-IFT.* It is worth
noting that all methods within this category employ a
pretrained GIN, and the pretrained GIN weights are
provided by Hu et al.*!

Evaluation Procedure and Performance. Following
Chen et al.,*® we use AUROC (Area Under the ROC curve)
as the task level metric. We present the average performance of
each compared method over ten runs with different random
seeds. In all these experiments, the support set size is set to 20
(i.e., 2-way 10-shot). We do not conduct one-shot learning as it
is not feasible for practical drug discovery tasks. All baseline
results are sourced from the work of Chen et al.*’

Table 2 displays the performance of AttFPGNN-MAML and
other baseline models on the MoleculeNet few-shot data sets.
The results demonstrate that our method significantly outper-
forms the previous approaches in terms of the AUROC metric
when not utilizing a pretrained molecular graph encoder, with
the exception of the MUV data set. On Tox21, SIDER, and
ToxCast, our method achieves remarkable improvements of
1.88, 9.76, and 4.97%, respectively, compared to the previous
state-of-the-art (SOTA) methods. This enhancement under-
scores the efficacy of our proposed methodology. On the MUV
data set, our method outperforms all other methods except
ADKEF-IFT. ADKF-IFT exhibits exceptionally superior perform-
ance on the MUV data set, surpassing all other methods,
including ours. As mentioned in IterRefLSTM,'® the positive
samples in the MUV data set are structurally distinct and
dissimilar to each other, which poses a challenge for certain few-
shot methods to effectively leverage the structural similarities
between molecules for predicting the activity of new molecules.
Conversely, ADKF-IFT, as an extension of the basic machine
learning method Deep Kernel Learning, holds a distinct

https://doi.org/10.1021/acsomega.4c02147
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Table 2. Mean AUROC and Standard Deviation of Various Methods Across Four MoleculeNet Few-Shot Benchmark Tasks

Tox21 (8014)
Siamese” 80.40 + 0.35
ProtoNet” 74.98 + 0.32
MAML” 80.21 + 0.24
TPN® 76.05 + 0.24
EGNN“ 81.21 +0.16
IterRefLSTM“ 81.10 + 0.17
PAR” 82.06 + 0.12
ADKEF-IFT“ 82.43 + 0.60
HSL-RG™ 80.95 + 0.26
AttFPGNN-MAML 84.31 + 0.22
pre-GNN“ 82.14 + 0.08
meta-MGNN“ 82.97 + 0.10
pre-PAR” 84.93 + 0.11
pre-ADKF-IFT“ 86.06 + 0.35
HSL-RG" 85.56 + 0.28
pre-PAR + MTA® 86.69 + 0.73
pre-AttFPGNN-MAML 86.12 + 0.26

SIDER (1,427) MUV (93,127) ToxCast (8,615)
71.10 + 4.32 59.59 + 5.13
64.54 + 0.89 65.88 + 4.11 63.70 + 1.26
70.43 + 0.76 63.90 + 2.28 66.79 + 0.85
67.84 +0.95 65.22 + 5.82 62.74 + 1.45
72.87 + 0.73 65.20 + 2.08 63.65 + 1.57
69.63 + 0.31 45.56 + 5.12
74.68 + 0.31 66.48 + 2.12 69.72 + 1.63
67.72 £ 121 98.18 + 3.0§ 72.07 + 0.81
74.66 + 0.52 70.38 + 1.35 70.70 + 1.02
84.44 + 0.08 79.67 + 0.91 77.04 + 0.15
73.96 + 0.08 67.14 + 1.58 73.68 + 0.74
7543 + 021 68.99 + 1.84
78.08 + 0.16 69.96 + 1.37 75.12 + 0.84
70.95 + 0.60 95.74 + 0.37 76.22 + 0.13
78.99 + 0.33 71.26 + 1.08 76.00 + 0.81
79.73 + 0.88 71.49 + 1.06 76.27 + 1.12
84.68 + 0.01 80.21 + 0.29 78.15 + 0.06

“Results from Chen et al.”* “Results from Ju et al.”” “Results from Meng et al.”?

advantage in this scenario. Additionally, when incorporating a
pretrained molecular graph encoder, the performance of our
method is further improved, and it still maintains a certain
advantage over other methods that employ the same pretrained
encoder in terms of the AUROC metric.

Benchmarking on FS-Mol. Benchmark and Baselines.
The FS-Mol data set, extracted from ChEMBL27, is a rich and
diverse collection of 489,133 measurements, representing
233,786 unique chemical compounds and spanning 5120
distinct tasks. With an average of 94 data points per task, the
data set strikes an excellent balance between activity and
inactivity, with an average ratio of active molecules to inactive
molecules close to 1. To ensure effective training, validation, and
testing, the FS-Mol benchmark data set is carefully divided into
4938 training tasks, 40 validation tasks, and 157 test tasks. The
data set further includes precomputed features such as extended
connectivity fingerprints (ECFP)** and key molecular physical
descriptors defined by RDKit,” providing an efficient and
comprehensive basis for molecular property prediction and drug
discovery research.

We compared our method with a range of baseline methods,
including kNN, Random Forest,”*** GNN-ST,*** GNN-
MT,*** MAT,”**® GNN-MAML,">** ProtoNet,'*** PAR,"’
and ADKF-IFT.”’

Evaluation Procedure and Performance. We adopt the
evaluation protocol established by Stanley et al.”* The task-level
metric is AAUPRC, which represents the difference in area
under the precision—recall curve between the classifier and a
random classifier. This evaluation metric emphasizes more on
the enhancement achieved by the learned classifier in
comparison to a trivial classifier.

AAUPRC = AUPRC(f(T, 1yer,)

#active compoundsin T,

I’I:A,queryl

squery

We report the average performance of various methods across
support set sizes of 16, 32, 64, 128, and 256. The results, as
shown in Figure 4, clearly demonstrate that our approach
outperforms Random Forest, GNN-ST, GNN-MT, MAT,
GNN-MAML, ProtoNet, and PAR methods by a significant

—4— AttFPGNN-MAML

—4— GNN-MT

4— ADKF-IFT — RF
0.05 # —— PAR —— MAT
3 —4— ProtoNet v kNN
ot —— GNN-MAML o GNN-ST
00763 64 128 256

Support set size

Figure 4. Line chart of the performance of different methods across 157
tasks in the FS-Mol data set. Please refer to Figures S1—SS5 in
Supporting Information for more data.

margin. Notably, when support set sizes are relatively small (16,
32, 64), our method performs on par with the SOTA approach
ADKEF-IFT. However, as the support set size increases, our
method’s performance tends to lag behind ADKEF-IFT,
particularly when the support set size reaches 256. At a support
set size of 256, some tasks within the testing set cannot be used
for meta-testing due to inadequate data points. Ultimately, out
of the 157 testing tasks, only 43 tasks have a sufficient number of
sample points available for meta-testing at this point. This might
be the reason for the decline in the performance of our method
at this specific support set size. To complement these
observations, we present box plots illustrating the performance
of various methods in Supporting Information Figures S1—SS.
Besides, we also report the mean rank in comparison with other
methods, which is shown in Table 3. The mean rank is calculated
by autorank,*” following Demsar.**

Additionally, to account for the diversity of the tasks under
consideration, we conduct a more extensive examination of the
classification performance variations across different enzyme
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Table 3. Mean Ranks of All Compared Methods in Terms of
Their Performance on All FS-Mol Test Tasks

support set size

method 16 32 64 128 256
GNN-ST 8.66 8.85 9.05 9.19 9.44
kNN 8.16 7.86 7.73 7.70 7.02
MAT 7.89 7.95 7.79 7.53 7.40
random forest 6.08 591 5.47 4.98 3.58
GNN-MT 5.70 5.70 5.65 5.23 5.05
GNN-MAML 4.99 5.49 5.90 6.28 6.92
ProtoNet 3.26 2.97 2.81 2.69 3.10
PAR 5.98 6.38 6.59 7.03 8.38
ADKE-IFT 2.16 2.13 2.14 2.11 1.27
AttFPGNN-MAML 2.12 1.76 1.86 2.26 2.85

commission numbers (EC numbers) within the FS-Mol test
tasks. The EC number is a numerical classification scheme for
enzymes, delineating their categorization based on the specific
chemical reactions they catalyze. We categorize the evaluation
results into distinct subclasses based on different EC numbers.
The categorized results are presented in Table 4. It reveals that
our method consistently outperforms the previous baseline
models across different EC categories, achieving the SOTA
performance at small support set sizes (16, 32, 64).

Ablation Study. We conduct ablation experiments on 10-
shot tasks from SIDER. This study involves a comparative
analysis between the original model and variants from which the
Molecular Fingerprint module or Instance Attention module is
excluded: (i) w/o InsAtt: w/o applying the Instance Attention
module; (ii) w/o MolFP: w/o applying the Molecular
Fingerprint module; and (iii) w/o InsAtt + MolFP: w/o
applying Instance Attention module and Molecular Fingerprint
module. As depicted in Figure S, the removal of Molecular
Fingerprint module and Instance Attention module results in a
discernible degree of performance degradation. This substan-
tiates the assertion that the introduction of the Molecular
Fingerprint module and Instance Attention module has a
positive impact on the overall efficacy of the model.

B CONCLUSIONS

In this study, we propose a novel approach for few-shot
molecular property prediction. This method combines the GNN
with mixed fingerprints to generate more comprehensive
molecular representations. Additionally, Instance Attention is
employed to obtain task-specific representations for molecules
across different tasks. Our approach has been tested on two

100
s raw model
- w/o InsAtt
== w/o MolFP
. w/o InsAtt+MolFP
80 -
73.56
60 A
(9}
)
<
40 1
20
0 -

AttFPGNN-MAML

Pre-AttFPGNN-MAML

Figure 5. Ablation study on 10-shot tasks from SIDER. The model’s
performance exhibits distinct levels of deterioration upon the removal
of the molecular fingerprint and instance attention modules, thereby
substantiating the effectiveness of these two components.

distinct few-shot benchmark data sets, MoleculeNet and FS-
Mol, demonstrating excellent performance. Furthermore, we
validate the effectiveness of the Molecular Fingerprint and
Instance Attention module through ablation experiments
conducted on the MoleculeNet data set.

We do not provide interpretability of our model, which can be
problematic when trying to identify potential drug candidates or
understand molecular interactions. In the future, we will try to
demonstrate the interpretability of our model and verify the
effectiveness of the model in real projects. We plan to compute
the attention scores within the InstanceAttention module of the
meta-learned model. This involves assessing whether the
attention scores, which reflect the relationships between query
molecules and support set molecules, are consistent with expert
evaluations in medicinal chemistry. Also, we intend to explore
the existing GNN interpretability tools to identify crucial
substructures within the molecules that contribute significantly
to classification.

B ASSOCIATED CONTENT

Data Availability Statement

The data sets used in this study and the source code for
AttFPGNN-MAML are publicly available at https://github.
com/sanomics-lab/AttFPGNN-MAML.

Table 4. Performance of Different Methods with a Support Set Size of 16

method all [157] kin. [125] hydrol. [20] oxid.[7]
GNN-ST 0.021 + 0.00S 0.013 + 0.004 0.062 + 0.019 0.013 + 0.019
kNN 0.051 + 0.005 0.046 + 0.005 0.085 + 0.019 0.043 + 0.018
MAT 0.052 + 0.00S 0.043 + 0.005 0.095 + 0.019 0.063 + 0.024
random forest 0.093 + 0.007 0.082 + 0.007 0.158 + 0.028 0.081 + 0.032
GNN-MT 0.112 + 0.006 0.113 + 0.006 0.129 + 0.025 0.046 + 0.013
GNN-MAML 0.160 + 0.009 0.178 + 0.009 0.106 + 0.024 0.046 + 0.023
ProtoNet 0.206 + 0.009 0.217 + 0.009 0.196 + 0.031 0.086 + 0.029
PAR 0.129 + 0.009 0.147 + 0.010 0.068 + 0.021 0.008 + 0.005
ADKE-IFT 0.230 + 0.009 0.243 + 0.010 0.213 + 0.029 0.103 + 0.036
AttFPGNN-MAML 0.231 + 0.010 0.243 + 0.010 0.21S5 + 0.031 0.111 + 0.032

“Results are broken down by the EC category. Please refer to Table S3—S7 in Supporting Information for more detailed data.
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@ Supporting Information

The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acsomega.4c02147.

Model hyperparameters; performance of different meth-
ods within FS-Mol sub EC categories across various
support set sizes; and box plots of the performance of
different methods within the FS-Mol data set across
various support set sizes (PDF)
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