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Glioblastoma multiforme (GBM) is the most common and malignant of the glial tumors.
The world-wide estimates of new cases and deaths annually are remarkable, making
GBM a crucial public health issue. Despite the combination of radical surgery, radio
and chemotherapy prognosis is extremely poor (median survival is approximately
1 year). Thus, current therapeutic interventions are highly unsatisfactory. For many
years, GBM-induced brain oedema and inflammation have been widely treated with
dexamethasone (DEX), a synthetic glucocorticoid (GC). A number of studies have
reported that DEX also inhibits GBM cell proliferation and migration. Nevertheless,
recent controversial results provided by different laboratories have challenged the widely
accepted dogma concerning DEX therapy for GBM. Here, we have reviewed the main
clinical features and genetic and epigenetic abnormalities underlying GBM. Finally, we
analyzed current notions and concerns related to DEX effects on cerebral oedema,
cancer cell proliferation and migration and clinical outcome.
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INTRODUCTION

Glioblastoma multiforme (GBM) is the most aggressive form of brain tumor, accounting for 54%
of all gliomas (Dolecek et al., 2012). The estimated number of annual new cases of GBM are:
Japan 2,200, UK 2,531, France 3,000, Germany 3,500, USA 18,000. Globally, over 100,000 patients
die each year as a result of this type of brain cancer. It is highly invasive and not amenable
to current treatment such as surgical management, chemo- and radio-therapy (Furnari et al.,
2007) and affected individuals have very poor life expectancy (Miller and Perry, 2007). The
highly aggressive course and poor response to treatments likely result from uncontrolled cellular
proliferation, migration, presence of a cancer stem-like cell population, neo-angiogenesis and
severe brain oedema.

GBM-induced cerebral oedema is currently treated with corticosteroids due to their ability to
decrease the permeability of the blood brain barrier (BBB; Salvador et al., 2014). Dexamethasone
(DEX) represents the drug of choice among the synthetic glucocorticoids (GCs) by virtue of its
minimal mineralocorticoid activity, long half-life and high potency (Kostaras et al., 2014). By
evaluating the typical features of GBM aggressiveness, several studies have shown positive effects
of DEX on GBM cells both in vitro and cancer volume, in vivo (Guerin et al., 1992;Wolff et al., 1997;
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Kaup et al., 2001; Villeneuve et al., 2008; Piette et al., 2009;
Fan et al., 2014) although, the mechanisms accounting for these
actions remain unclear. Strikingly, contradictory evidence has
been published generating controversies that are still debated. As
a resource for those interested in this issue, we have reviewed
relevant critical articles from various research groups describing
DEX actions in GBM and discussed proposed mechanisms
and controversies.

GLIOBLASTOMA MULTIFORME: CLINICAL
AND MOLECULAR FEATURES

GBM is known as grade IV astrocytoma according to the World
Health Organization (WHO) classification. ‘‘Primary GBM’’
accounts for some 90% of cases, arises de novo and affects
older patients. ‘‘Secondary GBM’’ develops from preceding
low-grade astrocytomas and is more common in patients that
are ≤45 years old (Crespo et al., 2015; Louis et al., 2016).
Neurological signs depend on the location of the tumor within
the brain and can be either focal or generalized. Frequently,
symptoms include headache, seizures, cognitive dysfunction,
ataxia, vomiting, vision disturbance. Unusual symptoms such
as syncope, vertigo, hypoesthesia or psychiatric manifestations
could result in misdiagnosis and mistreatment. In some
instances, GBM infiltrate the brain as finger-like tentacles
making surgical resection of the tumor very difficult, especially
when it develops near eloquent regions of the brain. GBM could
be considered a non-metastatic cancer, as it rarely spreads from
the primary site to other remote tissues of the body thanks to
the confining properties of the BBB (Beauchesne, 2011). Another
typical feature is the presence of hypoxic and necrotic regions
within the cancermass (Lara-Velazquez et al., 2017).Microscopic
analyses showed a central large necrotic core that takes up to
80% of tumor mass and multiple thrombotic foci surrounded by
pseudopalisading cells migrating towards more oxygenated areas
(Rong et al., 2006; Amberger-Murphy, 2009; Sforna et al., 2017).
Hypoxia induces important changes on tumor cell genome and
proteome, which increase its aggressiveness (Amberger-Murphy,
2009). In particular, hypoxia promotes invasiveness, radio- and
chemo-resistance, glioma stem cell (GSC) development and
angiogenesis (Jensen, 2009; Yang et al., 2012; Sforna et al., 2015).
The vascular endothelial growth factor (VEGF) is over-expressed
by cancer cells under hypoxia and promotes neo-angiogenesis
(Soda et al., 2013; Dubois et al., 2014). Indeed, GBM is a highly
vascularized tumor and the degree of vascularization influences
prognosis, remarkably (Takano et al., 2010; Dubois et al., 2014).

Histological evaluations have shown extensive variability of
cell morphology that is characterized by the coexistence of
small cells and multinucleated giant cells (Meyer-Puttlitz et al.,
1997; Kleihues, 1998). A growing body of evidence supports
the notion that GBM cell heterogeneity results also from the
presence of GSCs, a small subpopulation of tumor cells that
show features of self-renewal, resistance to radiotherapy (RT)
and chemotherapy, ability to differentiate in vitro and promote
tumor recurrence. These properties are shared in part with
neuronal stem cells (NSCs; Reya et al., 2001; Bao et al., 2006;
Vescovi et al., 2006; Park and Rich, 2009; Rosen and Jordan,

2009; Frank et al., 2010; Heddleston et al., 2010). Of note is
that, GSCs are also responsible for the angiogenic potential
of the tumor by expressing high levels of VEGF (Bao et al.,
2006; Li et al., 2009). Initially, the term multiforme referred
to a broad spectrum in cellular heterogeneity. However, in
addition to the histological features, GBM is characterized by
several genetic and epigenetic alterations. Thus, multiforme
currently refers to the latter multifaceted features of the cancer
(DeAngelis and Mellinghoff, 2011; Stoyanov et al., 2018).
Indeed, genomic investigations resulted in the identification of
a number of genetic abnormalities underlying the molecular
transcriptional subtypes of GBM. Verhaak et al. (2010) proposed
the classification of GBM into four distinct subtypes: classical,
mesenchymal, proneural and neural.

The classical subtype is characterized by amplification or
mutation in the epidermal growth factor receptor (EGFR) and
deletion mutations in the cyclin-dependent kinase inhibitor 2A
(CDKN2A) gene, coding for the p16INK4A and p14arf protein
tumor suppressors. Genomic amplification of EGFR is observed
in 97% of the classical subtype, which leads to the four-fold
increase in EGFR expression. The most common point mutation
results in the deletion variant EGFRvIII, lacking exons 2–7,
which encode the extracellular domain. The EGFRvIII alteration
prevents EGF binding and confers ligand-independent signaling,
thereby activating pathways other than those controlled by the
wild-type EGFR.

The mesenchymal subtype is featured by deletions of a region
at 17q11.2 containing the gene NF1 (neurofibromin). Moreover,
genes in the tumor necrosis factor (TNF) super family pathway
are highly expressed in this subtype, potentially as a consequence
of higher overall necrosis (Verhaak et al., 2010; DeAngelis and
Mellinghoff, 2011; Lara-Velazquez et al., 2017).

The proneural subtype is characterized by high levels of
platelet-derived growth factor receptor A (PDGFRA) expression
and point mutations of both isocitrate dehydrogenase 1 (IDH1)
and p53. Although, focal amplifications of the locus at
4q12 harboring the PDGFRA gene were observed in all
GBM subtypes, the proneural samples possess a much higher
degree. Multiple PDGFRA point mutations have been identified
in the Ig-domain, potentially disrupting ligand interaction.
Moreover, a rare in frame deletion of the Ig-domain of
PDGFRA has been described (Kumabe et al., 1992; Rand
et al., 2005). The IDH family includes three enzymes with
different locations: IDH1 found in cytosol and peroxisome and
IDH2 and IDH3 located in mitochondria. These are involved
in the biosynthesis of central metabolites in the tricarboxylic
acid (TCA) cycle and catalyze the oxidative decarboxylation
of isocitrate to α-ketoglutarate (α-KG), producing NADPH
(Leonardi et al., 2012; Miller and Perry, 2007). The proneural
subtype is also characterized by point mutations in the
IDH1 gene. These mutations produce d-2-hydroxyglutarate (d-
2HG), a competitive inhibitor of alpha-ketoglutarate-dependent
dioxygenase which induces epigenetic changes, including
hypermethylation (Waitkus et al., 2016; Czapski et al., 2018;
Lee et al., 2018).

The neural subtype is characterized by expression of
neural markers such as neurofilament light (NEFL), gamma-
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aminobutyric acid type A receptor alpha-1 subunit (GABRA1)
and the SLC12A5 (K +/Cl− co-transporter 2).

According to recent WHO guidelines, GBMs could be
subdivided into IDH wild-type and IDH-mutant (Louis et al.,
2016). GBM/IDH wild-type are more common (∼90%), tend to
be more aggressive, and have worse prognosis than GBM/IDH
mutant. Mutations in the IDH-encoding gene have been found
in ∼10% of GBM (Parsons et al., 2008) and are associated with
altered cell metabolism. IDH mutations were mainly found in
secondary GBM, which develops from low-grade gliomas (Han
and Batchelor, 2017).

IDH1 mutations occur in 50%–80% of grade II and
III astrocytoma, oligodendroglioma and secondary GBM.
IDH2 mutations occur in the same tumor with less frequency
(Hartmann et al., 2009). The most common mutation in
IDH1 results in arginine 132 to histidine substitution (R132H).
This mutation converts α-KG to the R(−)-2-hydroxyglutarate
(2-HG), considered as a potential ‘‘oncometabolite.’’ It has been
shown that accumulation of 2HG affects histone and DNA
demethylases resulting in a hypermethylation phenotype with
chromatin modifications and gene expression dysregulation
(Staedtke et al., 2016; Han and Batchelor, 2017).

The Epigenetic Origin of GBM and
Therapeutic Potential of Epigenetic
Modifiers Synergized by DEX
Epigenetic modifications refer to changes in gene expression and
cellular phenotype without alterations in the DNA sequence.
A number of studies over the past years have provided greater
knowledge and insight concerning the epigenetic origin of
GBM. Hypermethylation represents an epigenetic mechanism
frequently observed in GBM that occurs at genes involved in
cell cycle regulation, DNA repair, apoptosis, angiogenesis and
invasion (Alaminos et al., 2005; Tews et al., 2007; Martinez
and Esteller, 2010). DNA hypermethylation of promoter regions
can silence tumor suppressor genes or pro-apoptotic genes, or
even favor the response to chemotherapy and RT in tumor cells
(Kanazawa et al., 2019). Remarkably, 90% of high-grade gliomas
contained methylated gene promoters. Affected individuals were
found to have large amounts of DNA in the plasma and the same
methylated promoters present in the tumor were also found in
the plasma in 60% of the cases. This represents the first step
towards the development of quantitative plasma biomarkers that
could be used to monitor glioma status (Weaver et al., 2006).
Methylation of the O6-methylguanine DNA methyltransferase
(MGMT) promoter is frequently observed in secondary GBM,
associated with p53 mutations (Nakamura et al., 2001; Martinez
and Esteller, 2010). MGMT is involved in DNA repair and its
activity is down-regulated by methylation.

Methylation, demethylation and acetylation are among the
main epigenetic modifications of histone. Histone methylation
and demethylation are involved in reprogramming GBM cell
metabolism and occur by action of histone methyltransferases
(HMTs) and demethylases (HDMs), respectively (Dong
and Cui, 2018). Histone acetyltransferases (HATs) and
deacetylases (HDACs) control the acetylation state of histones,

modulating chromatin structure and function and promote the
transcriptional activation or repression (Bezecny, 2014). HDACs
also change non-histone proteins which regulate important
cellular functions such as cell-cycle progression, differentiation
and apoptosis (Lee et al., 2015). The HDAC family includes four
classes: Zn2+-dependent (classes I, II and IV), Zn2+-independent
(class III) and nicotinamide-adenine dinucleotide-dependent
enzymes (Lee et al., 2017). In GBM, HDACs are considered
the main effectors of epigenetic alterations and are implicated
in tumorigenesis. Indeed, mutations and alterations of HDAC
expression have been identified and associated to GBM
pathogenesis and progression (Was et al., 2019). In particular,
mutations in both HDAC2 and HDAC9 genes have been found
through sequencing of GBM biopsies (Parsons et al., 2008). It has
been reported that GBM displays decreased mRNA expression in
class II and class IV HDACs. On the other hand, recent studies
have shown increased levels of HDAC1, HDAC3, and HDAC6
(Staberg et al., 2017), as well as overexpression of HDAC9
(Yang, 2015).

The reversibility of epigenetic modifications opens new
therapeutic perspectives for GBM. As such, the search for new
drugs targeting epigenetic modifications has been expanded over
the past years. DNA methyltransferase inhibitors (DNMTi) and
histone deacetylase inhibitors (HDACi) have been tested in
multiple cancers. However, only HDACi have been approved in
clinical trials (Romani et al., 2018). HDACi are divided into seven
categories: short chain fatty acids, benzamides, cyclic peptides,
electrophilic ketones, hydro-xamines, sirtuin inhibitors and
other miscellaneous forms (Lee et al., 2015). Their anti-cancer
effects include the induction of cell-cycle arrest, differentiation,
apoptosis, mitotic cell death and autophagic cell death (Bezecny,
2014). Vorinostat, Romidepsin and Valproic Acid are among
the HDCAi that managed to find their way in clinical trials.
The efficacy of Vorinostat has been tested in primary GBM
explants, as well as in murine GBM cell lines, in vitro and
in vivo. The drug induced accumulation of cells in the G2-M
phase, increased the expression of p21WAF1, p27KIP1, DR5 and
TNFα, and decreased the levels of the pro-growth genes CDK2,
CDK4, cyclin D1 and cyclin D2. In addition, it reduced the
invasiveness in a number of GBM cell lines with different PTEN
and p53 mutations (An et al., 2010; Xu et al., 2011). Romidepsin
is a class I HDACi and exerts its functions by down-regulating
Bcl-xL and up-regulating p21 expression (Lee et al., 2015).

The Enhancer of Zeste Homolog 2 (EZH2) is a histone-
lysine N-methyltransferase enzyme that participates in histone
methylation. EZH2 is the functional enzymatic component
of the Polycomb Repressive Complex 2 (PRC2) involved in a
wide range of glioma processes, including cell cycle, invasion,
GSC maintenance, drug and RT resistance (Yin et al., 2016).
A recent study showed the effects of the SAM-competitive
EZH2 inhibitor UNC1999 in different stem cell-like glioma
cells, named brain tumor-initiating cells (BTICs). By evaluating
cell growth, the combination of UNC1999 with DEX exerted a
synergistic effect in two different BTICs type and suppressed
tumor growth, in vivo (Grinshtein et al., 2016). Therefore,
therapeutic anti-cancer benefits may result from the combination
of drugs which enhance therapeutic efficacy compared to the
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mono-therapy approach derived through targeting key pathways
in a characteristically synergistic or additive manner. However,
a common obstacle shared by all these therapeutic approaches
is the low permeability of the BBB. It is hoped that the use
of easily penetrating drugs, such as DEX, together with newly
selected epigenetic compounds that are able to cross the BBB
could contribute to finding a better therapy for GBM.

GBM-INDUCED CEREBRAL OEDEMA

Cerebral oedema is a hallmark of malignant brain tumors that
influences the clinical course and the prognosis of the disease
(Stummer, 2007; Lin et al., 2016). It represents a major cause
of morbidity and mortality in GBM due to the high risk of
brain herniation in up to 60% of patients (Silbergeld et al.,
1991). Indeed, the accumulation of fluids inside the cerebral
parenchyma induces a rapid increase in brain volume leading
to a sharp increase in intracranial pressure (ICP), which may
cause ischemia, herniation and ultimately death (Papadopoulos
et al., 2004). The main processes involved in cerebral oedema
are vasogenic and cytotoxic oedema. Vasogenic oedema results
from accumulation of fluid in the cerebral parenchyma caused
by disruption and increased permeability of the BBB. Cytotoxic
oedema results from failure in cell metabolism leading to
impairment of the Na+/K+ pump (Michinaga and Koyama,
2015). In gray and white matter, astrocytes may swell as a
result of cytoplasmic retention of Na+ ions and water. Typically,
GBM-associated cerebral oedema is vasogenic in nature. It is
characterized by breakdown of the BBB, resulting in extracellular
accumulation of fluid with disruption of homeostasis around the
microenvironment of the compromised parenchyma.

The BBB represents a structure that separates the brain
parenchyma from the circulatory system, allowing maintenance
of central nervous system (CNS) fluid homeostasis and passage
of substances to brain cells by mechanisms that rely on
simple diffusion or active transport (Campos-Bedolla et al.,

2014). It is formed by brain capillary endothelial cells (BCECs)
that are supported by neighboring glial cells (microglia and
astrocytes; Kaur and Ling, 2008), neurons and perivascular
pericytes (Wolburg and Lippoldt, 2002; Zlokovic, 2008; Zozulya
et al., 2008). The BCECs are joined together by means of
tight junctions (TJs), composed of several proteins, among
which are claudins and occludins (Furuse et al., 1993, 1996,
1998; Kubota et al., 1999). These transmembrane proteins
bind intracellular proteins such as zonula occludens-1 and -2
(ZO1; ZO2) allowing the coupling of TJs to the cytoskeleton
elements of endothelial cells (Stummer, 2007). The TJ formation
is promoted by growth factors secreted by astrocytes which
therefore play an important role in controlling the unique
tightness of the BBB (Wolburg et al., 2012). TJ proteins with
altered expression or function affect the tightness of epithelial
surfaces, causing BBB hyper-permeability and consequently
vasogenic oedema (Figure 1). It has been shown that occludin
is downregulated and subsequently phosphorylated in human
high-grade gliomas, thus causing increased permeability of the
TJs as a result of the altered interaction between phosphorylated
occludin and ZO1, ZO2 and ZO3 (Rubin and Staddon, 1999;
Papadopoulos et al., 2001; Kale et al., 2003). Liebner et al.
(2000) have shown that the expression of the TJ protein
claudin 1 is lost in the majority of tumor micro vessels and
claudin 5 down-regulated in hyperplastic vessels, leading to
increased endothelial permeability. GBM cells secrete several
factors including VEGF, stromal cell-derived factor-1 (SDF-
1α) and Angiopoietin 1 (Ang-1) that increase the proliferation
of endothelial cells and promote development of new vessels.
To further aggravate the condition, the tumor’s vascularization
is immature and morphologically abnormal. Indeed, the new
vessels are disorganized, deformed, tortuous, partially occluded,
excessively leaky and dysfunctional (Hardee and Zagzag, 2012;
Dubois et al., 2014; Salmaggi et al., 2004). The main factor that
promotes neo-angiogenesis is VEGF, which is up-regulated in
brain tumors associated with oedema (Lin and Wang, 2016;

FIGURE 1 | Tumor-related oedema. Brain capillary endothelial cells (BCECs) are connected via tight junction (TJ) protein complexes that fuse endothelial cells
together. When a brain tumor develops, particularly high-grade gliomas, TJs become permeable due to release of angiogenic factors and changes in protein
component. These events cause blood brain barrier (BBB) breakdown and vasogenic oedema.
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Lin et al., 2016). VEGF affects the vascular endothelium,
stimulating the proliferation and migration of endothelial cells,
decreasing the expression of TJ proteins, whilst increasing
the hydraulic permeability of vessels (Hardee and Zagzag,
2012; Stokum et al., 2016). Overall, altered TJs in endothelial
cells and abnormal vascularization result in fluid buildup in
cerebral parenchyma, leading to increased brain volume and ICP
(Papadopoulos et al., 2004).

MANAGEMENT OF BRAIN OEDEMA
WITH DEX

GCs are steroid hormones produced by the adrenal cortex
under the control of the hypothalamic–pituitary–adrenal axis
(HPA) that regulate carbohydratemetabolism, inflammatory and
immune responses. Their effects are mediated by binding to GC
receptor (GR) on a time scale from hours to days (genomic
effects). The best known and well characterized isoform of GR
is GR-α. The complex GC-GR binds to DNA at particular
glucocorticoid responsive elements (GRE) and regulates the
transcription of a number of genes (Piette et al., 2006).

GCs reduce oedema by affecting BBB functionality,
particularly through modulation of gene expression and
function of claudins, occludins, and vascular endothelial (VE)-
cadherin that regulate endothelial permeability (Hue et al.,
2015). In rodent brain tumors, DEX decreases BBB permeability
by up-regulating the expression of occludin (Gu et al., 2009a,b).

The stability of the BBB is regulated by Ang-1 and Ang-
2, as well as VEGF (Kaal and Vecht, 2004; Nag et al.,
2005). Ang-1 binds to the receptor tyrosine kinase Tie-2
expressed on endothelial cells, whereas, Ang-2 participates in
BBB breakdown through vessel destabilization (Maisonpierre
et al., 1997). Up-regulation of Ang-1 and down-regulation of
VEGF by DEX treatment have been reported in human brain
astrocytes and pericytes (Kim et al., 2008). DEX ameliorates
oedema not only by influencing the factors that regulate the
permeability of the capillary bed, but also by inhibiting their
production (Figure 2). Indeed in C6 cells, DEX down-regulates
VEGF mRNA and protein expression in a dose-dependent
manner both in normoxic and hypoxic conditions. This effect
was found to be mediated by GR (Finkenzeller et al., 1995; Nauck
et al., 1998; Machein et al., 1999).

The ability of DEX to modulate the expression of several
potassium channel types in the BBB of glioma has also been
demonstrated (Zhang et al., 2007). In particular, DEX treatment
increased the expression of calcium-activated K+ channels in
the BBB of rat brain glioma (Gu et al., 2007; Gu et al., 2009b).
In the same glioma model, up-regulation of ATP sensitive-K+

channel (KATP) expression by DEX has also been reported
(Gu et al., 2007). Through up-regulation of these K+ channel
types, DEX could regulate transcellular pathways of brain
tumor microvessels controlling BBB permeability. Although
DEX seems to reduce oedema formation by modifying the
permeability of capillaries within the tumor and enhancing the
clearance of extracellular water (Swaroops et al., 2001; Sinha
et al., 2004), the mechanisms of its actions are as to date not
fully understood.

FIGURE 2 | DEX mechanisms reducing tumor-induced brain oedema. DEX
acting on both endothelial and tumor cells modulates the transcription of
several gene products that control the BBB permeability.

GBM-INDUCED ABNORMAL
CELL-PROLIFERATION

Cell proliferation is a physiological process that involves the
activation of many signaling pathways. GBM and several genetic
abnormalities associated with this cancer alter various signaling
pathways that control cell proliferation.

EGFR plays an important role in cell proliferation principally
through receptor-mediated activation of PI3K/AKT/mTOR and
GRB2/MEK/ERK/MAPK signaling pathways (Chistiakov et al.,
2017). Amplification or mutations of EGFR are frequently
found in GBM (Maire and Ligon, 2014). Indeed, 30% of
GBM cases express the truncated mutant EGFRvIII receptor
that is deprived from its extracellular ligand binding site and
as a consequence is activated, constitutively (Frederick et al.,
2000; Paff et al., 2014). By stimulating the downstream signal
transduction pathways promotes tumorigenicity (Wang et al.,
2009; Chistiakov et al., 2017). Importantly, the genetic analysis
of EGFR in GBM is widely used as a diagnostic biomarker
(Maire and Ligon, 2014).

Phosphatase and tensin homolog (PTEN) is a tumor
suppressor that dephosphorylates the second messenger
phosphatidylinositol 3, 4, 5-triphosphate, inhibits the PI3K/AKT
pathway and reduces cyclin D1 accumulation, inducing cell
cycle arrest at the G0/G1 phase. Mutations in PTEN are found
in 20%–40% of cases that are mainly affected by primary
GBM. Loss of function mutations in PTEN activate signaling
molecules including phosphatidylinositol-dependent kinases
(PDKs), serine/threonine kinases, AKT/protein kinase B,
S6 kinase, and mTOR, as well as the small GTPases Rac1 and
Cdc42 (Alexiou and Voulgaris, 2010). The overall effects
resulting from activation of these signaling pathways are
increased cell proliferation and tumor growth. In addition to cell
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proliferation, the PI3K/Akt/mTOR pathway regulates apoptosis
and angiogenesis. Notably, this pathway is up-regulated in GBM
and mediates uncontrolled cell proliferation, tumor growth
and multidrug resistance (Zhao et al., 2017). As such, intense
investigations are aimed to identify therapeutic strategies to
inhibit the PI3K/AKT/mTOR pathway (Ströbele et al., 2015; Li
et al., 2016).

Recent studies, have highlighted the important role of ion
channels in GBM cell proliferation and aggressiveness (Sforna
et al., 2017; Wong et al., 2018; Yang et al., 2017, 2018;
D’Alessandro et al., 2018). In particular, it has been shown that
the swelling-activated Cl− current is over-expressed in GBM
cell lines (Catacuzzeno et al., 2014; Sforna et al., 2017), and
contributes substantially to cell proliferation through activation
of JAK2/STAT3 and PI3K/AKT signaling pathways (Wong et al.,
2018). Indeed, the inhibition of this Cl− current reduced cell
viability, proliferation and migration. However, cell volume
changes are detected by the Volume Regulated Anion Channel
(VRAC) that is composed of members of the leucine-rich repeat-
containing protein 8 (LRRC8) gene family, LRRC8A–E (Qiu et al.,
2014; Voss et al., 2014). Downregulation of LRRC8A expression
reduces GBM cell proliferation and increases sensitivity to the
clinically used Temozolomide (TMZ) and Carmustine (Rubino
et al., 2018).

THE ANTI- AND PRO-PROLIFERATIVE
EFFECTS OF DEX

The effects of DEX on GBM cell proliferation depend on cell
type, drug concentration and experimental conditions (Piette
et al., 2006). The anti-proliferative effect of DEX has been
shown in several cell lines (e.g., T98G, A172, 86HG39, F98,
GL261, U87; Kaup et al., 2001; Fan et al., 2014). By contrast,
Fan et al. (2014) found that DEX did not compromise the
vitality of T98G and U251 cells. However, they showed that
DEX significantly decreased the percentage of F98 cells in the
S-phase favoring the G0/G1 phase of cell cycle, thus highlighting
its cytostatic effect (Fan et al., 2014). Piette et al. (2009) reported
that DEX attenuated cell proliferation, through inhibition of
the ERK1/2 MAPK pathway. It has also been shown that DEX
interrupted cell cycle progression through down-regulation of
cyclin D1 and inhibition of ERK1/2 phosphorylation, without
altering the overall expression level of ERK1/2 (Liu et al., 2009).
Necrotic death of C6 cells can be induced by serum deprivation
and DEX enhanced this cytotoxic effect through GR activation
(Morita et al., 1999). In the same cell line, the anti-proliferative
effect of DEX was shown to be dose and time dependent and
to involve Aquaporin 1 (AQP1; Guan et al., 2018). Indeed, DEX
increased the mRNA and protein expression of AQP1. Moreover,
the effect of DEX on cell proliferation was abolished upon
AQP1 gene silencing (Guan et al., 2018). Surprisingly, by using
U373 cells, Gündisch et al. (2012) showed a pro-proliferative
effect of DEX (Table 1).

In murine xenograph models, in vivo, DEX reduced tumor
mass (Villeneuve et al., 2008). GL261 cells were implanted in the
brains of male C57BL/6 mice and DEX treatment (1 mg/kg) was
administered twice daily. After 20 days of treatment, this resulted

TABLE 1 | Effects of DEX on cell proliferation of glioma cell lines.

Cell line DEX dose Proliferation References
inhibition

A172 T98G 86HG39 5 nM – 0.5 µM YES Kaup et al. (2001)
F98 GL261 U87 1–200 µg/ml YES Fan et al. (2014)
T98G U251 1–200 µg/ml NO Fan et al. (2014)
U373 0.1 µM NO Gündisch et al. (2012)
U373 10 µM YES Piette et al. (2009)
C6 0.01 µM YES Guan et al. (2018)
C6 0.1 µM YES Liu et al. (2009)
GL261 1 µg/ml NO Villeneuve et al. (2008)

in a 33% reduction in glioma volume (Villeneuve et al., 2008).
Although, DEX did not influence the in vitro proliferation of
GL261 cells, the decrease in tumor mass could be accounted for
its effects on Ang-2 expression (Villeneuve et al., 2008).

DEX increases the chemotherapeutic action of several
drugs. Indeed, in a human glioma U87 xenograph model,
DEX significantly increased the therapeutic effects of
carboplatin/gemcitabine combined therapy (Wang et al.,
2004). However, the opposite effect of DEX has also been
observed, in vitro. In particular, the strong apoptotic effect
of TMZ in T98G and U87 cells was antagonized by DEX
pre-treatment (Das et al., 2004, 2008; Sur et al., 2005). Notably,
DEX administration pre-RT reduced the survival of glioma-
bearing mice (Pitter et al., 2016).

GBM-INDUCED CELL MIGRATION

The ability of GBM cells to migrate and invade healthy
brain tissue is remarkable, and makes GBM cells excellent
experimental models for studying migratory processes. Cell
invasion comprises four basic steps: detachment of invasive cells
from the primary tumor mass, adhesion to the extracellular
matrix (ECM), matrix degradation and cell migration (Onishi
et al., 2011). Matrix metalloproteinases (MMPs) have been
implicated in the degradation of ECM in various physiological
and pathological conditions. They are believed to be important
factors in tumor invasion through their effects on components
of the ECM (Nakada et al., 2003). A decisive role in glioma
invasion is played by the gelatinases MMP-2 and MMP-9 and
increased expression levels of MMP-2 is associated with glioma
invasiveness (Rao, 2003).

Full surgical resection of GBM is impossible as cancer cells
migrate actively along brain structures, including white matter
tracks, interstitial space of the brain parenchyma, blood vessels
and the subarachnoid space (Bellail et al., 2004; Cuddapah
et al., 2014). Migration also requires physical contacts that the
GBM cells establish with molecules of the vascular walls. It
has been shown that bradykinin induces Ca2+ release from
intracellular stores of GBM cells, promoting cell migration
(Montana and Sontheimer, 2011). In addition, GBM cells release
large amounts of glutamate in the brain parenchyma that kill
neurons effectively and acts as an autocrine and paracrine
signal to promote migration of cancer cells by triggering
cytoplasmic Ca2+ oscillations (Ye and Sontheimer, 1999;
Lyons et al., 2007).
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To assume their characteristic migratory shape, GBM cells
undergo cell volume changes and cytoskeletal remodeling. These
processes are strictly dependent on the activity of several ion
channel types. Indeed, Cl− and K+ channels are over-expressed
in GBM cells and facilitate their migratory features. The Cl− and
K+ ion flux through chloride channels and Ca2+-activated K+

channels (KCa1.1 and KCa3.1) allows cell volume changes that are
essential events for effective GBM cell migration (Turner and
Sontheimer, 2014; Catacuzzeno et al., 2015; Rosa et al., 2017).
ClC-3 expression is up-regulated in glioma and correlates with
WHO histological grade (Wang et al., 2017). Previous studies
have shown the important role of ClC-3 in human glioma cells
invasion through the application of pharmacological inhibitors
or ClC-3 siRNA transfection (Lui et al., 2010; Cuddapah
and Sontheimer, 2010). Recently, Wang et al. (2017) reported
that knock-down of ClC-3, by using recombinant adenovirus
expressing short hairpin RNA targeting human ClC-3 gene,
inhibited themigration of U87MG cells significantly and reduced
volume-regulated chloride currents in U87MG and SNB19 cells.

Previous studies have shown that hypoxia promotes GBM
cell migration and increases tumor aggressiveness (Jensen,
2009; Yang et al., 2012). Extensive hypoxic areas are found
within GBM mass that distinguish this tumor from those
of low-grade malignancy. A distinctive histological pattern
observed within the GBM is the palisade characterized by the
presence of occluded vessels, around an extensive necrotic area
and migrating cancerous cells (Rong et al., 2006; Amberger-
Murphy, 2009). Sforna et al. (2017) reported that the swelling-
activated Cl− current is up-regulated during hypoxia, an effect
that further facilitates GBM cell migration and brain infiltration
(Wong et al., 2018).

EFFECTS OF DEX ON CELL MIGRATION

Scant and inconsistent information is available on the effects of
DEX on cell migration and this varies with the cell type under
investigation. Inhibitory effects of DEX in migration/invasion of
several glioma cell lines (e.g., C6, U251, U373, and A172), have
been previously reported (Bauman et al., 1999). DEX inhibited
the migration of U87 cells by reducing MMP-2 secretion (Lin
et al., 2008). On the other hand, Piette et al. (2009) have shown
that DEX treatment significantly reduced the migration and
invasion of U373 cells through GR-dependent ERK1/2 MAPK
pathway. It should be recalled that in GBM the ERK1/2 MAPK
pathway is activated remarkably through EGFR and is linked
to cell invasion and migration, as well as proliferation (Huang
et al., 2009). Moreover, the isoforms p44 (ERK1) and p42 (ERK2)
are stimulated by a wide variety of growth factors and mitogens
(Johnson and Lapadat, 2002).

In stark contrast with previous studies, a recent report
has shown that DEX facilitated C6 cells migration through
up-regulation of AQP1 expression (Guan et al., 2018).

DEX THERAPY IN GBM

Patients with primary brain tumors are commonly treated
with DEX before and after biopsy or resection and during

RT. Unfortunately, DEX causes many side effects including
myopathy, abnormal glucose metabolism, gastrointestinal
complications, irritability, anxiety, insomnia, and is linked
to high risk of pneumonia infection (Kostaras et al., 2014).
Although, myopathy is reversible upon DEX discontinuation,
almost 50% of patients develop disturbed glucose metabolism
which persists even after dose reduction (Wen et al., 2006).
Most psychiatric complications occur within the 1st week of
therapy. The severity of side effects increases with the dose
regimen and length of treatment. Thus, it is recommended that
DEX therapy be reduced once symptoms commence to improve
(Kostaras et al., 2014).

Upon DEX treatment apoptosis of T cell is observed,
accounting for its immunosuppressant effects (Dietrich et al.,
2011). The potent immunosuppressive actions of GCs could
raise the question as to whether these drugs could weaken the
body immune response against cancer cells and contribute to the
short survival of GBM-affected individuals. However, due to its
immunosuppressant activity, DEX interfered with conventional
chemotherapies or electric field-based therapy delivered by the
NovoTTF-100A (Hughes et al., 2005; Grossman et al., 2011;
Wong et al., 2015). This is a new medical device used for chronic
treatment of patients with recurrent or progressive GBM that
exploit alternating electric fields (termed TTFields).

A number of studies have demonstrated DEX effectiveness
in management of patients with brain peri-tumor oedema by
ameliorating the symptoms associated with vasogenic oedema
and intracranial high pressure within 48 h of treatment (Galicich
et al., 1961; Hossmann et al., 1983; Ostergaard et al., 1999;
Sinha et al., 2004; Dietrich et al., 2011; Kostaras et al., 2014).
An excellent technique for monitoring tumor-related oedema
in patients is magnetic resonance imaging (MRI) that allows
the evaluation of various water diffusion parameters (Yamasaki
et al., 2012; Bode et al., 2006; Kural et al., 2018). Using diffusion
tensor imaging, Sinha et al. (2004) examined individuals with
intracranial tumors and observed a significant reduction in
the mean diffusivity of brain oedema after 48–72 h post-DEX
treatment. However, a recent study conducted in 28 patients with
different degrees of glioma, brain metastases and neurological
deficits, reported that DEX had no significant effect on the
volume of peritumoral oedema in 19 patients, while some
improvements were observed in the remaining (Kural et al.,
2018). Given the very frequent use of DEX in GBM therapy
and the controversies concerning its effects there is now a
renewed interest to evaluate the correlation between the use of
this drug and the overall survival (OS) rate of treated patients.
A recent study showed that administration of DEX during RT
in patients treated with TMZ, was a poor prognostic indicator
of both OS and progression-free survival (PFS). Therefore,
DEX treatment before or concomitantly with TMZ was not
recommended. However, the OS and PFS were not affected by
DEX in patients who received a combination therapy with both
TMZ and Bevacizumab (BEV), during RT (Shields et al., 2015).
Important observations about the use of DEX in GBM therapy
have been provided by Wong et al. (2015). Indeed, they showed
that patients treated with higher DEX doses (>4.1 mg daily)
had significantly shorter OS than those treated with lower doses
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(<4.1 mg daily). DEX-treatment at high doses (6–16 mg/day)
resulted in the disappearance of the tumormass in some patients.
Remarkably, the tumor reappeared after 1–4 weeks and was
much more aggressive (Buxton et al., 1997; Zaki et al., 2004;
Goh et al., 2009). It has also been observed that DEX therapy
reduced the OS of a particular subgroup of GBM patients
(Dubinski et al., 2018). In this study, 35 patients received
preoperative DEX and compared to 78 control patients. The
OS value was not different between these two main groups.
However, within the subgroup of patients who received DEX,
22 individuals showed DEX-induced leukocytosis (DIL) and
had shorter OS that those without DIL. As such, patients
with DIL were considered at a high risk of poor outcome
(Dubinski et al., 2018).

In patients with cancer, inter-individual differences in
drug response influences both the outcome to therapy, as
well as the prevalence of adverse effects. Along with the
progress in diagnosis, based on tumor molecular characteristics,
genomic and proteomic approaches continue to be developed
to ameliorate individualized treatment (Shai et al., 2008).
Changes in protein expression due to altered gene regulation
in drug-target genes can affect the efficacy or toxicity of
the drug. This concept applies especially to GCs, as well as
to other drugs used in the management of GBM. Indeed,
GCs are known to regulate the expression of hundreds of
genes, whose dysregulation could favor a poor prognosis
for GBM patients. In a study that analysed the type of
genes affected by DEX treatment from patient-derived GSC
lines several genes associated with cell proliferation and
migration were either up-regulated or down-regulated by
the drug (Luedi et al., 2017). Importantly, DEX-responsive
genes were found to be prognostic of poor outcome in
two independent GBM cohorts (Luedi et al., 2017). Both,
in vitro and in vivo evaluation of DEX effects along with the
analysis of clinical information from The Cancer Genome
Atlas (TCGA) cohort, important correlations have been
derived between DEX treatment and alterations in gene
expression profiles. The comparison between patients with
mesenchymal and proneural GBM showed that the former
subgroup had significant up-regulation of DEX-controlled
gene network as well as pathways closely related to
proliferation, invasion, and angiogenesis. The effects of
DEX on invasion, proliferation and angiogenesis in GBM
patient–derived GSCs with IDH1 wild-type (GSC3) and
with IDH1 mutant (GSC6) were very recently evaluated.
DEX significantly increased the invasive properties of the
GSC3 cell line, both in vitro and in vivo. Moreover, using both
GSC3 and GSC6 lines, the drug promoted proliferation and
angiogenesis, in vivo (Luedi et al., 2018). The results of this
interesting study, have questioned the use of DEX in GBM
therapy, highlighting its ability to increase the aggressiveness
of the tumor.

CONCLUDING REMARKS

Since 1960, DEX represented the gold standard for treatment
to reduce oedema caused by brain tumors, although current

literature fails to clearly delineate the mechanism of action. In
this review, we have discussed several critical factors regarding
the influence of DEX in GBM. Overall, contradictory effects of
DEX opposing or favoring GBM aggressiveness have emerged
from a number of in vitro, in vivo and clinical studies. It
has been argued that this conflicting data was a result of
different experimental conditions (Mealey et al., 1971; Grasso
et al., 1977; Pinski et al., 1993; Langeveld et al., 1992; Morita
et al., 1999; Piette et al., 2006). Considering this variability
and current controversial issues, investigators are focusing
on genetic biomarkers and transcriptional signature that are
influenced by DEX. Knowledge derived through these studies
is highly needed to provide prediction in patient OS. The
urge to evaluate other subtypes of GBM that are distinguished
by different genetic and epigenetic alterations, the distinct
susceptibility to DEX and their changes in the degree of
malignancy upon drug exposure is inevitable in future studies.
Indeed, establishing the GBM type that can or cannot be treated
with DEX along with early diagnosis shall increase patients’ life
expectancy, considerably.

Pharmacogenomics promise the advent of precision medicine.
Thus, to optimize DEX therapy with respect to patients’
genotype and ensure maximum efficiency with minimal adverse
effects, genome-wide association investigations incorporating
genomics and epigenetic approaches, should be considered. The
recognition of the various desirable and undesirable pathways
that are activated in GBM by GCs could pave the way towards
a combinational therapy, consisting in the co-administration of
a classical GC with drugs that inhibit the unwanted pathways
activated by that specific GC. Furthermore, a road map guiding
progress towards development of selective GR agonists and
modulators with a more restricted GR activity, which retain
efficacy without eliciting unwanted adverse effects should be
established (Sundahl et al., 2016). Overall, these strategies could
settle the ‘‘DEX issue in GBM’’ and allow the prescription of this
drug to distinct subsets of patients or through individual therapy
depending on one’s genetic makeup.
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