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ABSTRACT

Objective: The purpose of this study is to examine the effect of high mobility group AT-hook 
1 (HMGA1) on the phenotyptic change of vascular smooth muscle cells (VSMCs).
Methods: Gene silencing and overexpression of HMGA1 were introduced to evaluate the 
effect of HMGA1 expression on the phenotypic change of VSMCs. Marker gene expression 
of VSMCs was measured by promoter assay, quantitative polymerase chain reaction, and 
western blot analysis. Common left carotid artery ligation model was used to establish in vivo 
neointima formation.
Results: HMGA1 was expressed strongly in the synthetic type of VSMCs and significantly 
downregulated during the differentiation of VSMCs. Silencing of HMGA1 in the synthetic 
type of VSMCs enhanced the expression of contractile marker genes thereby enhanced 
angiotensin II (Ang II)-dependent contraction, however, significantly suppressed 
proliferation and migration. Stimulation of contractile VSMCs with platelet-derived growth 
factor (PDGF) enhanced HMGA1 expression concomitant with the downregulation of marker 
gene expression which was blocked significantly by the silencing of HMGA1. Silencing of 
HMGA1 retained the Ang II-dependent contractile function, which was curtailed by PDGF 
stimulation, however, overexpression of HMGA1 in the contractile type of VSMCs suppressed 
marker gene expression. Proliferation and migration were enhanced significantly by the 
overexpression of HMGA1. Furthermore, the Ang II-dependent contraction was reduced 
significantly by the overexpression of HMGA1. Finally, the expression of HMGA1 was 
enhanced significantly in the ligated artery, especially in the neointima area.
Conclusion: HMGA1 plays an essential role in the phenotypic modulation of VSMCs. 
Therefore, paracrine factors such as PDGF may affect vascular remodeling through the 
regulation of HMGA1.
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INTRODUCTION

Generally, vascular smooth muscle cells (VSMCs) exist in two phenotypes.1 In healthy blood 
vessels, the mature form of VSMCs is the contractile type of VSMCs, which expresses the 
marker genes involved in the contractile function, such as smooth muscle actin (SMA), 
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smooth muscle 22 α (SM22α), calponin, and myosin heavy chain 11 (Myh11).2 The contractile 
type of VSMCs show halted proliferation and migration activity.3 Because VSMCs have 
phenotypic plasticity, unlike cardiac or skeletal muscles, the contractile type of VSMCs can be 
converted to the type with more proliferation and migration activity, which is also called the 
synthetic phenotype of VSMCs.4 The phenotypic conversion of VSMCs is induced by several 
environmental cues, such as vascular damage, vascular inflammation, aging, and metabolic 
stresses.5 Upon vascular damage, platelets aggregate rapidly to form a thrombus and stop 
bleeding. During this process, aggregated platelets secret many paracrine factors involved in 
fibrin coagulation, blood vessel constriction, and tissue repair factors that induce damage-
associated molecular patterns (DAMPs).6 One of these secreted paracrine factors, platelet-
derived growth factor (PDGF) plays a role as a tissue repair factor.7 For example, PDGF 
facilitates 10T1/2 cells to differentiate into VSMCs.8 Moreover, PDGF changes the contractile 
marker gene expression profile,9 and the intracellular calcium regulation mechanism by 
PDGF is regulated differentially in the contractile and synthetic types of VSMCs.10 Finally, 
expression of the PDGF receptor is upregulated in VSMCs in response to injury,11 and 
stimulation of VSMCs with PDGF facilitates the phenotypic changes.12 Therefore, PDGF 
appears to play a pivotal role in the regulation of VSMC phenotype during the vascular injury.

High mobility group AT-hook 1 (HMGA1) is a non-histone chromatin protein involved in 
various inducible gene transcriptions.13 HMGA1 might regulate the global gene expression 
pattern by chromatin remodeling because HMGA1 can induce chromatin clustering in vivo.14 
HMGA1 proteins interact physically with various transcription elements and the regulator 
of the chromatin structure, coordinates their assembly in the gene promoter and enhancer 
areas, and provides an important function during gene-specific transcription regulation.15 
Therefore, HMGA1 could be necessary for the physiological responses needed to change 
the global gene expression pattern, e.g., differentiation/dedifferentiation, in this case, the 
phenotypic modulation of VSMCs.

Several studies assigned the important role of HMGA1 in regulating normal cell proliferation, 
embryonic cell growth, and cell differentiation.16 In general, high levels of HMGA1 has been 
observed in actively growing cells, and low levels of HMGA1 have been shown in terminally 
differentiated and non-dividing cells. For example, the expression of HMGA1 is high in 
cells in the early stages of development, cancer cells, and those related to diseases showing 
abnormal growth.17 On the other hand, cells in a stable condition with completed growth 
express low levels of HMGA1.18 VSMCs retain their two different characteristic stages, one is 
the actively growing synthetic type, and the other is the non-dividing contractile type. This 
study tested the hypothesis that HMGA1 plays a key role in the phenotypic modulation of 
VSMCs as a downstream transcriptional factor of PDGF.

MATERIALS AND METHODS

1. Reagents
Dulbecco's modified Eagle's medium (DMEM), fetal bovine serum (FBS), trypsin-EDTA, 
and penicillin (antibiotics) were purchased from Hyclone Laboratories, Inc (Logan, UT, 
USA). Angiotensin II (Ang II), anti-SMA and anti-calponin antibodies obtained from Sigma-
Aldrich (St Louis, MO, USA). The anti-Myh11 antibody was acquired from Proteintech Group 
Inc. (Burlingame, CA, USA). The anti-SM22α and anti-HMGA1 antibodies were supplied 
by Abcam (Cambridge, UK). The anti-actin antibody was supplied by MP biomedicals 
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(Aurora, OH, USA). 4′,6-diamidino-2-phenylindole (DAPI), Alexa Fluor 488-conjugated goat 
anti-mouse secondary antibody and Cy3-conjugated goat anti-rabbit secondary antibody 
were bought from Molecular Probes, Inc. (Carlsbad, CA, USA). IRDye700-and IRDye800-
conjugated rabbit/mouse secondary antibodies were obtained from Li-COR Bioscience 
(Lincoln, NE, USA). The promoter region of SM22α, SMA subcloned in the pGL3 vector, 
was a kind gift from Dr. Gary K. Owens (University of Virginia). All other chemicals were 
purchased from Sigma-Aldrich unless indicated otherwise.

2. Isolation and phenotypic conversion of VSMCs, and neointima formation
Synthetic type of VSMCs were isolated from 3-week-old male Sprague-Dawley rats as described 
previously.19 Briefly, VSMCs were isolated from 3-week-old Sprague-Dawley rats and the 
surrounding fat and connective tissues were discarded. The vessels were cut longitudinally 
and fragmented into 3–5 mm lengths, and the explanted lumen was placed side down on 
6-well culture dishes. After 7 days of explanting, the tissue fragments were discarded, and the 
sprouted VSMCs were collected (referred to as P0). The synthetic type of VSMCs was cultured 
at low density (<20%). To induce phenotypic conversion of VSMCs, the synthetic type of 
VSMCs (P0) was cultured on laminin-coated plates at high density (up to 100%), and passages 
between P3 and P4 were defined as the contractile type of VSMCs. Carotid artery ligation-
induced neointima formation was performed as described previously.19 Since our experiments 
used cells isolated from aortic tissues sex difference would not affect in vitro experimental 
results. All animal procedures were performed in accordance with the Animal Care Guidelines 
of the Laboratory Animal Resource Center of Pusan National University School of Medicine 
after receiving approval of Pusan National University Institutional Animal Care and Use 
Committee (mouse: PNU-2019-2253, rat: PNU-2019-2254). The investigation conformed 
with the Guide for the Care and Use of Laboratory Animals published by the U.S. National 
Institutes of Health (NIH Publication No. 8023, revised 1978).

3. Cell proliferation assay
To measure cell proliferation, 5×103 VSMCs were seeded on a 6-well plate and grown for 6 
days in a normal culture medium. Cells of 0, 2, 4, and 6 days were fixed and counted. Zero 
days refers to 3 hours after seeding. The cells were fixed with 4% paraformaldehyde (Sigma-
Aldrich), and the nuclei were stained with DAPI (Sigma-Aldrich). The stained cells were 
visualized with a fluorescence microscope and random images of three fields were taken at 
×10 magnification.

4. Migration assay
Migration of VSMCs were measured as described previously.20 Briefly, 5×103 cells were 
overlaid on a ChemoTx membrane (Neuroprobe Inc., Gaithersburg, MD, USA) and incubated 
for the indicated times. The membrane was stained with DAPI, and the migrated cells on 
bottom side were counted under a fluorescence microscope at ×10 magnification.

5. Collagen gel contraction assay
Ang II-induced VSMC contraction was performed as described previously.19 Briefly, VSMCs 
were trypsinized, resuspended in serum free DMEM, and diluted to 1×106 cells/mL. The cell 
suspension was mixed on ice with collagen gel solution (6 mg/mL of collagen type I in 2X 
PBS pH8.0) to give 5×105 cells/mL and 3 mg/mL of collagen gel solution. One hundred µL of 
VSMCs-collagen gel solution was added per well to 24-well plates. Where indicated, various 
inhibitors were added. The plate was incubated at 37°C to allow for gel polymerization. After 
1 hour, the gels were floated with serum-free DMEM and Ang II (1 μM) was added to initiate 
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contraction while capturing images using a digital charge-coupled device camera. Collagen 
gel contraction was measured as a decrease in the gel area using image software (Image J; 
National Institutes of Health, Bethesda, MD, USA).

6. Lentiviral knockdown and retroviral overexpression of HMGA1
To silence HMGA1, short hairpin RNA oligonucleotides tagged with a 5′-end AgeI site and 
a 3′-end EcoRI site were designed for shHMGA1 (forward primer: 5′-CCG GTA AGG GGC 
AGA CCC AAG AAA CTC TCG AGA GTT TCT TGG GTC TGC CCC TTT TTT TG-3′), (reverse 
primer: 5′-ATT CAA AAA AAG GGG CAG ACC CAA GAA ACT CTC GAG AGT TTC TTG 
GGT CTG CCC CTT A-3′), and subcloned into the AgeI / EcoRI site of a pLKO.1 lentiviral 
vector. To overexpress HMGA1, FLAG-tagged HMGA1 was subcloned into BglII-EcoRI site of 
pMIGR2 retroviral vector. Lentiviral knockdown and retroviral overexpression of HMGA1 was 
performed as described previously.20

7.  Promoter, quantitative polymerase chain reaction (qPCR), western blot 
assay

The promoter activity of SM22α and SMA was measured as described previously.19 To analyze 
mRNA expression, cDNAs were amplified as manufacturer's information (Sigma-Aldrich) by 
using specific primers for HMGA1 (Forward: 5′-GGATGGGACTGAGAAGCGAG-3′; Reverse: 
5′-GTAACTTTCCGCGTCTTGGC-3′), SM22α (Forward: 5′-ATCCTATGGCATGAGCCGTG-3′; 
Reverse: 5′-CAGGCTGTTCACCAACTTGC-3′), SMA (Forward: 5′-ACCATCGGGAATGAACGC 
TT-3′; Reverse: 5′-CTGTCAGCAATGCCTGGGTA-3′), calponin (Forward: 5′-GCCCAGAAATA 
CGACCACCA-3′; Reverse: 5′-CCGGCTGGAGCTTGTTGATA-3′), and Myh11 (Forward: 
5′-CACTGAGAGCAATGAGGCCA-3′; Reverse: 5′-TCTGAGTCCCGAGCATCCAT-3′). 
Expression of glyceraldehyde 3-phosphate dehydrogenase was used as the internal control 
(Forward, 5′-GTCAGTGGTGGACCTGACCT-3′; Reverse, 5′-TGAGCTTGACAAAGTGGTCG-3′). 
Expression of the target genes was quantified by real-time qPCR (Roche, Basel, Switzerland). 
The data were analyzed using the 2∆∆CT method. Western blot assay was performed as 
described previously.20

8. Statistical analysis
For the analysis of mRNA expression, proliferation, migration and contraction, the results 
are expressed as the means±standard error of the mean (SEM) of triplicated experiments. 
For immunohistochemistry, the results are expressed as the means±SEM of 6 independent 
experiments. An unpaired Student's t-test was used to assess the differences between the 2 
groups. The p-values <0.05 were considered significant.

RESULTS

1.  Differential expression of HMGA1 in the synthetic and contractile type of 
VSMCs

As shown in Fig. 1A and B, marker proteins for the contractile type of VSMCs were strongly 
expressed in the contractile type of VSMCs compared to the synthetic type of VSMCs. 
In addition, the promoter activity of SM22α and SMA was significantly elevated in the 
contractile type of VSMCs compared to the synthetic type of VSMCs (Fig. 1C). However, the 
proliferation and migration activities were greater in the synthetic type of VSMCs than in the 
contractile type of VSMCs (Fig. 1D and E). The synthetic type of VSMCs also showed a weak 
Ang II-dependent contraction compared to the contractile type of VSMCs (Fig. 1F). As shown 
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in Fig. 1G and H, the expression of HMGA1 was relatively higher in the synthetic type of 
VMSCs. During differentiation of the synthetic type of VSMCs to the contractile type VSMCs 
(Fig. 1I), the expression of contractile type marker genes, such as SM22α, SMA, calponin, 
and Myh11 was enhanced significantly, but the expression of HMGA1 was downregulated 
significantly (Fig. 1J and K).

2.  Silencing of HMGA1 in the synthetic type of VSMCs facilitates phenotypic 
conversion to the contractile type

As shown in Fig. 2A and B, the silencing of HMGA1 induced the expression of the contractile 
marker genes. In addition, the proliferation and migration activities of the synthetic type of 
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Fig. 1. Validation of HMGA1 expression in synthetic and contractile VSMCs. (A and B) Marker gene expression was validated by western blot. (C) Promoter 
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*p<0.05.



VSMCs were reduced significantly by the silencing of HMGA1 (Fig. 2C and D). Finally, the 
silencing of HMGA1 in the synthetic type of VSMCs recapitulated the contractile properties in 
response to Ang II stimulation (Fig. 2E).

3.  Silencing of HMGA1 suppresses PDGF-induced dedifferentiation of the 
contractile type of VSMCs

As shown in Fig. 3A, stimulation of the contractile type of VSMCs with PDGF induced 
morphological changes to the synthetic phenotype. On the other hand, PDGF-dependent 
morphological changes were not observed in the cells silencing HMGA1. As shown in Fig. 3B  
and C, stimulation of the contractile type of VSMCs with PDGF strongly suppressed the 
expression of the contractile marker genes, whereas the expression of HMGA1 was enhanced 
significantly. In addition, the PDGF-dependent downregulation of contractile marker gene 
expression was blocked by the suppression of HMGA1 induction by introducing shRNA for 
HMGA1. As shown in Fig. 3D, the Ang II-dependent contractile function was not curtailed by 
PDGF stimulation in the VSMCs silencing HMGA1.

4.  HMGA1 is expressed strongly in the neointima, and the overexpression 
of HMGA1 in the contractile type of VSMCs recapitulates the synthetic 
phenotype

The expression of HMGA1 was examined in the highly proliferating neointima lesion because 
HMGA1 was expressed strongly in the synthetic type of VMSCs. As shown in Fig. 4A and B,  
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HMGA1 expression was highly elevated in the neointima area. To confirm the effect of HMGA1 
expression on the modulation of the VSMCs phenotype, HMGA1 was overexpressed in the 
contractile type of VSMCs. As shown in Fig. 4C and D, the forced expression of HMGA1 in 
the contractile type of VSMCs curtailed the expression of the contractile marker genes. In 
addition, the synthetic properties of VSMCs, such as proliferation and migration, were enhanced 
significantly by the overexpression of HMGA1 (Fig. 4E and F). On the other hand, Ang II-
dependent contractile function was reduced significantly by overexpression of HMGA1 (Fig. 4G).
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Fig. 3. PDGF-dependent phenotypic conversion is blocking by the silencing of HMGA1. (A) HMGA1 was silenced 
in the contractile type of VSMCs and cells were stimulated with PDGF-BB for three days. Bright-field images were 
taken under the microscope (scale bar=200 μm). (B and C) HMGA1 was silenced in the contractile type of VMSCs 
and cells were stimulated with PDGF-BB for three days. Expression of HMGA1 and the marker genes was verified 
by western blot and real-time qPCR analysis. (D) HMGA1 was silenced in the contractile type of VSMCs, and 
dedifferentiation was induced by treating the cells with PDGF for 3 days. The Ang II-dependent contraction was 
measured as described in “Materials and Methods”. Data are reported as the means±SEM of three independent 
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smooth muscle 22α; SMA, smooth muscle actin; Myh11, myosin heavy chain 11; NT, non-treated. 
*p<0.05.



DISCUSSION

The contractile type of VSMCs could be converted to the synthetic phenotype often found in 
unhealthy blood vessels. The synthetic phenotype of VSMCs proliferate and migrate more 
rapidly than the contractile type of VSMCs and secrete various extracellular matrix proteins, 
leading to the formation of a fibrous cap during atherosclerosis. Indeed, the marker gene 
expression was reduced significantly in the synthetic type of VMSCs (Fig. 1A and B), which 
might be due to an impairment of the promoter activity in the synthetic type of VSMCs 
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(Fig. 1C). The synthetic type of VSMCs grow and migrate faster than the contractile type of 
VSMCs21; the same results were observed in this study (Fig. 1D and E). Because the synthetic 
phenotype of VSMCs expresses low levels of contractile marker proteins, which are necessary 
for contractile function, the contraction would be subtle compared to the contractile type 
of VSMCs. Indeed, the Ang II-dependent contraction ability was reduced drastically in the 
synthetic type of VSMCs (Fig. 1F). Currently, it is unclear how the impediment of Ang II-
dependent contraction in the synthetic phenotype of VSMCs is acquired but recent evidence 
suggests that Ang II receptor expression is downregulated in synthetic type of VSMCs.22 It is 
also possible that insufficient expression of downstream signaling molecules in the synthetic 
type of VSMCs would account for the impediment of Ang II-dependent contraction.

HMGA1 is expressed strongly in rapidly growing cells. For example, HMGA1 is expressed 
marginally in adult tissues but enhanced drastically in rapidly growing cells such as cancer 
cells.23 Moreover, the overexpression of HMGA1 transforms rat fibroblasts.24 In addition, 
the transgenic mice overexpressing HMGA1 showed hematopoietic malignancies and 
pituitary adenomas.25 In contrast, mice with homozygote and heterozygote HMGA1 show 
cardiac hypertrophy, lymphoma suppression, and insulin resistance, respectively.26,27 
Therefore, HMGA1 is necessary for the proliferative function of various cell types. Because 
the synthetic phenotype of VSMCs grows more rapidly than the contractile type VSMCs, 
it is reasonable to assume that the synthetic type of VSMCs would express more HMGA1. 
In line with this idea, the synthetic phenotype of VSMCs expressed high levels of HMGA1, 
which decreased gradually during differentiation of the synthetic type to the contractile 
type (Fig. 1G-K). In the present study, several lines of evidence support the idea that HMGA1 
modulates the phenotypic status of VSMCs directly. First, the silencing of HMGA1 in the 
rapidly growing synthetic type of VSMCs suppressed the proliferation and migration rate 
(Fig. 2C and D). Second, the forced expression of HMGA1 in the contractile type of VSMCs 
regained the proliferation and migration activity but lost the contractile properties (Fig. 4). 
Third, HMGA1 was expressed strongly in neointima lesions, where the highest population 
of VSMCs had the synthetic phenotype (Fig. 4). These results also suggest that HMGA1 
expression is not just result of phenotypic changes in the VSMCs but also a major leading 
cause of phenotypic modulation.

In the present study, PDGF-dependent phenotypic modulation is regulated by HMGA1 
expression. PDGF is involved in many physiological processes during vascular remodeling.28 
Because PDGF is produced mainly by platelets during the vascular damage29 and phenotypic 
change of VSMCs is observed in vascular remodeling, PDGF may regulate the process 
involved in the phenotypic modulation of VSMCs. Indeed, it was reported that PDGF exerts 
the contractile type of VSMCs to induce a phenotypic change to the synthetic phenotype.20 
Activation of the mammalian target of rapamycin complex 1 (mTORC1) appears to play a 
critical role in this process, and recent evidence supports that specificity protein 1 (SP1) may 
be responsible transcriptional factor in the expression of HMGA1. For example, high glucose 
enhances expression of HMGA1 which was blocked by phosphatidylinositol 3-kinase (PI3K) 
inhibitor and silencing of SP1.30 Likewise, it is possible that PDGF induces HMGA1 through 
the regulation of PI3K/mTORC1/SP1 signaling cascade. In the present study, PDGF strongly 
enhanced the expression of HMGA1 concomitant with the suppression of contractile marker 
gene expression (Fig. 3). On the other hand, the PDGF-dependent phenotypic change of 
contractile VSMCs was blocked significantly by suppressing PDGF-dependent induction of 
HMGA1. These results suggest that HMGA1 is a downstream transcriptional regulator in 
PDGF-dependent phenotypic change in VSMCs.
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Although the precise molecular mechanism that regulates the PDGF-dependent phenotypic 
change of VSMCs is still ambiguous, methylation/demethylation of the miR195/miR497 
promoter may regulate the phenotypic regulation of VSMCs. For example, regulation 
of HMGA1 mRNA expression by miR195/miR497 affects the inhibitor of DNA binding 3 
(Id3) expression, which suppresses muscle gene expression by binding with the myogenic 
regulatory factors (MRF), thereby maintaining the proliferation properties of myoblasts.31 
Similarly, HMGA1 may regulate the expression of Id3 in VSMCs, thereby maintaining the 
synthetic phenotype of VSMCs. Therefore, examining the expression of miR195/miR497 
during the PDGF-dependent phenotypic modulation of VSMCs would shed light on the 
mechanistic pathway.

In summary, HMGA1 is expressed strongly in the synthetic type of VSMCs. Suppression of 
HMGA1 expression in the synthetic phenotype of VSMCs facilitates a phenotypic change 
into the contractile phenotype. In addition, PDGF induces a phenotypic change in the 
VSMCs by enhancing the expression of HMGA1. The suppression of HMGA1 induction by 
PDGF blocks phenotypic change in VSMCs. Moreover, the forced expression of HMGA1 
facilitates phenotypic conversion even in the absence of PDGF. Given these results, HMGA1 
plays a critical role during vascular remodeling and could be a possible therapeutic target for 
vascular diseases.
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