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Object-location memory is particularly fragile and specifically impaired in Alzheimer’s
disease (AD) patients. Electroencephalogram (EEG) was utilized to objectively measure
memory impairment for memory formation correlates of EEG oscillatory activities. We
aimed to construct an object-location memory paradigm and explore EEG signs of
it. Two groups of 20 probable mild AD patients and 19 healthy older adults were
included in a cross-sectional analysis. All subjects took an object-location memory
task. EEG recordings performed during object-location memory tasks were compared
between the two groups in the two EEG parameters (spectral parameters and phase
synchronization). The memory performance of AD patients was worse than that of
healthy elderly adults The power of object-location memory of the AD group was
significantly higher than the NC group (healthy elderly adults) in the alpha band in the
encoding session, and alpha and theta bands in the retrieval session. The channels-pairs
the phase lag index value of object-location memory in the AD group was clearly higher
than the NC group in the delta, theta, and alpha bands in encoding sessions and delta
and theta bands in retrieval sessions. The results provide support for the hypothesis
that the AD patients may use compensation mechanisms to remember the items and
episode.

Keywords: Alzheimer’s disease, object-location memory, electroencephalogram, power spectrum, functional
connectivity, compensation mechanisms

INTRODUCTION

Alzheimer’s disease (AD) is a degenerative brain disease, and episodic memory impairment is
an early sign of it. Numerous studies have focused on the early detection of episodic memory
impairment to resolve the differential diagnosis, estimate the disease progression, and determine
eligible treatment.

Spatial memory, remembering the place of objects in our environment, is a prominent aspect
of episodic memory. It is fundamental to human survival in everyday life. A few studies have
demonstrated that spatial memory of AD patients is impaired, such as route learning tasks and
scene memory assessment (Cherrier et al., 2001; deIpolyi et al., 2007; Iaria et al., 2007; Bird et al.,
2010; Moodley et al., 2015). It was reported that impairments of spatial memory are typical and
early symptoms of AD (Parra et al., 2010; Pertzov et al., 2012, 2013).
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Memory for object-location is one type of spatial information
memory. A number of investigations revealed that object-
location memory is particularly fragile (Parra et al., 2010; Pertzov
et al., 2012) and specifically impaired in patients whose damage
area focused on medial temporal lobes (MTLs) (Pertzov et al.,
2013, 2015). Thus, memory for object-location needs to be better
researched in AD.

A few spatial memory paradigms have been used to study
object-location memory in AD. The common object-location
memory test consists of two procedures, including showing
participants objects and performing recognition memory tests
with time delay. For instance, patients were asked to pick out
the items they have seen before and relocated them to previous
positions (Kessels et al., 2000); the patients relocated the same
objects to the positions previously presented (positions-only
condition), different objects to the position marked by dots
(object-to-position-assignment condition), different objects to
the position without marks (combined condition) (Postma and
De Haan, 1996; Kessels et al., 2002, 2010; van Asselen et al., 2008;
Mazurek et al., 2015). Some paradigms also use pictures of real-
life objects (e.g., buildings) on a map to recognize objects-location
pairings (Kulzow et al., 2014; Edler et al., 2015). The 4 Mountains
Test (4MT) is another brief behavioral test of spatial memory,
and performance on it has been found to diagnose AD with high
sensitivity and specificity (Hartley et al., 2007; Bird et al., 2010;
Moodley et al., 2015). The primary design for 4MT paradigms
encompassed spatial and non-spatial memory perceptions. The
next two conditions involve alterations of light and vegetation
color (Moodley et al., 2015). In this study, we used a new object-
location memory task with less influence from other cognitive
processing, in order to better understanding the spatial memory
impairment in AD patients.

Electroencephalogram (EEG) has been used as the method
to measure spatial memory. Numerous studies have found that
brain oscillatory correlates of memory formation (Hanslmayr and
Staudigl, 2014; Lee and Yang, 2014), and almost all frequency
bands, from 3 Hz up to 100 Hz, are associated with the formation
of memory (Nyhus and Curran, 2010; Hanslmayr et al., 2012;
Hanslmayr and Staudigl, 2014). For example, activity in the
theta and gamma frequency bands changes during the encoding
and retrieval phases of a working-memory task, and the rate
of correct responses correlated with the synchronization index.
The analysis of electrophysiological data obtained while a spatial
memory task is being performed may provide information about
the function of neuronal systems involved in the type of spatial
memory activity investigated. Theta band oscillatory in post-
rhinal cortex and gamma band in CA3 of hippocampus were
correlated with objects place memory in rats (Lu et al., 2011;
Furtak et al., 2012). Delta, theta, gamma bands oscillations
were correlated with spatial navigation in human (Snider et al.,
2013; Park et al., 2014). P300, N200, N300 were the factors
in an integrated object-location task in event-related potentials
(ERPs) study (Simon-Thomas et al., 2003; van Hoogmoed et al.,
2012).

Compared to the controls, AD patients showed an increase
in slow (theta and delta) activities and a decrease in fast (alpha
and beta) activities in resting-state EEG (Bennys et al., 2001), and

decreased coherence at the alpha bands and beta bands (Locatelli
et al., 1998; Leocani and Comi, 1999; Knott et al., 2000; Stam
et al., 2003). The differences in spectral power and functional
connectivity during cognitive tasks in relation to memory decline
have also been studied (Rypma and D’Esposito, 1999; Hidasi
et al., 2007; Bajo et al., 2010). Nonetheless, few oscillatory activity
studies for object-location memory have been reported in AD
patients.

Therefore, the aim of this study was to construct an object-
location memory paradigm and explore objective signs of it,
using parameters of electrophysiological EEG signal (spectral
parameters and phase synchronization) in AD patients.

MATERIALS AND METHODS

Subjects
The patient group included 20 mild AD patients, while the
normal control (NC) group included 19 healthy older adults.
The two groups were gender, age, and education matched
(Table 1). All subjects were right-handed. The study was
approved by the PLA general hospital Ethical Committee, and
was performed in accordance with the Helsinki declaration.
Written informed consent was obtained from all participants
before study enrollment.

Alzheimer disease patients fulfilled the criteria of probable
AD dementia according to the National Institute on Aging-
Alzheimer’s Association workgroups on diagnostic guidelines
for AD (McKhann et al., 2011). Each patient was interviewed
by expert neurologists and received a comprehensive medical
assessment, including demographic data, past medical history,
physical and neurological assessment, neuropsychological test,
blood-screening tests, and structural magnetic resonance imaging
(MRI) brain scan, to diagnose and exclude other causes of
dementia.

All subjects took part in a battery of neuropsychological
assessments, including Mini-Mental State Examination (MMSE)
(Folstein et al., 1975), Clinical Dementia Rating (CDR)
(Hughes et al., 1982; Morris, 1993), Neuropsychiatric Inventory
Questionnaire (NPI) (Cummings et al., 1994), the Bristol
Activities of Daily Living Scale (BADLS) (Bucks et al., 1996),
Hachinski Ischemic Score (HIS) (Rosen et al., 1980), Rey-
Osterrieth complex figure (ROCF) immediate recall and 10 min
delay recall (Lezak, 2004; Strauss et al., 2006). The Taylor scoring
unit method was used in scoring ROCF recall (Lezak, 2004).
Patients diagnosed with mild AD in the patient group met the
scores (20 ≤ MMSE ≤ 26, CDR = 1) in the neuropsychological
test.

TABLE 1 | Demographic data.

NC AD

Ages (years) 66.7 (6.7) 69.1 (8.8)

Education (years) 13.4 (3.2) 14.1 (2.0)

Gender (M/F) 7/12 8/12

NC, normal control; AD, Alzheimer’s disease; M, male; F, female.
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Experimental Paradigm
The pictures used in this study were the same as the Snodgrass,
some of which were selected by Chinese researchers to fit
for Chinese subjects and were normative measured (Snodgrass
and Vanderwart, 1980; Cycowicz et al., 1997). Those pictures
were line drawings of common objects. From the total pool,
36 pictures were randomly selected. Pictures presented on the
right or left were counterbalanced according to name agreement,
familiarity, and visual complexity. E-prime software (version 2.0,
Psychological Software Tools, Inc.) was used to present pictures
and collect responses. All subjects were given the instructions
prior to the test and there was a practice test consisting of two left
pictures and two right pictures that the experimenter and subjects
performed together in order to be sure that the subject completely
understood the procedure. The practice pictures were different
from those in the test phase.

All presentations were on a 22-inch computer screen. The
process was shown in Figure 1. The test started with the
instructions displayed on the screen for 30 s, followed by
a 1000 ms blank. Afterward, each session started with the
presentation of a black square, similar in size to the test phase
questions, for 3000 ms. In the encoding session, six pictures
were randomly presented on the left and six on the right. Each
picture was displayed for up to 3000 ms with a 1000 ms inter-
stimulus-interval (ISI). While the pictures were being presented,
subjects were instructed to press the “left” or “right” button on the
keyboard to indicate the location of the picture. The duration of
this screen was response terminated. The subjects were instructed
to memorize the pictures for the subsequent memory test in the
retrieval session.

The retrieval session was preceded by 30 s of rest following the
encoding session. The 12 pictures in the encoding session were
randomly intermixed with six new. All pictures were presented
in the middle of the screen, and for the same length as in the
encoding session. Subjects were instructed to press the “left”
or “right” button when they recalled the location of pictures
presented in the encoding session. If the picture wasn’t shown
in the encoding session, they also pressed the “right” button
(Cycowicz et al., 2001, 2008).

EEG Recording
The EEG was recorded using 64 silver chloride electrodes
mounted in an elastic cap using an ANT REFA-128 EEG
measurement system (ANT Software BV, Enschede, The
Netherlands). The electrodes were positioned according to an
extended version of the international 10/20 system (Klem et al.,
1999), and the electrode impedance was kept below 10 k�.
Reference electrodes were placed on the mastoids. The vertical
EOG (VEOG) was recorded from electrodes above and below
the left eye. The EEG and EOG were recorded continuously
at 512 Hz, high-pass filtered at 0.1 Hz and low-pass filtered at
100 Hz.

Behavioral Performance
The trials with pictures located on the left in the encoding session
were divided into two categories depending on the response given

in the retrieval session: later remembered the location (LR-L)
and later forgotten the location (LF-L). Trials in the retrieval
session were classified as correctly recalled total (CR-T) [CR-
T= correctly identified previously seen and recalled the location
of pictures (HIT)+ correctly rejected new stimuli (CR)] and false
recalled total (FR-T) [FR-T = not recognized the location of old
pictures (MISS) + new pictures incorrectly identified as old, i.e.,
false alarms (FAs)].

EEG Data Analysis
Preprocessing
Electroencephalogram data preprocessing and analysis were
performed using the Matlab R2012b software (MathWorks,
Natick, MA, United States) and the EEGLAB software1. The
average of the left and right mastoid was set as the reference
electrode, and band-pass filtered from 0.1 and 45 Hz. Next, the
EEG was segmented into epochs ranging from the stimulus mark
appearing to the response mark appearing. Epochs and channels
with visible artifacts were rejected when investigator visually
inspected the EEG data. Eye movements artifacts were corrected
using an independent component analysis (ICA) procedure.
After visible artifacts correction, automated rejection of other
EEG artifacts (e.g., muscles) was performed (criteria for rejection:
>50.00 µV voltage step per sampling point, absolute voltage
value > ±120.00 µV). All epochs with artifacts were excluded
from the EEG analysis.

Power Estimation
In this study, EEG power was estimated in five sub-bands,
including 1–4 Hz (delta), 4–8 Hz (theta), 8–13 Hz (alpha),
13–30 Hz (beta), and 30–45 Hz (gamma).

For each channel, the power spectrum density (PSD) was
estimated by the Welch method with a Hamming window of
1 s and a 50% overlap. The power in sub-band [f1 f2] for some
channel “ch” is calculated as follows:

Pch(f1, f2) =
∫ f2

f1
psdch(f )df

Where the psdch is the PSD of the channel. The power for region
R in sub-band [f1 f2] was eventually estimated by averaging the
power in sub-band [f1 f2] of channels in the region R.

PR(f1, f2) =
∑

ch∈R Pch(f1, f2)
N

Where N is the number of channels in region R.
Finally, to evaluate which area showed a differential between

AD patient and healthy controls, we statistically compared all
channels across subjects using a non-parametric randomization
test. A cluster-based randomization approach was used (Maris
and Oostenveld, 2007). The method was described previously in
Lange’s work (Lange et al., 2015), and the analysis was performed
using FieldTrip toolbox (Oostenveld et al., 2011). The threshold
of t-values was set at a value of t = 1.96 (i.e., p = 0.05). In cases
where the p-value was smaller than an alpha-level of 0.05, we
concluded that data in the two groups was significantly different.

1https://sccn.ucsd.edu/eeglab/#

Frontiers in Behavioral Neuroscience | www.frontiersin.org 3 May 2017 | Volume 11 | Article 107

https://sccn.ucsd.edu/eeglab/#
http://www.frontiersin.org/Behavioral_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Behavioral_Neuroscience/archive


fnbeh-11-00107 May 30, 2017 Time: 18:32 # 4

Han et al. EEG during Object-Location Memory in Alzheimer’s

FIGURE 1 | The diagram of the encoding and retrieval session of the object-location memory task. In the encoding session, six object pictures were presented left
and another six object pictures right. In the retrieval session, the 12 pictures from the encoding session were randomly intermixed with six new pictures, and all
pictures were presented in the middle of screen.

PLI Calculation
Functional connectivity between different brain regions was
computed using the phase lag index (PLI) (Stam et al., 2007).
The segregation of the eight brain areas [left frontal (LF) (FP1,
AF7, AF3, F9, F7, F5, F3, F1), left temporal (LT) (FC5, FT7,
FT9, C5, T7, T9, CP5, TP7, TP9), left parietal (LP) (FC3, FC1,
C1, C3, CP1, CP3), left occipital (LO) (P1, P3, P5, P7, P9, PO3,
PO7, O1), right frontal (RF) (FP2, AF8, AF4, F10, F8, F6, F4,
F2), right temporal (RT) (FC6, FT8, FT10, C6, T8, T10, CP6, TP8,
TP10), right parietal (RP) (FC4, FC2, C2, C4, CP2, CP4), and right
occipital (RO) (P2, P4, P6, P8, P10, PO4, PO8, O2)] is the same as
that in the analytical system of neuromag (Elekta Oy, Helsinki,
Finland).

The PLI is a measure that quantified consistent phase lead
or lag between two signals. The method of PLI computed was
described previously in Zeng’s work (Zeng et al., 2015). PLI can be
computed from a time series of phase differences 1φ(tk) (k = 1
. . . N) as follows:

PLI = | 〈sign [1φ(tk)]〉

The PLI ranges between 0 and 1. A PLI of zero indicates
either no coupling or coupling with a phase difference centered
around 0 mod π. And a PLI of 1 indicates perfect phase
locking at a value of 1φ difference from 0 mod π. The
stronger the non-zero phase locking is, the larger the PLI
will be.

Phase lag index was also computed in five sub-bands,
including 1–4 Hz (delta), 4–8 Hz (theta), 8–13 Hz (alpha),
13–30 Hz (beta), and 30–45 Hz (gamma). The result of PLI
for all pair-wise combinations of channels is an N × N matrix
(N = 61, where each entry PLI, j is the value of PLI for the
channels i and j) (Stam et al., 2007).

Statistical Analysis
Student’s independent t-test was used to assess the difference
of demographic data and behavioral performance data between
two groups. Pearson’s r correlations were assessed between
MMSE score and object-location task score in both groups.
All statistical analysis were operated using IBM SPSS software
(version 19.0).

RESULTS

Behavioral Performance
The correct number and response time (RT) were calculated
to compare the performance of the healthy older adults and
the patients with mild AD. Details are shown in Table 2.
MMSE scores (t = 10.219, p < 0.001), ROCF scores (immediate
recall) (t = 5.391, p < 0.001) and ROCF scores (delayed recall)
(t = 9.793, p < 0.001) of AD patients were lower than that of
healthy older adults. More than half of the AD patients stated
that they could not remember anything in ROCF delay recall
test. The number of correctly recalled total (CR-T) was higher
for the healthy older adults compared to the patients with mild
AD (t = 4.192, p < 0.001). Furthermore, the number of later
remembered the location was also more for the healthy older
adults compared to the patients with mild AD (t = 8.722,
p < 0.001). In the retrieval session, RTs for the CR-T of the
NC group was significantly shorter than that of the AD group
(t = −4.761, p < 0.001). MMSE correlated significantly with the
number of LR-L items (r = 0.575, p < 0.01) and the number
of CR-T items (r = 0.748, p < 0.01) in two groups. These
results indicate that the function of object-location memory
in AD patients is obviously impaired compared to healthy
elders.
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TABLE 2 | Behavioral performance results.

NC AD

MMSE 29.2 (0.8) 23.6 (2.0)

ROCF score (immediate recall) 18.4 (6.3) 5.5 (5.1)

ROCF score (delayed recall) 19.2 (5.7) 2.2 (2.9)

LR-L accuracy (%) 75.8 (17.5) 47.5 (15.0)

CR-T accuracy (%) 85.8 (8.9) 58.3 (5.6)

CR-T response times (ms) 1241 (243) 1868 (446)

NC, normal control; AD, Alzheimer’s disease; MMSE, Mini-Mental State
Examination; ROCF, Rey-Osterrieth complex figure; LR-L, later remembered the
location; CR-T, correctly recalled total. MMSE score of two groups was significantly
different (t = 10.219, p < 0.001); ROCF score (immediate recall) of two groups
was significantly different (t = 5.391, p < 0.001); ROCF score (delayed recall) of
two groups was significantly different (t = 9.793, p < 0.001); LR-L accuracy of two
groups was significantly different (t = 4.192, p < 0.001); CR-T accuracy of two
groups was significantly different (t = 8.722, p < 0.001). In the retrieval session,
RTs for the CR-T of two groups was significantly different (t = −4.761, p < 0.001).
Correlations between MMSE score and LR-L (r = 0.575, p < 0.01); Correlations
between MMSE score and CR-T (r = 0.748, p < 0.01).

Power Spectrum
Power during the successful encoding and retrieval stages was
compared between the AD and NC groups. In our study,
only object-location on the left and subsequent remembered
(LR-L) items were analyzed because they reflect successful
encoding object-location binding. The comparison was run
across encoding and retrieval sessions in five frequency bands.
The unpaired t-test was used to compare the average power
of LR-L between two groups in every band frequency. In the
encoding session, as shown in Figure 2A, the power of object-
location memory encoding in the alpha band of the AD group was
significantly higher than the NC group (p < 0.05). There were no
significant differences in the delta, beta or gamma bands in the
AD and NC groups. Further cluster analysis revealed that there
were topographic differences in alpha power between two groups
(Figure 2B). The difference of activation areas were almost
distributed in the whole brain cortical areas. The AD group seems
to have a trend toward frontal area activation increase (marked
in red). Channels in the right hemisphere seem to show more
channels with higher alpha power than the left hemisphere. In
the retrieval session, as shown in Figure 2C, the power of object-
location memory encoding in the alpha and theta bands of the
AD group was significantly higher than the NC group (p < 0.05),
while no significant differences in the delta, beta, or gamma bands
between the AD and NC groups were observed. Finally, only the
average power of whole channels was significantly different, while
there were no topographic differences found between the two
groups.

Functional Connectivity
In the encoding session, differences of channel pairs PLI value
between the AD and NC groups among 8 brain areas were
plotted in Figure 3A. The PLI value was higher in the AD
group compared to that in the NC group. The PLI value of
channel pairs that showed the significant difference between two
groups is shown in Figure 3B. The number of different channels-
pairs were 75 (delta), 267 (theta), 243 (alpha), 482 (beta), and

183 (gamma). Combining the results of Figures 3A,B, the most
obvious differences in functional connectivity between different
brain regions were in both hemispheres of the frontal and parietal
regions in the alpha frequency band; frontal and temporal of both
hemispheres in the delta band; and almost the majority of brain
regions in the theta band.

In the retrieval session, differences in channel pairs PLI value
between the AD and NC groups among 8 brain areas were
plotted in Figure 4A. The PLI value was higher in the AD group
compared to that in the NC group. The PLI value of channel
pairs had significant differences between groups (Figure 4B).
The number of different channel pairs were 80 (delta), 353
(theta), 109 (alpha), 112 (beta), and 46 (gamma). Combined, the
results of Figures 4A,B show that the most obvious differences in
functional connectivity between different brain regions were in
the parietal, temporal and occipital regions of both hemispheres
in the theta frequency band, and in the frontal and temporal of
both hemispheres in the delta band.

DISCUSSION

In our study, higher spectral power was found in alpha band
frequencies in the AD group than in the healthy control group
during object-location memory encoding. Furthermore, higher
spectral power in the theta and alpha band frequencies was also
found during memory retrieval. We also found that strengths
of connectivity were obviously increased in the AD group when
compared to the healthy control group prominent in delta, theta,
and alpha band frequencies in memory encoding and delta and
theta band frequencies in memory retrieval. The most obvious
difference in functional connectivity during memory encoding
was between the frontal and parietal in the alpha band and frontal
and temporal in the delta band. During memory retrieval, the
most obvious difference in functional connectivity was between
the parietal, temporal, and occipital regions in the theta frequency
band and between the frontal and temporal in the delta band. The
significant differences between AD patients and healthy elders in
our object-location memory task were in slow EEG oscillations.
One possibility would be that slow oscillations modulate the fast
at a higher level, which determine the general mode of processing
(Knyazev, 2012).

Encoding Stage of Object-Location
Memory
At the encoding stage, the strength of functional connectivity in
the theta band of AD patients was higher than that of healthy
elders, which may indicate that cognitive function correlated with
theta oscillations was impaired in AD patients. Theta rhythms are
considered to the signs of taking and encoding new information
(Colgin, 2013). Theta oscillations demonstrated the process in
hippocampo-cortical feedback loops (Klimesch, 1999, 2012). The
crucial role of theta rhythms in memory and spatial and temporal
organization is well-investigated (Buzsaki, 2002). Studies in rats
have demonstrated increase of mPFC-MTL theta phase in spatial
memory tasks (Benchenane et al., 2010; Euston et al., 2012). In a
study involving the hippocampus and the mPFC, the proportion
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FIGURE 2 | Spectral power in encoding and retrieval session. (A) Averaged power across all channels in encoding session for two groups at five frequency bands
(delta, 1–4 Hz; theta, 4–8 Hz; alpha, 8–13 Hz; beta, 13–30 Hz; gamma, 30–45 Hz). Alpha band power of AD group was significantly higher than NC group; (B)
topography of different areas between two groups at alpha band in encoding session (×: significantly different channels between two groups); (C) averaged power of
two group in five frequency band in retrieval session. (∗p < 0.05).

of mPFC neurons that were phase-locked to hippocampal theta
oscillations increased after successful learning of an object-place
association (Kim et al., 2011). Since our study indicated a higher
strength of functional connectivity in the theta band for AD
patients compared to healthy elders, we hypothesize that the AD
patients may use neural compensation to encode object spatial
information.

The neural compensation demonstrated that brain actively
attempts to recruit alternative structures which are not
normally used to compensate for brain damage (Stern,
2009, 2012, 2013; Risacher and Saykin, 2013). Thus, brain
size is not linearly correlated with brain function. Several
studies have found that the neurodegenerative process of
abnormal cortical oscillations in AD is accompanied by
synaptic compensation mechanisms that are regarded to
play a role in preventing the catastrophic amnesia associated

with synaptic loss and maintaining excitement of neural
circuits (Small, 2004; Turrigiano, 2011, 2012; Abuhassan et al.,
2014).

A series of studies explored the concept of neural
compensation either in elders, mild cognitive impairment
(MCI), or AD patients (Rypma and D’Esposito, 1999; Cabeza
et al., 2002; Zarahn et al., 2007; Steffener et al., 2009; Bajo
et al., 2010). Deactivating local compensation will lead to rapid
decline (cognitive deficit) of network dynamics in the theta and
alpha bands (Moretti, 2015). Previous functional neuroimaging
and physiological studies have reported several compensatory
features such as the increase of activity in the MTL, the plasticity
of the cholinergic system and regional cerebral blood flow
(DeKosky et al., 2002; Dickerson et al., 2005; Dai et al., 2009).
The method of event related desynchronization/synchronization
(ERD/ERS), using auditory verbal memory task, was also
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FIGURE 3 | Functional connectivity in encoding session. (A) Difference of PLI value between two groups among eight brain areas (LF, RF, LT, RT, LP, RP, LO, RO) in
five frequency band. NC < AD; (B) the PLI value of channels-pairs that had significantly difference between two groups in five frequency band.

FIGURE 4 | Functional connectivity in retrieval session. (A) Difference of PLI value between two groups among eight brain areas (LF, RF, LT, RT, LP, RP, LO, RO) in
five frequency band. NC < AD; (B) the PLI value of channels-pairs that had significantly difference between two groups in five frequency band.

indicated as a compensatory mechanism in MCI and AD
(Karrasch et al., 2006).

In our study, the alpha band frequency power and strengths
of functional connectivity of AD patients is higher during the
encoding stage of object-location memory task compared to
healthy elders. Alpha oscillations relate to a lot of cognitive
domains such as perception, encoding, and recognition, which
are guided by attention (Friston, 2009; Summerfield and Egner,
2009). Those processes are closely related to access of information
in the knowledge system, which comprise of traditional long-
term memory, procedural and implicit-perceptual knowledge
(Klimesch, 1999, 2012). In addition, alpha activity plays an
important role in attention by supporting processes within the
attentional focus and inhibiting task-irrelevant memory entries
(Sauseng et al., 2010; Benedek et al., 2014), and also correlation

with maintenance of sensory representations (VanRullen and
Macdonald, 2012). Brain activities during encoding and retrieval
memory tasks involve a number of processes, including increased
attention, use of elaborative strategies, and the formation of item-
to-context associations. In order to complete the specific task in
our study, all subjects need to combine their spatial attention and
object-based attention, bind object to location, and maintain the
information in their minds. Compared with the healthy elderly
subjects, AD patients had to use other compensatory mechanisms
for those process, thus having a higher alpha band spectral
power.

In encoding sessions, the strength of functional connectivity
in the delta band of AD patients was higher than that of
healthy elders, indicating that the function correlated with
delta oscillations is impaired in AD patients as well. While
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the role of delta frequency oscillations is still being debated,
mounting evidence indicates that delta-band oscillations are
mostly associated with old evolutionary basic motivational
processes (Knyazev, 2012). Several studies considered delta
as a ‘cognitive’ rhythm, such as Knyazev suggested that the
motivational relevance of the task and the salience of the target
stimulus were involved in enhanced delta activity (Knyazev,
2007). The cortical delta oscillations has been found as a
mechanism in selective attention to rhythmic auditory or visual
stimulus streams (Lakatos et al., 2008; Knyazev, 2012; Harmony,
2013). In our paradigm, in order to encode the item and bind
location context successfully, subjects might pay attention to
screening of picture representation and be involved in stimuli
in search of motivationally salient cues that benefit for memory,
which processing may reflect by delta oscillations. Therefore, our
results may suggest AD patients recruit more neural network for
motivation and attention.

Retrieving Stage of Object-Location
Memory
In our study, the higher spectral power and strengths of
functional connectivity in theta band were found in AD
patients while retrieving the object-location information. The
most prominent differences in functional connectivity between
different brain regions were between the parietal, temporal, and
occipital of the two hemispheres. As previously mentioned, in
the encoding stage, theta rhythm is associated with mnemonic
function. Previous studies have also proved that recollection
of contextual information is associated with increased theta
power and phase synchronization (Guderian and Duzel, 2005;
Fuentemilla et al., 2014). The functional connectivity between
segregated brain regions in the theta frequency is also crucial
to memory recall (Klimesch et al., 2010; Colgin, 2013). This
indicated that AD patients might recruit compensatory resources
for the hippcampo-cortical network.

For the hippocampus is crucial for recollection episode of
location, cortical theta oscillations links hippocampal functioning
for recollection. During recollection episode of location, theta
oscillations might be the dynamic link between hippocampal
and neocortical areas (Guderian and Duzel, 2005). Consistent
with the hippocampus’s key role in spatial memory processing,
several studies have demonstrated links between interregional
theta coupling and performance on a variety of spatial memory
tasks (Colgin, 2013).

Functional Connectivity Destruction
in AD
In our study the most prominent functional connectivity
differences between AD and controls were found in the delta,
theta, and alpha bands in the encoding session and delta and
theta bands in the retrieval session. The findings in spectral power
and synchronization values seem not to be closely related to
each other. Differences in synchronization between the controls
and AD patients were found to be more conspicuous than those
seen for the spectral measures. This is not surprising, since
spectral power and synchronization attributes reflect different

aspects of the EEG, and they are mathematically independent.
As the underlying neurophysiological mechanisms of the findings
related to the differences between the controls and AD patients
are not clear, the two types of analyses may reflect different,
perhaps complementary pathophysiological aspects (Hidasi et al.,
2007). Distributed networks of brain regions, which are directly
connected by anatomical tracts or by functional associations and
with a time-varying dynamic and hierarchy, were engaged in the
human brain functions (Vecchio et al., 2014). As multimodal
information processing at the level of cortico-cortical projections
are affected in AD, a hypothetical model of “disconnection
syndrome” for AD symptomatology was suggested (Delbeuck
et al., 2003). Abnormalities in functional connection between
brain cortical regions were found in AD in studies using
EEG, functional magnetic resonance image (fMRI), Positron
emission tomography (PET), magnetoencephalographic (MEG)
(Stam et al., 2006; Liu et al., 2014; Vecchio et al., 2014;
Dai et al., 2015; Engels et al., 2015; Romero-Garcia et al.,
2016).

The most prominent impairment in brain networks of AD
were found in long distance connections, and the degrees
of impairment were related to cognitive decline (Dai et al.,
2015). However, these studies focused on the resting state of
the brain network, which is different from the brain network
associated with cognitive tasks. Our study investigated the brain
networks associated with object-location memory and obviously,
our results showed that the more differences of functional
connections between two groups were also long distance
connections which were presented in Figures 3, 4. This result
maybe indicated that AD patients used compensational long
distance network to complete object-location memory when their
long-distance connections were destructed. The increased inter-
hemispheric functional connectivity related to memory networks
were also found in MCI patients, and the researchers believed
that the results could reflect a compensatory mechanism (Bajo
et al., 2010). The alterations of inter-hemispheric connections
might result from axonal degeneration in anterior and posterior
regions of the corpus callosum in AD patients (Di Paola
et al., 2010; Wang et al., 2014; Romero-Garcia et al., 2016).
Moreover, the increased functional connectivity association with
visual sensory and cognitive stimulation, which reflected by
the increased coherence values in gamma band, were found in
AD patients compared to healthy elders (Basar et al., 2017).
On the other hand, some previous studies showed decrease of
coherence values in AD patients compared to healthy controls
during cognition task (Guntekin et al., 2008; Basar et al., 2010;
Yener and Basar, 2013). These previous literatures are highly
controversial. The discrepancies could be due to differences of
recoding state, recoding techniques, and analysis methods (Basar
et al., 2017).

Since methods of functional connectivity were more
conspicuous to changes in electrophysiological characteristics
of interneuronal connectivity than spectral power (Stevens
et al., 2001; Adler et al., 2003; Pogarell et al., 2005), functional
connectivity may become a sensitivity biomarker for early
detection of AD and contribute to finding the mechanism of
nerve injury.
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Limitations
Because the number of participants was relatively low, one of our
limitations is that only preliminary conclusions can be drawn.
The difficulty of performing a given task may limit the number
of individuals involved in such research. These difficulties may
be the reason why there is no simple and commonly recognized
approach to assess the spatial memory of AD patients. As a
result, we only analysis the item location in left and successful
recall subsequently, the right/left location was primitive one of
spatial context. And the participant subjects were merely mild
AD patients. In order to facilitate operator response, we only use
two buttons for each subject. However, this paradigm may lead
to subjects using a different memory strategy than subjects using
three buttons.

CONCLUSION

Our results indicate that the function of object-location memory
in AD patients is significantly impaired when compared to
healthy elders. In the AD group, there was higher spectral
power in the alpha band frequency during memory encoding,
and the theta and alpha bands during memory retrieval.
Strengths of connectivity were clearly increased in the AD
group when compared to the healthy control group prominent
in theta, alpha, and beta band frequencies in memory
encoding and theta band frequency in memory retrieval.

Our findings provide support for the hypothesis that AD
patients may use compensation mechanism to memory items
successfully.
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