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Background: Increasing evidence has indicated an association between immune infiltration in gastric
cancer and clinical outcome. However, reliable prognostic signatures, based on systematic assessments
of the immune landscape inferred from bulk tumour transcriptomes, have not been established. The aim
was to develop an immune signature, based on the cellular composition of the immune infiltrate inferred
from bulk tumour transcriptomes, to improve the prognostic predictions of gastric cancer.
Methods: Twenty-two types of immune cell fraction were estimated based on large public gastric cancer
cohorts from the Gene Expression Omnibus using CIBERSORT. An immunoscore based on the fraction
of immune cell types was then constructed using a least absolute shrinkage and selection operator
(LASSO) Cox regression model.
Results: Using the LASSO model, an immunoscore was established consisting of 11 types of immune
cell fraction. In the training cohort (490 patients), significant differences were found between high- and
low-immunoscore groups in overall survival across and within subpopulations with an identical TNM
stage. Multivariable analysis revealed that the immunoscore was an independent prognostic factor (hazard
ratio 1⋅92, 95 per cent c.i. 1⋅54 to 2⋅40). The prognostic value of the immunoscore was also confirmed in
the validation (210) and entire (700) cohorts.
Conclusion: The proposed immunoscore represents a promising signature for estimating overall survival
in patients with gastric cancer.

Surgical relevance
Immune infiltration in gastric cancer tissue may predict clinical

outcomes and may be used as a prognostic marker.
An immunoscore was constructed based on systematic assess-

ments of the immune landscape inferred from computational
analysis of gene expression profiles. The proposed immunoscore

was an independent adverse prognostic factor for overall sur-
vival. Patients with stage II and III gastric cancer and a low
immunoscore exhibited a more favourable response to adjuvant
chemotherapy.

The immunoscore may serve as a biomarker for prognosis and
therapeutic outcome in patients with gastric cancer.
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Introduction

Wide variation in clinical outcomes has been reported
among patients with gastric cancer who had the same
TNM stage and received similar treatment regimens1,2,
highlighting that TNM staging alone provides incomplete

clinical information. As increasing evidence has sug-
gested the clinical importance of immune infiltration
in gastric cancer tissues3–6, incorporating the survival
impact of immune cells into the TNM staging system
may help clinicians predict patient outcomes more reliably
and precisely.
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The immune response is characterized by numerous
types of cell, such as cytotoxic lymphocytes, myeloid cells
and antigen-presenting cells, which interact in a highly
coordinated manner. However, their prognostic impact
differs depending on the type of cancer and the stage7.
Therefore, enumerating the immune components accord-
ing to their individual and specialized functions using
computer-based analysis may be essential for improving
studies of the diverse immune response in gastric cancer
and management of its future clinical implementation.

CIBERSORT is a newly proposed computational algo-
rithm for enumeration of immune cell subsets using RNA
specimens from multiple tissue types, including solid
tumours, and has outperformed other methods regarding
noise, unknown mixture content and closely related cell
types8. In the present study, CIBERSORT was used to
estimate the fractions of 22 immune cell types based on
clinically annotated gastric cancer gene expression profil-
ing series. Least absolute shrinkage and selection operator
(LASSO) Cox regression analysis was used to establish an
immunoscore, to provide a statistically powerful means of
predicting survival of patients with gastric cancer.

Methods

Search and collection of gastric cancer gene
expression series

To identify gastric cancer gene expression data with rel-
evant clinicopathological data, systematic computerized
searches of Gene Expression Omnibus (GEO) data sets
(https://www.ncbi.nlm.nih.gov/geo/) were conducted. The
search strategy used for identifying eligible series and
search results specifically is provided in Appendix S1 (sup-
porting information). Inclusion and exclusion criteria at
each stage of series collection are shown in Fig. 1. All can-
didate series were assessed by two independent reviewers.
These series were checked independently for inclusion cri-
teria. Any disagreements were resolved by consensus with
a third reviewer.

Collection of clinical data

The relevant clinical data from these series were retrieved
and organized manually when available. For some series,
clinical data that were not attached to gene expression
profiles were obtained in three ways: downloaded directly
from the relevant item page in the GEO data set web-
site; from supplementary material in the relevant litera-
ture; and using the GEOquery package of R software (R
Project for Statistical Computing, Vienna, Austria). Cor-
responding authors were contacted for further information
where necessary.

Microarray data processing

Raw microarray data from Affymetrix® (Affymetrix, Santa
Clara, California, USA) were downloaded and normalized
using a robust multiarray averaging method9. The affy
and simpleaffy packages were applied for normalization of
Affymetrix data. For gene expression profiles of platforms
other than Affymetrix, normalized matrix files were down-
loaded directly.

Estimation of immune cell type fractions

To quantify the proportions of immune cells in the gastric
cancer samples, the CIBERSORT method and the LM22
gene signature were used8; the latter contains 547 genes
and allows highly sensitive and specific discrimination of 22
human haematopoietic cell phenotypes including B cells,
T cells, natural killer cells, macrophages, dendritic cells
and myeloid subsets. The CIBERSORT method is well
designed and has been validated on gene expression pro-
files measured using microarrays. CIBERSORT derives a
P value for the deconvolution of each sample using Monte
Carlo sampling, providing a measure of confidence in
the results. At a threshold of P < 0⋅050, the results of the
inferred fractions of immune cell populations produced by
CIBERSORT were considered accurate10. Based on this
observation, only patients with a CIBERSORT P < 0⋅050
were considered eligible for further analysis. The propor-
tions of immune cells were predicted separately for each
gene expression series. For each sample, the sum of all
estimates of immune cell type fractions equalled 1.

Study population and clinicopathological variables

Patients with CIBERSORT P ≥ 0⋅050 were excluded, as
were those with normal gastric samples and patients for
whom survival information was lacking. Clinicopatho-
logical information was collected including: patient age,
sex, TNM stage, tumour grade, Laurén classification,
primary tumour site, whether adjuvant chemotherapy
was administered and regimen used, survival duration
in months, and survival status at date of last follow-up.
Data on the Asian Cancer Research Group (ACRG)
molecular subtypes11, including microsatellite instabil-
ity (MSI), epithelial-to-mesenchymal transition (EMT),
microsatellite stable (MSS)/TP53– and MSS/TP53+,
were also retrieved where available. Among these factors,
sex, Laurén classification, tumour site, tumour grade,
TNM stage, treatment type and ACRG molecular sub-
types were considered as categorical variables. Age was
considered as a continuous variable. The seventh edition
of the TNM staging system12 was used only for patients
in the GSE29272 series, and no specific T, N and M
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Items identified by search n=656

Independent gene expression series n=100

mRNA expression profiles from cancer tissue from patients with gastric cancer n=32

Series screened for further exclusion n=35

Series prepared for CIBERSORT estimation n=19

CIBERSORT estimation n=2250 patients

Entire cohort n=700 patients

Validation cohort n=210 patients

Validation

Training cohort n=490 patients

Univariable Cox analysis

LASSO Cox model

Immunoscore model with 11 markers

Additional series identified from subseries list
of the corresponding superseries n=2
Additional series identified from related literature n=1

Excluded series n=16
 Replicates n=3
 Fewer than 40 patients involved n=9
 Sample gene expression data result from
 high-throughput sequencing n=4

Excluded n=1550 patients
 CIBERSORT P≥0·050
 Normal gastric samples
 Lack of overall survival information

Fig. 1 Flow chart of data collection and analysis. LASSO, least absolute shrinkage and selection operator

categories were provided for these patients. For all other
patients, tumours were staged according to the sixth edi-
tion of the TNM staging system13. None of the analyses
and discussion related to TNM stage in this study included
patients from the GSE29272 series.

Random grouping method

The patients were separated into training and validation
sets in a ratio of 7 : 3 using the stratified randomization
method. This involved generating random values from a
normal distribution with specified mean (0) and standard
deviation (1) values in each gene expression series included
in model construction, and ordering them from high to low.
The top 70 per cent of patients in each gene expression

series was included in the training cohort used to identify
and evaluate predictors, and the remaining 30 per cent as
the validation cohort used to validate the final model.

Primary outcome

Information on overall survival, defined as the interval
between date of diagnosis and date of death from any cause,
was documented for the majority of patients and used as the
primary endpoint.

Statistical analysis

Group comparisons were performed for continuous and
categorical variables using one-way ANOVA and the χ2
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test respectively. Correlations between the immunoscore
and mRNA expression of genes were analysed by means of
Pearson’s correlation test. Survival curves were constructed
by the Kaplan–Meier method and compared by means
of the log rank test. Hazard ratios for univariable analy-
ses were calculated using a univariable Cox proportional
hazards regression model. The penalized Cox regression
model with LASSO penalty was used to select the most use-
ful prognostic markers among 22 immune cell subsets, and
the optimal values of the penalty parameter λ were deter-
mined by tenfold cross-validations14. An immunoscore
model was then constructed based on the fraction of the
selected immune cells using Cox regression coefficients in
the training cohort. Of note, immune cell fractions were all
analysed as binary variables in LASSO; the optimal cut-off
values were evaluated based on the association between
overall survival and cell fraction in the training cohort using
the survminer package. A multivariable Cox regression
model with the enter method was used to determine inde-
pendent prognostic factors. Only patients with complete
clinical information were included in multivariable survival
analyses; those with any missing value were excluded. The
sensitivity and specificity of the survival prediction based
on the immunoscore were depicted by a time-dependent
receiver operating characteristic (ROC) curve, with quan-
tification of the area under the ROC curve using the
timeROC package15. The discrimination of the prognostic
models was measured and compared by means of Harrell’s
concordance index (C-index), using the survival package
in cohorts of patients with and without stage IV disease.
Details of methods for nomogram construction and val-
idation are provided in Appendix S1 (supporting informa-
tion). All statistical tests were two-sided and P < 0⋅050 was
considered statistically significant. Statistical analyses were
conducted using R software and SPSS® version 19.0 (IBM,
Armonk, New York, USA). This study was conducted and
reported in line with the TRIPOD guidelines16.

Results

The patient selection scheme is shown in Fig. 1. After
applying data filter criteria, 700 clinically annotated gastric
cancer samples with overall survival information were
available for further analyses. Patient characteristics are
detailed in Table 1. Data from 382 patients (54⋅6 per cent)
were censored. Fig. S1 (supporting information) provides
a summary of the immune cell composition within and
across clinical subgroups of gastric cancer tissues in the
entire cohort. In general, the five most common immune
cell fractions in gastric cancer tissues were plasma cells,
M2 macrophages, M1 macrophages, resting memory
CD4+ T cells and CD8+ T cells, and the sum of their

Table 1 Baseline patient characteristics

No. of patients
(n=700)

Affymetrix® platform
HG-U133 Plus 2.0 566 (80⋅9)
HG-U133A 134 (19⋅1)

Age (years)
18–64 370 (52⋅9)
>64 330 (47⋅1)

Sex ratio (M : F) 478 : 222
Tumour stage*

I 66 (9⋅4)
II 140 (20⋅0)
III 211 (30⋅1)
IV 157 (22⋅4)
Unknown 126 (18⋅0)

Tumour grade
Well/moderately differentiated 140 (20⋅0)
Poorly differentiated 164 (23⋅4)
Unknown 396 (56⋅6)

Laurén classification
Intestinal 331 (47⋅3)
Diffuse 241 (34⋅4)
Mixed 57 (8⋅1)
Unknown 71 (10⋅1)

Tumour site
Cardia 85 (12⋅1)
Body 113 (16⋅1)
Antrum 150 (21⋅4)
Unknown 352 (50⋅3)

Adjuvant chemotherapy
Yes 162 (23⋅1)
No 137 (19⋅6)
Unknown 401 (57⋅3)

Values in parentheses are percentages. *TNM sixth edition.

mean proportions was more than 50 per cent. Such
cell composition patterns were observed in all clinical
subgroups.

Derivation of the immunoscore

The survminer package was used to generate the opti-
mal cut-off values for the fraction of each immune cell
in the training cohort (490 patients) (Table S1, supporting
information). Fig. 2a shows a forest plot of the associations
between each of the immune cell subsets and overall sur-
vival. LASSO Cox regression analysis was used to build an
immunoscore model in the training cohort (Fig. 2b,c). The
formula for the immunoscore can be found in Appendix S1
(supporting information). In this formula, the immune
cell fraction level was valued as 0 or 1; a value of 0 was
assigned when the fraction of one type of cell was less
than the corresponding cut-off value, and a value of 1
otherwise. The prognostic accuracy of the immunoscore,
assessed as a continuous variable, was investigated in the
training cohort by using time-dependent ROC analysis
at the time points 2, 3 and 5 years (Fig. 2d). Patients
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Fig. 2 Construction of the immunoscore model. a Forest plots showing associations between different immune cell subsets and overall
survival in the training cohort. Unadjusted hazard ratios are shown with 95 per cent confidence intervals. NK, natural killer. b Least
absolute shrinkage and selection operator (LASSO) coefficient profiles of the fractions of 21 immune cell types. The dotted line
indicates the value chosen by tenfold cross-validation. Immune cell type: 1, M2 macrophages; 2, M1 macrophages; 3, M0 macrophages;
4, CD8+ T cells; 5, activated memory CD4+ T cells; 6, regulatory T cells; 7, neutrophils; 8, activated dendritic cells; 9, monocytes; 10,
follicular helper T cells; 11, resting NK cells; 12, activated NK cells; 13, activated mast cells; 14, resting mast cells; 15, memory B cells;
16, naive B cells; 17, plasma cells; 18, γδ T cells; 19, eosinophils; 20, resting dendritic cells; 21, naive CD4+ T cells. c Tenfold
cross-validation for tuning parameter selection in the LASSO model. The partial likelihood deviance is plotted against log (λ), where λ
is the tuning parameter. Partial likelihood deviance values are shown, with error bars representing s.e. The dotted vertical lines are
drawn at the optimal values by minimum criteria and 1 – s.e. criteria. In b and c, the numbers above the graph represent the number of
cell types involved in the LASSO model. d Immunoscore measured by time-dependent receiver–operating characteristic (ROC) curves
in the training cohort. The area under the ROC curve was 0⋅68, 0⋅69 and 0⋅72 for the immunoscore at 2, 3 and 5 years respectively
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Time after diagnosis (months)

a  Survival in training cohort b  Survival in validation cohort

d  Survival by immunoscore and chemotherapy (CT)c  Survival in entire cohort
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Fig. 3 Survival impact of the immunoscore. a–d Kaplan–Meier curves for overall survival by immunoscore group in the training cohort
(a), validation cohort (b) and entire cohort (c), and for patients with stage II–III gastric cancer in subgroups stratified by both receipt of
adjuvant chemotherapy (CT) and immunoscore (d). Hazard ratios are shown with 95 per cent confidence intervals. P < 0⋅001 (log rank
test)

in the training cohort were then assigned to a high- or
low-immunoscore group using the cut-off value (−0⋅37)
obtained with the survminer package. Five-year survival
rates were 67⋅0 and 23⋅6 per cent respectively for the low-
and high-immunoscore groups (hazard ratio (HR) 2⋅93, 95
per cent c.i. 2⋅26 to 3⋅80) (Fig. 3a). The association between
the immunoscore and overall survival was also significant
when evaluated as a continuous variable in the multivari-
able Cox regression model (HR 1⋅92, 1⋅54 to 2⋅40) (Table 2).

The results of univariable analyses of clinicopathological
variables are shown in Table S2 (supporting information).

Validation of immunoscore for predicting survival
in the validation cohort and entire cohort

To confirm that the proposed immunoscore model has
similar prognostic value in different populations, the
same formula was applied to the validation cohort and
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Table 2 Results of multivariable Cox regression analysis

Training cohort Validation cohort Entire cohort

Hazard ratio P Hazard ratio P Hazard ratio P

Immunoscore* 1⋅92 (1⋅54, 2⋅40) <0⋅001 1⋅81 (1⋅17, 2⋅79) 0⋅008 1⋅89 (1⋅56, 2⋅30) <0⋅001
Age* 1⋅02 (1⋅01, 1⋅04) <0⋅001 1⋅02 (1⋅00, 1⋅04) 0⋅069 1⋅02 (1⋅01, 1⋅03) <0⋅001
Tumour stage <0⋅001 <0⋅001 < 0⋅001

I 1⋅00 (reference) 1⋅00 (reference) 1⋅00 (reference)
II 3⋅23 (1⋅24, 8⋅41) 0⋅016 2⋅12 (0⋅71, 6⋅34) 0⋅179 2⋅75 (1⋅35, 5⋅64) 0⋅006
III 7⋅85 (3⋅14, 19⋅62) <0⋅001 2⋅59 (0⋅88, 7⋅59) 0⋅083 5⋅36 (2⋅69, 10⋅67) < 0⋅001
IV 22⋅21 (8⋅85, 55⋅73) <0⋅001 6⋅58 (2⋅25, 19⋅19) 0⋅001 14⋅34 (7⋅18, 28⋅64) < 0⋅001

Laurén classification 0⋅391 0⋅670 0⋅536
Intestinal 1⋅00 (reference) 1⋅00 (reference) 1⋅00 (reference)
Diffuse 1⋅41 (0⋅86, 2⋅33) 0⋅177 1⋅09 (0⋅52, 2⋅25) 0⋅825 1⋅18 (0⋅78, 1⋅76) 0⋅433
Mixed 1⋅04 (0⋅75, 1⋅42) 0⋅825 1⋅26 (0⋅76, 2⋅10) 0⋅374 1⋅11 (0⋅85, 1⋅44) 0⋅458

Values in parentheses are 95 per cent confidence intervals. *Continuous variable.

b  Benefit of chemotherapy (CT) by immunoscore groupa  Impact of immunoscore by type of chemotherapy (CT)
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Fig. 4 a Forest plot showing the survival impact of immunoscore stratified by type of adjuvant chemotherapy (CT) among patients with
stage II and III gastric cancer. Hazard ratios, with 95 per cent confidence intervals, are shown for the high immunoscore group versus
the low immunoscore group. b Forest plot showing the benefit of CT in different immunoscore groups of patients with stage II and III
gastric cancer. Hazard ratios, with 95 per cent confidence intervals, are shown for CT versus no CT in each immunoscore group. XP,
xeloda plus cisplatin; LF, leucovorin plus fluorouracil

also to the entire cohort. The prognostic accuracy of the
immunoscore as a continuous variable in these cohorts was
also assessed using time-dependent ROC analysis (Fig. S2,
supporting information). The patients were assigned to
a high- or low-immunoscore group using the cut-off
value obtained from the corresponding cohort (validation,
–0⋅82; entire, –0⋅37). Consistent with the findings in the
training cohort, patients in the high-immunoscore group
had a significantly lower overall survival rate than those
in the low-immunoscore group in both the validation
cohort (HR 2⋅38, 95 per cent c.i. 1⋅46 to 3⋅77) (Fig. 3b) and
the entire cohort (HR 2⋅54, 2⋅03 to 3⋅17) (Fig. 3c). The
immunoscore model was also demonstrated to be an inde-
pendent prognostic factor when analysed as a continuous
variable in multivariable analysis using both the validation
cohort (HR 1⋅81, 1⋅17 to 2⋅79) and the entire cohort (HR
1⋅89, 1⋅56 to 2⋅30) (Table 2).

Immunoscore and TNM staging

Stratification analyses were performed in the entire cohort
of patients grouped by TNM stage. The immunoscore
as a continuous variable identified patients with different
prognoses in each TNM stage subgroup, although the
result was not significant for stage I (P = 0⋅072) (Fig. S3,
supporting information). Based on comparisons between
the immunoscore and TNM stage in the training cohort,
it was found that the ability of the immunoscore to
predict survival was inferior to that of the TNM stage
for patients with stage I–IV gastric cancer, whereas the
two were similar for patients with stage I–III disease
(Table S3, supporting information). A similar tendency was
also observed in both the validation and entire cohorts
(Table S3, supporting information).

A nomogram that integrated both the immunoscore and
TNM stage showed improved prognostic accuracy in the
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training, validation and entire cohorts compared with that
of TNM stage alone (Appendix S1, Fig. S4, Fig. S5 and
Table S4, supporting information).

Immunoscore and adjuvant chemotherapy

Information regarding the administration of adjuvant
chemotherapy was documented only in the GSE62254
series (299 patients). The immunoscore was therefore
used specifically on patients with stage II–III disease in
this series to explore whether application of adjuvant
chemotherapy and differences in chemotherapy reg-
imen would affect the ability of the immunoscore to
predict survival. Patients were assigned to high- and low-
immunoscore groups, with an immunoscore of –0⋅82 as the
cut-off. The survival advantage for the low-immunoscore
group was evident both in patients who received
chemotherapy and those who did not, regardless of
the chemotherapy regimen (Fig. 3d, Fig. 4a). Moreover, the
significant benefit of adjuvant chemotherapy for survival
was observed in the high- and low-immunoscore groups,
and was more obvious for patients with a low immunoscore.
This tendency was noted, regardless of whether the patient
received a xeloda plus cisplatin or leucovorin plus fluo-
rouracil regimen (Fig. 4b). After multivariable adjustment
for clinicopathological variables, molecular subtypes and
adjuvant chemotherapy status, the immunoscore remained
a powerful and independent predictor (HR 2⋅50, 95
per cent c.i. 1⋅57 to 3⋅98) (Table S5, supporting infor-
mation). The corresponding nomogram confirmed that
the immunoscore contributed much more to progno-
sis than adjuvant chemotherapy status and TNM stage
(Appendix S1, Fig. S6 and Table S6, supporting information).

Distribution of immunoscore, clinical
characteristics and molecular subtypes

The distribution of the immunoscore, clinical characteris-
tics and molecular subtypes was assessed in the GSE62254
series, which contained the most comprehensive patient
information (Fig. S7, Table S7 and Table S8, supporting
information). In terms of clinical characteristics, a higher
immunoscore was significantly associated with poorer
tumour differentiation, more advanced TNM stage and
death (Fig. S7a and Table S7, supporting information).
The immunoscore in patients with diffuse-type gastric
cancer was significantly higher than that in patients with
the intestinal and mixed types. However, the distribu-
tion of the immunoscore value did not vary significantly
among subgroups based on tumour site, Helicobacter pylori
infection status and Epstein–Barr virus infection status.

Regarding associations between the immunoscore and
ACRG molecular subtypes, the immunoscore value was
highest in patients with an EMT subtype, and lowest
in those with MSI; there was no significant difference
in the immunoscore value between MSS/TP53– and
MSS/TP53+ subtypes. Notably, there was a significant
negative correlation between the immunoscore value
and gene expression of certain immune checkpoint reg-
ulators and inflammatory mediators, including PD-L1
(P = 0⋅014), CD47 (P < 0⋅001), CLTA4 (P = 0⋅015), LAG3
(P < 0⋅001), IFNG (P < 0⋅001), GZMB (P < 0⋅001), TNFA
(P = 0⋅009), IL-1B (P = 0⋅010) and IL-12A (P = 0⋅019),
whereas IL-1A, IL-6 and IL-12B showed no signifi-
cant correlation (Table S8, supporting information). The
correlation between immunoscore value and all genes
that the Affymetrix® microarray detected was also anal-
ysed; an electronic link to the results, showing the genes
with a statistically significant correlation, is available in
Appendix S1 (supporting information).

Discussion

The immunoscore, a novel prognostic tool designed to
improve survival prediction after diagnosis of gastric can-
cer, was developed and validated in this retrospective
study. The immunoscore is based on the fractions of 11
immune cells. The results showed a clear separation of
overall survival curves between patients with high and low
immunoscores. Furthermore, the immunoscore predicted
survival in groups of patients with identical TNM stage,
suggesting that this model could have prognostic value that
complements TNM staging.

In recent years, immune profiling studies have gained
a forefront position in cancer research7,17. Several
models17–19 based on immunoscoring have been reported
to quantify the immune contexture and to provide a sta-
tistically strong parameter for prognosis in patients with
various types of solid tumour, including gastric cancer2.
In these studies, immunohistochemistry was one common
research strategy for studying cell heterogeneity. How-
ever, immunohistochemistry relies heavily on a limited
repertoire of phenotypic markers and biopsy specimens of
sufficient size. Owing to technical restrictions, these stud-
ies were always limited by either small sample size, few cell
types, or both. Moreover, a standardized and reproducible
measurement of the intensity of staining, and hence quan-
titation of protein expression, is also intrinsically difficult
in immunohistochemistry.

In contrast to previous studies, the candidate immune
cells used to build the present immunoscore model were
estimated based on a high-throughput gene expression
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profile generated using the newly developed algorithm
CIBERSORT. By applying this computer-based analyti-
cal method to public genomic data downloaded from the
GEO data set, it was possible generate an expanded view of
the immune response at cellular level, which allowed pre-
cise investigation of more cell subtypes and more specific
functional phenotypes within a large patient cohort than
achieved in previous studies. With further use of LASSO
Cox regression models, as a statistical method for screen-
ing cell variables to establish the immunoscore model, the
predictive accuracy could be improved significantly2,20–22.
The C-index suggested that the predictive ability of the
immunoscore for survival was inferior to that of TNM
stage if the cohort included patients with metastatic dis-
ease (stage I–IV), but was similar to that of TNM stage in
patients without distant metastasis (stage I–III). This could
be attributed to the universally recognized poor progno-
sis associated with distant metastases and the multiple risk
factors affecting prognosis. Therefore, the effect of the
immune microenvironment on prognosis for patients with
metastatic disease is relatively diminished. However, the
nomogram that included both the immunoscore and TNM
stage had significantly better prognostic value than TNM
stage alone in both stage I–III and stage I–IV cohorts,
implying that the immunoscore could be used to reinforce
the prognostic ability of TNM staging. The value of the
immunoscore was confirmed in the non-overlapping val-
idation cohort and the entire patient cohort, indicating
excellent reproducibility for gastric cancer.

Adjuvant chemotherapy is currently regarded as the
standard protocol for patients with stage II or III gastric
cancer based on National Comprehensive Cancer Network
guidelines23,24. However, the criteria for selection of candi-
dates who are likely to benefit from adjuvant chemotherapy
remain controversial2,24. Several studies2,25,26 have given
rise to the hypothesis that tumour infiltration by lympho-
cytes defines a phenotype of chemotherapy-sensitive dis-
ease in multiple types of cancer. Similar to the findings in
these reports, the present study found that the reduction
in cancer mortality mediated by adjuvant chemotherapy
tended to be greater in patients in the low-immunoscore
group (more immunity-activating lymphocyte infiltration).
One of the underlying mechanisms explaining such a phe-
nomenon is that the interferon secreted by lymphocytes
could sensitize cells to chemotherapy25. Coincidently, the
present study also showed a significant negative correla-
tion between the immunoscore value and IFNA2, IFNB1
and IFNG mRNA expression level. This indicated that
interferon secretion might participate in the biological
process of chemotherapy sensitization in patients with

gastric cancer and a low immunoscore. Further investi-
gation of the mechanism between the immunoscore and
chemosensitivity in gastric cancer may provide additional
information and strategies for treatment.

The survival advantage for patients with MSI cancer has
been demonstrated in a number of studies27–29. Owing to
its supposedly high antigenic potential, the MSI subtype is
well known to be associated with a high level of lympho-
cytic infiltration and is a promising candidate for
immunotherapy such as anti-PD-1 treatment30. It was
found that immunoscore values of patients with MSI
were significantly lower than those in patients with MSS
status. In particular, the immunoscore value was negatively
associated with multiple immune checkpoint markers
and carcinostatic inflammatory mediators. The authors
speculate that immunotherapy might also be a preferable
choice for patients in the low-immunoscore group.

This study has some limitations. First, it was based
on publicly available data sets, and it was not possible
to obtain all information needed for each patient. This
suggests the possibility that some patients with acute
infection or immune system disorders, or those taking
anti-inflammatory drugs, were included in this study; such
patients ideally should have been excluded. Second, the
methodology for interpreting immune infiltration and the
appropriate cut-off value needs to be standardized. Third,
given the major clinical importance of distinct tumour
regions, it is appropriate to conduct immune infiltration
evaluation systematically in the core of the tumour and
the invasive margin. However, the gene expression pro-
files used here were all derived from a core sample of
tumour tissue, making it impossible for the location of the
immune cell to be taken into account when establishing the
immunoscore model. Finally, as all patients in this study
were selected retrospectively, the potential bias relating
to unbalanced clinicopathological features with treatment
heterogeneity cannot be ignored. Further prospective stud-
ies are required to validate the results.
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