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Abstract: Backgrounds: Approximately 18 million individuals were diagnosed with cancer
in 2018. The rate is predicted to exceed 22 million by 2030. Radiotherapy is an essential
part of cancer therapy, with well documented local and systemic side effects, including
oxidative stress and apoptosis. Kidney tissues are also exposed to the deleterious effects
of radiotherapy, resulting in acute or chronic kidney function impairment. This study
compared the effects of the potent selective α2-adrenoreceptor agonist dexmedetomidine
and amifostine on oxidative stress and apoptosis in kidney damage induced by x-irradiation
in rats. Methods: Forty Sprague Dawley rats were assigned into five groups: control, x-
irradiation, x-irradiation + amifostine, x-irradiation + dexmedetomidine 100 µg/kg, and X-
ray irradiation + dexmedetomidine 200 µg/kg. Results: Necrotic tubules and degenerative
Bowman’s capsules were present in the x-irradiation group. An increase was determined
in malondialdehyde (MDA), Cleaved Caspase-3, and 8-OHdG levels compared to the
control group (p ≤ 0.05). In contrast, there was a decrease in necrotic tubules, degenerative
Bowman’s capsules, and the levels of MDA, Cleaved Caspase-3, and 8-OHdG in the
amifostine and dexmedetomidine 100 µg/kg and 200 µg/kg treatment groups (p ≤ 0.05).
Conclusions: Alpha 2 adrenergic receptor agonists exhibit protective effects against kidney
injury induced in association with x-irradiation by reducing oxidative stress and apoptosis.

Keywords: amifostine; alpha 2 adrenergic agonists; kidney; x-irradiation

1. Introduction
Cancer is among the most common causes of mortality globally. In 2018, around

18 million people received a cancer diagnosis, and over 9 million deaths were linked to
the disease [1]. By 2030, it is predicted that the number of patients with cancer will exceed
22 million [2,3]. Radiotherapy is an essential part of cancer treatment. Radiotherapy is
applied in approximately 50% of cancer cases and exhibits healing effects on approximately
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30–40% of patients [4]. X-irradiation, which is generally applied during radiotherapy, pene-
trates powerfully into the body and is dispersed in subcutaneous tissue. This means that
healthy tissues in the area out of focus are also exposed to radiation during the irradiation
of cancerous tissue. Although normal cells are generally capable of tolerating a large part
of the radiation, irradiation is known to damage healthy tissues [5]. Kidney tissues are
also exposed to the deleterious effects of irradiation during radiotherapy, and acute or
chronic kidney function impairment occurs as a result. Radiation-related kidney function
impairment is inevitable in patients undergoing whole-body irradiation, particularly before
radionuclide therapy and bone marrow transplantation [6,7].

The mechanisms concerning the molecular and cellular processes involved in radiation-
related nephrotoxicity are not yet fully understood. However, experimental studies indicate
that DNA damage, the main target of radiotherapy, results from oxidative stress induced
by reactive oxygen species (ROS) [8–10]. The elevation of reactive oxygen species (ROS),
which can damage macromolecules including DNA, lipids, and proteins due to ionizing
radiation, results in the dysfunction of antioxidant enzyme systems, hence initiating oxida-
tive stress [11,12]. Studies have indicated that increased ROS due to irradiation impairs
antioxidant mechanisms, resulting in raised malondialdehyde (MDA) levels and significant
reductions of glutathione (GSH) levels [13]. Furthermore, the elevation of ROS can cause
DNA oxidation, leading to increased 8-hydroxy-2′-deoxyguanosine (8-OHdG) levels in re-
nal tissue [14]. Studies have also shown that injury occurring in DNA can lead to apoptosis
in renal tissue by elevating caspase-3 activation [9]. Impairments in cellular mechanisms
associated with irradiation are easily identified in acute kidney injury. Abnormal histologi-
cal changes at the renal glomerular and tubular structures result largely from cell death in
the forms of apoptosis and necrosis [15,16].

Amifostine is a prodrug that is metabolized into an active sulfhydryl compound
by alkaline phosphatase, which is capable of selectively protecting against free radical-
induced radiation by scavenging free radicals [17,18]. Amifostine has been reported to
exhibit ionizing-radiation-induced protective effects including kidneys, bone marrow, and
lungs [19–23].

Dexmedetomidine (DEX), a highly selective α2-adrenoreceptor agonist, is a drug
that is often used clinically for analgesia and sedation [24]. Studies investigating the
antioxidant properties of DEX have shown that it can reduce lipid peroxidation and cause
an improvement in antioxidant enzyme activities. Recent studies indicate that DEX exhibits
therapeutic effects by diminishing the production of inflammatory cytokines in renal tissues,
which elevate ROS, and enhancing apoptosis, with its protective effects also linked to the
mitigation of oxidative stress [25–27]. However, the impact of DEX on X-ray-induced renal
injury is unknown.

This research compared the effects of the potent selective α2-adrenoceptor agonist
dexmedetomidine and amifostine on oxidative stress and apoptosis using histochemi-
cal, biochemical, and immunohistochemical methods in kidney damage induced by x-
irradiation rats.

2. Materials and Methods
2.1. Animals

Forty male Sprague Dawley rats weighing 350–390 g and aged 4–5 months were
used in this study. The rats were obtained from the Experimental Animals Unit of Recep
Tayyip Erdoğan University. During the experiment, the rats were housed in a unit where
optimal conditions were provided, including a 12 h light–dark cycle, a humidity level of
55–60%, and a temperature of 22 ± 2 ◦C. The rats had ad libitum access to tap water and
pellet chow. This experimental study was approved by Recep Tayyip Erdogan University’s
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Ethical Council for Animal Research. The study was performed in consideration of factors
affecting the quality of life and well-being of experimental animals (Rize, Türkiye, No. 202,
dated 1 October 2021).

2.2. Experimental Design

Rats were randomly assigned into five groups of 8, using a numbering program
loaded onto a computer. The groups were control, x-irradiation, x-irradiation + amifostine
(AMF), x-irradiation + Dex100 (Dex 100 µg), and x-irradiation + Dex200 (Dex 200 µg).
X-ray irradiation was applied to the rats in the X-irradiation group. X-irradiation + AMF,
X-irradiation + Dex 100, and X-irradiation + Dex 200 groups of rats were administered
200 µg/kg amifostine (Ethyol 500 mg/1 flacon, Er-Kim, Istanbul, Türkiye), 100 µg/kg
dexmedetomidine (Precedex, USA), and 200 µg/kg dexmedetomidine (Precedex, USA)
intraperitoneally 30 min before X-ray exposure, respectively. The control group rats received
a single dose of saline solution (1 mL) intraperitoneally.

2.3. X-Irradiation Protocols

The X-irradiation procedure was performed it the Oncology Department, Recep Tayyip
Erdogan University Medical Faculty. Before irradiation, rats were anesthetized by adminis-
tering 50 mg/kg of ketamine (Ketalar, Pfizer, Istanbul, Türkiye) and 5 mg/kg of xylazine
(Rompun, Bayer, Türkiye) i.p. Rats under anesthesia were placed in a prone position on
the unit. Conformal planning was performed before radiation application with CMS Xio
(version: 5.0; Elekta, Stockholm, Sweden). External radiotherapy of 8 Gy was applied using
Elekta Synergy linear accelerator in a single fraction, using 6 MV energy, at a distance of
100 cm from the front of the skin, such as to affect the rats’ head–neck regions. Rats were
given high-dose anesthesia. They were euthanized twenty-four hours after irradiation to
better observe radiation-induced acute nephrotoxicity [15].

Biochemical Analysis

A mass of 100 mg renal tissues was homogenized in 1 mL of PBS (pH 7.4). The
homogenates were centrifuged at 800× g for 10 min at 4 ◦C. The supernatant was retained
for GSH and MDA measurements.

2.4. Measurement of Antioxidant Enzyme Activities

MDA analysis in kidney tissues was performed as described [28]. A volume of 200 µL
of supernatants were added to 50 µL of sodium dodecyl sulfate (SDS, 8.1%), 375 µL of acetic
acid (20%, pH 3.5), and 375 µL thiobarbituric acid (TBA, of 0.8%). The homogenized samples
were incubated in a hot water bath for 1 h. After incubation, the samples were cooled in
icy water for 5 min and centrifuged at 750× g for 10 min. Color change was measured
spectrophotometrically at 532 nm and the results were expressed as nmol/g tissue.

Kidney GSH was measured by using the Ellman method [29]. 100 µL of 3M Na2HPO4

and 25 µL of 5,5′-dithiobis (2-nitrobenzoic acid) (DTNB) (4 mg DTNB prepared in 10 mL
of 1% sodium citrate solution) were added to 25 µL of the supernatant. Then, the solution
was gently shaken, and the yellow color formed after the reaction was measured at a
wavelength of 412 nm using a spectrophotometer. The results were calculated using a
reduced GSH standard curve of 1000 µM–62.5 µM and expressed as mmol/g tissue.

2.5. Histopathological Analysis

The kidney tissues were promptly excised and fixed in 10% formalin for 24 h for
histopathological and immunohistochemical analyses. Tissue tracking procedures follow-
ing fixation were conducted using the Citadel 2000 Shandon (Thermo Scientific, Cheshire,
UK) autotechnicon device. The tissues underwent dehydration by passing through a series
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of increasing alcohol concentrations, followed by treatment with xylene for the clearing pro-
cess. Subsequently, it was embedded in paraffin and blocked. Sections 3–4 µm in thickness
were taken from paraffin blocks and stained using Harris hematoxylin and eosin G (H&E)
for structural examination. The kidney slides were analyzed using a light microscope and
captured in photographs (Olympus DP71 BX51, Olympus Corporation, Tokyo, Japan).

2.6. Immunohistochemical (IHC) Analysis

Kidney tissues were fixed in 10% formalin and embedded in paraffin. 2–3 µm sections
were taken and placed on poly-l-lysine-coated slides. Following the deparaffinization
process, staining of the sections was performed with 8-OHdG (sc-66036, diluted 1:200,
Santa Cruz, Europe) and caspase-3 (diluted 1:200, caspase-3/p17, SC373730, Santa Cruz
Biotechnology, Inc., USA) antibodies using a Bond-Max model (Leica Biosystems) automatic
immunohistochemical staining device. The slides were deparaffinized with Bond Dewax
solution for that purpose. Peroxidase blocking was then performed on the dehydrated
kidney tissues. Antigen retrieval was carried out with 20 min heating in ER2 (Leica Biosys-
tems) solution. Incubation with 8-OHdG and caspase-3 antibodies was then performed for
60 min. DAB in the Bond Polymer Refine Detection kit (Leica Biosystems) was dropped
onto the tissues treated with secondary antibodies, and the preparations were stained with
hematoxylin (Bond Polymer Refine Detection, Leica) for 10 min. After staining with hema-
toxylin, the slides were mounted using Entellan and examined and photographed. In terms
of immunohistochemistry, a semi-quantitative analysis of immunoreactivity in kidney
tissues stained with 8-OHdG and caspase-3 antibodies was performed with Mercantepe
et al.’s scoring method [30]. Accordingly, immunopositivity scoring was conducted using
the blinding method by two independent histopathologists—1 (mild; ≤5%), 2 (moderate;
≥10%), 3 (severe; ≥25%), and 4 (extremely severe; ≥50%).

2.7. Semi-Quantitative Analysis

A Kidney Histopathologic Damage Score (KHDS) was established, based on the find-
ings of previous studies involving ionizing radiation-induced kidney injury and Jeong Sun
et al.’s Histopathological Kidney Injury Score for tubular necrosis for the histological analy-
sis of H&E-stained renal tissue sections (Table 1) [31]. Semi-quantitative analyses involving
20 distinct areas in preparations from each rat were carried out by two histopathologists
blinded to the study groups.

Table 1. Kidney Histopathological Damage Score (KHDS).

Type of Damage Score Findings

Deterioration of Brush Border Structure in Proximal
Tubules

0 ≤5%
1 6–25%
2 26–50%
3 >50%

Loss of tubular epithelial cells connections (debris
accumulation in the lumen)

0 ≤5%
1 6–25%
2 26–50%
3 >50%

Degenerative glomerulus

0 ≤5%
1 6–25%
2 26–50%
3 >50%
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2.8. Statistical Analysis

Data were analyzed using the SPSS 18.00 software (IBM Corp. Chicago, IL, USA).
Data yielded by semi-quantitative analyses were expressed as median and 25th and 75th
interquartile values. Differences between groups were evaluated using the Kruskal–Wallis
and Tamhane T2 tests. Data yielded by quantitative analyses were calculated as arithmetic
mean ± standard deviation. Differences between groups were examined using one-way
ANOVA and the Tukey test. p values < 0.05 were regarded as statistically significant.

3. Results
3.1. Biochemical Results

Malondialdehyde (MDA) levels in kidney tissue were elevated in the X-irradiation
group in comparison to the control group (p < 0.05, Table 2). Conversely, levels of MDA
were diminished in the amifostine (AMF) group in comparison to the x-irradiation group
(p < 0.05, Table 2). Similarly, the MDA levels decreased in the Dex 100 mg and Dex 200 mg
treatment groups compared to the x-irradiation groups (p < 0.05, Table 2).

Table 2. Biochemical analysis results (mean ± standard deviation).

Group MDA
(nmol/mg Tissue)

GSH
(nmol/mg Tissue)

Control 0.74 ± 0.26 53.74 ± 2.65
X-ray irradiation 1.86 ± 0.27 a 38.51 ± 1.94 a

X-ray irradiation + AMF 0.86 ± 0.26 a,b 47.55 ± 1.85 a,b

X-ray irradiation + Dex 100 mg 0.81 ± 0.24 a,b 47.75 ± 2.4 a,b

X-ray irradiation + Dex 200 mg 0.82 ± 0.27 a,b 50.25 ± 1.84 a,c

a p = 0.000 versus control group, b p = 0.000 versus X-irradiation group, c p = 0.022 versus control group, one-way
ANOVA/Tukey HSD test.

The GSH levels were lower in the x-irradiation group than those of the control group
(Table 2, p < 0.05). In contrast, GSH levels increased in the AMF group compared to the
x-irradiation group (Table 2, p < 0.05). Similarly, tissue GSH levels increased in the Dex
100 mg and Dex 200 mg treatment groups compared to the x-irradiation group (p < 0.05,
Table 2).

3.2. Histopathological Analysis

In the light microscopic examinations of H&E-stained kidney tissues, the Bowman’s
capsules exhibited a normal glomerular structure and the typical kidney tubules in the
control group. Furthermore, proximal tubules exhibiting a brush border morphology were
noted (Figure 1 and Table 3). Conversely, a degenerative Bowman’s capsule associated
with atypical glomeruli was seen in the x-irradiation group.

Necrotic tubules accompanying widespread luminal debris accumulations were also
observed. The loss of the brush border in proximal tubules, in particular, was also evident
(Figure 1, Table 3). Decreased necrotic tubules and degenerative Bowman’s capsules were
observed in the AMF group (Figure 1, Table 3). Decreased necrotic tubules and Bowman’s
capsule structures were also seen in the Dex 100 mg and 200 groups (Figure 1, Table 3).
Specifically, the proximal tubule brush border structures were found to be normal (Figure 1,
Table 3).
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Figure 1. Representative light microscopic image of kidney tissue stained with H&E. Proximal tubule (p),
distal tubule (d), glomerulus (g), brush border (arrow), atypical glomeruli (ag), necrotic tubules accompanying
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debris accumulation in lumens (star). (A,B) Controls: Normal renal tubule and glomerulus (g)
structures can be seen. Brush border in proximal tubule has a typical structure (arrow) (KHDS:
0.5 (0–1)). (C,D) X-ray irradiation group: Widespread atypical glomeruli (ag) and necrotic tubules
accompanying debris accumulation in lumens (asterisk) (KHDS: 6.5 (6–7)). (E,F) AMF treatment
group: Decreases can be seen in degenerative glomeruli and necrotic tubules (KHDS: 1.0 (1–3)).
(G,H) Dex 100 µg treatment group: Decreases can be seen in necrotic tubules accompanying debris
accumulations in lumens and atypical glomerular structures (KHDS: 1.0 (1–2)). (I,J) Dex 200 µg
treatment group: Tubules and glomerular structures are typical in appearance (KHDS: 1.0 (1–1)).

Table 3. Kidney Histopathological Damage Score (KHDS) analysis results (median (25–75%)).

Brush Border
Damage Score

Luminal Debris
Accumulation Score

Degenerative
Glomerulus Score KHDS

Control 0.00 (0–0) 0.00 (0–0) 0.00 (0–0) 0.50 (0–1)
X-irradiation 2.50 (2–3) a 2.00 (2–2) d 2.00 (2–2) d 6.50 (6–7) a

X-ray irradiation + AMF 1.00 (0–1) b 1.00 (0–1) e 0.00 (0–1) f 1.00 (1–3) c

X-ray irradiation + Dex 100 mg 0.50 (0–1) b 1.00 (0–1) e 0.00 (0–1) f 1.00 (1–2) c

X-ray irradiation + Dex 200 mg 0.00 (0–1) c 1.00 (0–1) e 0.00 (0–0) g 1.00 (1–1) c

a p = 0.000 versus control group, b p = 0.001 versus X-irradiation group, c p = 0.000 versus X-irradiation group,
d p = 0.003 versus control group, e p = 0.027 versus X-irradiation group, f p = 0.006 versus X-irradiation group,
g p = 0.003 versus X-irradiation group, Kruskal–Wallis/Tamhane’s T2 test.

3.3. Semi-Quantitative Results

When KHDS scores were calculated in the light of necrotic tubule findings accompany-
ing debris accumulation in renal tubules and loss of the brush border in proximal tubules
in H&E-stained kidney tissue sections, together with findings of degenerative Bowman’s
capsules accompanying atypical glomeruli, the KHDS score of 0.50 (0–1) in the control
group rose to 6.50 (6–7) in the x-irradiation group (Figure 1A,B, Table 4, p = 0.000). In
contrast, the KHDS score of 6.50 (6–7) in the x-irradiation group decreased to 1.00 (1–3) in
the AMF group (Figure 1B,C, Table 4, p = 0.000). Similarly, the KHDS score of 6.50 (6–7) in
the x-irradiation group decreased to 1.00 (1–2) in the Dex 100 mg group and to 1.00 (1–1) in
the Dex 200 mg group (Figure 1B,D–E, Table 4, p = 0.000 and p = 0.000, respectively).

Table 4. Immunohistochemical (IHC) positive score results (median-(25–75%)).

Group Cleaved Caspase-3
Positivity

8-OHdG
Positivity

Control 0.00 (0–0) 0.00 (0–1)
X-irradiation 2.50 (2–3) a 3.00 (2–3) a

X-ray irradiation + AMF 0.50 (0–1) b 1.00 (1–2) b

X-ray irradiation + Dex 100 mg 0.00 (0–1) b 0.00 (0–1) c

X-ray irradiation + Dex 200 mg 0.00 (0–1) b 0.00 (0–1) c

a p = 0.000 versus control group, b p = 0.001 versus X-irradiation group, c p = 0.000 versus X-irradiation group,
Kruskal–Wallis/Tamhane’s T2 test.

3.4. Immunohistochemical Results

Apoptotic epithelial cells with increased Cleaved Caspase-3 positivity were observed
in the x-irradiation group compared to the control group (Figure 2A,B, Table 4, p = 0.000).
In contrast, decreased Cleaved Caspase-3 positivity was determined in the proximal and
distal tubule cells in the AMF group compared to the x-irradiation group (Figure 2B,C,
Table 4, p = 0.001). Similarly, decreased Cleaved Caspase-3 positivity was determined in
renal tubule epithelial cells in the Dex 100 mg and Dex 200 mg groups compared to the
x-irradiation groups (Figure 2B–E, Table 4, p = 0.001, and p = 0.001, respectively).
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Figure 2. Representative light microscopic appearance of kidney sections incubated with cleaved
Caspase-3. Proximal tubule (p), distal tubule (d), glomerulus (g). (A) Control group: Normal renal
tubule epithelial cells (arrow). (Cleaved Caspase-3 positivity score: 0.0 (0–1)). (B) X-irradiation
group: Intense cleaved Caspase-3 positivity in apoptotic renal tubule epithelial cells of (tailed arrow)
(Cleaved Caspase-3 positivity score: 2.50 (2–3)). (C) X-irradiation + AMF treatment group: The
number of cells showing Cleaved Caspase-3 positivity was decreased in renal tubule apoptotic
epithelial cells (tailed arrow) (cleaved Caspase-3 positivity score: 0.50 (0–1)). (D) X-irradiation + Dex
100 µg treatment group: Cleaved Caspase-3-positive cells have decreased in renal tubule epithelial
cells (tailed arrow) (cleaved Caspase-3 positivity score: 0.00 (0–1)). (E) X-irradiation + Dex 200 µg
treatment group: Cleaved Caspase-3-positive cells have decreased in typical renal tubule epithelial
(tailed arrow) (cleaved Caspase-3 positivity score: 0.00 (0–1)).
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Light microscopic examination of kidney tissues incubated with 8-OHdG primary anti-
body revealed increased 8-OHdG positivity in the proximal and distal tubule epithelial cells
in the x-irradiation group compared to the control group (Figure 3A,B, Table 4, p = 0.000).
The 8-OHdG positivity in renal tubule cells decreased in the AMF group compared to the x-
irradiation group (Figure 3B,C, Table 4, p = 0.001). Similarly, 8-OHdG positivity in proximal
and distal renal tubules decreased in the Dex 100 mg and Dex 200 mg groups compared to
the x-irradiation group (Figure 3B–E, Table 4, p = 0.000 and p = 0.001, respectively).

Figure 3. Representative microscopic image of kidney tissue sections incubated with 8-OHdG. (A) Con-
trol group: Normal proximal and distal tubule epithelial cells (arrow) (8-OHdG positivity score: 0.0
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(0–1)). (B) X-irradiation group: Intense 8-OHdG-positivity in proximal and distal tubule epithelial
cells (tailed arrow) (8-OHdG positivity score: 3.00 (2–3)). (C) X-irradiation + AMF treatment group:
Decreased 8-OHdG-positivity in renal tubule epithelial cells (tailed arrow) (8-OHdG positivity score:
1.00 (1–2)). (D) X-irradiation + Dex 100 µg treatment group: Decreased 8-OHdG-positive cells
in proximal and distal tubule epithelial cells (tailed arrow) (8-OHdG positivity score: 0.00(0–1)).
(E) X-irradiation + Dex 200 µg treatment group: Decreased 8-OHdG-positive cells in typical renal
tubule epithelial cells (tailed arrow) (8-OHdG positivity score: 0.00 (0–1)).

4. Discussion
Although radiation therapy is an effective method to manage tumor proliferation

and prolong survival, it adversely affects healthy tissues in the treatment area. Since
kidney tissues are highly radiosensitive, radiotherapy has been reported to cause nephro-
toxicity [32–34]. Previous studies have investigated the effects of dexmedetomidine and
amifostine on cancer tissue [1–24]. However, this study is the first to investigate the ef-
fects of dexmedetomidine and amifostine on radiotherapy-induced nephrotoxicity. In the
present study, DEX caused significant structural and biochemical changes in kidney tissue
by preventing oxidative stress and suppressing apoptosis in nephrocytes in rats. DEX had
a more protective effect than amifostine on x-irradiation-induced nephrotoxicity.

The mechanism underlying the toxicity of x-irradiation in healthy tissues remains
inadequately understood; however, previous studies indicated that this toxicity is associ-
ated with oxidative stress [35]. The application of ionizing radiation impairs the balance
between oxidant and the antioxidant system by elevating ROS production in tissues. Pre-
vious studies indicated that oxidative stress caused by elevated ROS levels can result in
kidney injury [36]. MDA, an indirect indicator of the extent of damage produced by free
radicals, serves as a significant biomarker for oxidative injury. GSH is a crucial antioxidant
in oxidative stress developing in association with x-irradiation [37]. Studies have shown
that the application of ionizing radiation increases MDA and decreases GSH activity in
various tissues, thereby affecting the oxidant/antioxidant system [9,35,38].

The results of the current study indicate that acute stress compromised the efficacy of
the antioxidant mechanism by elevating MDA levels and diminishing GSH enzyme levels.

However, DEX administration resulted in the suppression of oxidative stress with a
reduction in MDA activities and an elevation in GSH. Consistent with the present study,
Wang et al. indicated that DEX application reduced MDA activity in patients with acute
renal conditions [39]. Similarly, Akpinar et al. also demonstrated that DEX possesses
antioxidant and oxidative stress-lowering effects by reducing MDA levels and enhancing
GSH activities in rat tissues [40].

Studies show that the increase in ROS caused by ionizing radiation results in
histopathological changes. Previous studies reported that total body irradiation in rats
causes pathological changes in renal tissues, such as degeneration in renal tubules and
glomeruli, leukocyte infiltration, and necrosis [30,32,41]. Similarly, in the present study,
amifostine reduced the numbers of necrotic tubules and degenerative Bowman’s capsules.

8-OHdG is a recognized biomarker for DNA oxidation caused by ROS genera-
tion [42–44]. Özyurt et al. observed an increase in 8-OHdG levels in rats exposed to
total body 800 cGy irradiation. Similarly, in our study, immunohistochemical analyses
showed that x-irradiation led to an increase in 8-OHdG immune reactivity. This condition
suggests that DNA is a special target of oxidative damage caused by radiation. In the
current study, DEX decreased the levels of 8-OHdG that were elevated due to x-irradiation.

Studies have reported that x-irradiation triggers apoptosis in tissues [9,35]. X-
irradiation significantly elevated caspase-3 activity, which is implicated in the terminal
phase of apoptosis. Consistent with our research, Mercantepe et al. indicated that a single
dose of whole-body 6-Gy irradiation in rats induced apoptosis via elevating the expression
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of caspase-3 in tubular cells in the kidneys [30]. Previous studies have indicated that DEX
reduces apoptosis in the liver, heart, and kidney tissues.

Our study is a pilot study of the effects of dexmedetomidine and amifostine on
radiation-induced nephrotoxicity. In addition, our study has some limitations. Our study
should be supported by studies that evaluate other antioxidant/oxidant proteins and
enzymes and intracellular calcium levels.

In an acute stress-induced model of kidney injury involving Wistar rats, the admin-
istration of DEX was observed to inhibit apoptosis through a reduction in the expression
of cleaved caspase-3 [45]. However, the impact of DEX on apoptosis in kidney damage
induced by x-irradiation remains uncertain. Our study showed that alpha 2 adrenergic
receptor agonists have a protective effect against x-irradiation-induced acute kidney injury
by reducing oxidative stress and apoptosis.
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