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Historically, the link between chronic inflammation and cancer has long been speculated.

Only more recently, pre-clinical and epidemiologic data as well as clinical evidence

all point to the role of the tumor microenvironment as inextricably connected to the

neoplastic process. The tumor microenvironment (TME), a complex mix of vasculature,

inflammatory cells, and stromal cells is the essential “soil” helping to modulate tumor

potential. Increasingly, evidence suggests that chronic inflammation modifies the tumor

microenvironment, via a host of mechanisms, including the production of cytokines,

pro-inflammatory mediators, angiogenesis, and tissue remodeling. Inflammation can be

triggered by a variety of different pressures, such as carcinogen exposure, immune

dysfunction, dietary habits, and obesity, as well as genetic alterations leading to

oncogene activation or loss of tumor suppressors. In this review, we examine the concept

of the tumor microenvironment as related to both extrinsic and intrinsic stimuli that

promote chronic inflammation and in turn tumorigenesis. Understanding the common

pathways inherent in an inflammatory response and the tumor microenvironment may

shed light on new therapies for both primary and metastatic disease. The concept of

personalized medicine has pushed the field of oncology to drill down on the genetic

changes of a cancer, in the hopes of identifying individually targeted agents. Given the

complexities of the tumor microenvironment, it is clear that effective oncologic therapies

will necessitate targeting not only the cancer cells, but their dynamic relationship to the

tumor microenvironment as well.

Keywords: chronic inflammation, clonal hematopoiesis, stroma, microenvironment, tumor suppressors,

oncogenes, anti-inflammatory drugs

INTRODUCTION

Chronic inflammation is a hallmark of cancer and many factors can trigger an inflammatory
response in the microenvironment, including infectious pathogens, imbalanced immune
regulation, carcinogen exposure, dietary habits and obesity, and genetic alterations leading to
oncogene activation or loss of tumor suppressors (Elinav et al., 2013). A growing understanding
of the relationship between chronic inflammation and the tumor microenvironment (TME) has
dramatically altered our understanding of cancer. Evidence suggests that chronic inflammation
creates a pro-tumorigenic environment via the production of pro-inflammatory mediators,
angiogenesis, and tissue remodeling (Coussens and Werb, 2002). Some of the most critical
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external factors that can promote chronic inflammation and
increase cancer risk include tobacco, obesity, a sedentary
lifestyle, and select infectious agents. Evolving insight into the
mechanisms by which chronic inflammation supports a pro-
tumorigenic environment has led to new (immuno)-therapies for
cancer as well as lifestyle recommendations which may decrease
cancer incidence.

In this review, we discuss the current knowledge of how
epithelium cancer-initiating events cross talk to inflammatory
cells during cancer initiation and progression. Specifically, we
review the concept of the TME and both the extrinsic and
intrinsic mechanisms that tie an inflammatory response to pro-
tumorigenic events (Figure 1).

CELLULAR CONSTITUENTS OF AN
INFLAMMATORY MICROENVIRONMENT

While the exact composition of the TME will differ from tissue to
tissue, as well as between various tumors of the same tissue, key
cellular players are recurrently found. In addition to malignant
tumor cells, the TME is composed of a number of different
cell types including fibroblasts, endothelial cells, pericytes, and
various cells associated with the immune system (Quail and
Joyce, 2013). In addition to B cells, natural killer (NK) cells and
T lymphocytes, the myeloid cells within the TME include tumor-
associatedmacrophages (TAMs), dendritic cells, neutrophils, and
monocytes, the latter two of which have often been misclassified
as myeloid-derived suppressor cells (MDSCs) on the basis of
immunophenotypic markers. In mice, these myeloid cells are
identified by immunophenotype (Cd11b+, Gr.1+) with Ly6C
and Ly6G to further differentiate a monocytic-MDSC from a
granulocytic-MDSC respectively (reviewed here Talmadge and
Gabrilovich, 2013). Human MDSCs are defined through a
combination of CD11B, CD14, CD15, and CD66 (Bronte et al.,
2016). While studies have identified bona fide T cell suppressor
function within this compartment, the label of MDSC is often
applied even without functional demonstration leading to murky
interpretations of their role within the TME. Understanding
the molecular functions of these cells within the tumor
may provide avenues for disrupting pro-tumorigenic signaling
and tailored TME-targeted therapy. Furthermore, identifying
markers capable of distinguishing functional MDSC from

Abbreviations: AML, acute myeloid leukemia; APC, adenomatous polyposis
coli; ASCO, American Society of Clinical Oncology; BMI, body mass index;
CAFs, cancer-associated fibroblasts; CANTOS, Canakinumab Anti-inflammatory
Thrombosis Outcome Study; CH, clonal hematopoiesis; CH-PD, CH with a
presumptive driver mutation; COPD, chronic obstructive airway disease; ER,
estrogen receptor; FDA, Food and Drug Administration; GCs, glucocorticoids;
GI, gastrointestinal; GvHD, graft-versus-host disease; NOS, nitrogen species; HPV,
human papillomavirus; HSCT, allogeneic hematopoietic stem cell transplantation;
IECs, intestinal epithelial cells; IFN, interferons; JAKs, janus family of kinases;
LOH, loss of heterozygosity; LPS, lipopolysaccharides; MDSCs, macrophage-
derives suppressor cells; MDR, multi-drug resistance; MM, multiple myeloma;
MPNs, myeloproliferative neoplasms; NSAIDs, non-selective non-steroidal anti-
inflammatory drugs; PDAC, pancreatic ductal adenocarcinoma; Pten, phosphatase
and tensin homolog; PV, polycythemia vera; RA, rheumatoid arthritis; ROS,
reactive oxygen species; TAMs, tumor associated macrophages; TF, transcription
factor; TKs, tyrosine kinases; TKIs, tyrosine kinase inhibitors.

the immunophenotypically similar monocyte and neutrophil
counterparts will be critical to elucidating their role in the TME
(Bronte et al., 2016). In this section, we will review the functions
of three of the most well studied constituents of the TME,
TAMs, cancer-associated fibroblasts (CAFs) and endothelial cells
comprising the tumor vasculature.

Tumor-Associated Macrophages
TAMs have emerged as one of the most well studied components
of the TME. These cells have been shown to interact with nearly
every feature of tumor progression including mediating tumor
cell proliferation, migration, invasion, angiogenesis, metastasis,
and chemotherapeutic resistance (Noy and Pollard, 2014). The
multifaceted role of TAMs in the TME is a direct reflection of the
diverse responsibilities of macrophages in normal development,
tissue homeostasis, and tissue repair (Okabe and Medzhitov,
2016). Indeed many of the developmental processes mediated
by macrophages, including extracellular matrix remodeling,
phagocytosis of apoptotic debris and angiogenesis, are critical
hallmarks of the TME. As such, in some instances the
inflammatory state of the tumor resembles an unresolved wound
healing response (Dvorak, 1986; Schäfer and Werner, 2008).
Perhaps the most well described function of TAMs involves their
role in tumor cell migration and invasion. TAMs have been
shown to engage in a CSF1-EGF paracrine signaling loop capable
of leading tumor cells to the invasive edge of a tumor (Wyckoff
et al., 2004). Additionally, TAMs have been shown to engage
in a multicellular interaction with endothelial cells through the
release of VEGFA to facilitate the intravasation of tumor cells
from the primary site into circulation (Harney et al., 2015). In
addition to the production of these growth factors, TAMs are
the major source of matrix metalloproteinases and cathepsin
proteases (Olson and Joyce, 2015; Varol and Sagi, 2017). In order
to execute the diverse functions described above, macrophages
employ immense transcriptional plasticity that falls along a
continuum of activation (Xue et al., 2014; Glass andNatoli, 2016).
On one extreme end of the spectrum lays classically activated
macrophages (often termed M1-macrophages mirroring that of
Th1 immunity). This activation state is canonically associated
with IFNγ stimulation resulting in a STAT1 transcriptional
program. Functionally, these cells are capable of perpetuating
type I inflammatory responses through the secretion of
chemokines such as CCL3, CCL4, and CCL5, as well as the
production of nitric oxide and TNFα. Furthermore, IFNγ

stimulation can boost antigen presentation capacity through
the upregulation of Ciita a master transcriptional regulator of
MHC II molecules. On the other extreme, alternatively activated
macrophages (or M2 macrophages) are associated with an anti-
inflammatory state. Here, the critical molecular regulators of
alternative activation are the Th2 cytokines IL-4, IL-13, IL-
6, and IL-10. Together these cytokines lead to the activation
of STAT6 (IL-4 and IL-13) as well as STAT3 (IL-6 and IL-
10). These programs, as well as other transcriptional regulators,
drive the upregulation of Arginase 1 leading to decreased nitric
oxide signaling, and increased expression of the wound healing
associated chemokines CCL17 and CCL22. Functionally, this
activation state is associated with inflammation resolution and
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FIGURE 1 | External and intrinsic factors fueling an inflammatory microenvironment. Inflammation can be triggered by a variety of different pressures, such as

carcinogen exposure, immune dysfunction, dietary habits, and obesity (extrinsic factors, purple circle), as well as genetic alterations (intrinsic factors) leading to

oncogene activation or loss of tumor suppressors in the microenvironment (stroma, green circle) or the tumor cells themselves (tumor, blue circle). Each circle contains

a number of examples which belong to the respective category. Most genetic and epigenetic alterations of the stroma have been identified in cancer-associated

fibroblasts (CAFs) and white blood cells of healthy individuals or solid cancer patients without signs of hematological malignancies (CH).

extracellular matrix remodeling. In addition to the cytokines
described above, TAM activation can be influenced by hypoxia
and local metabolite concentrations such as lactate (Casazza
et al., 2013; Colegio et al., 2014; Carmona-Fontaine et al.,
2017). Despite the widespread description of TAMs as either
M1 or M2, this dichotomy is clearly an oversimplification of
the diverse states in which these cells are capable of existing
(Murray et al., 2014). Elucidating the functional capacities
of TAMs within the TME and the mechanism that regulate
these processes will provide a clearer picture of these cells.
Another more recently appreciated factor influencing TAM
activation involves the origin of the cells. While TAMs were
long thought to derive from circulating monocytes (Qian
et al., 2011; Franklin et al., 2014), recent work suggests that
TAMs are also derived from local tissue-resident macrophages
(Bowman et al., 2016; Zhu et al., 2017). These are important
to consider in the setting of therapeutic strategies aimed at

reducing TAM accumulation through recruitment blockade,
either through CCR2 or CXCR4 inhibition (Kioi et al., 2010;
Qian et al., 2011). Further, in most cases, tissue-resident
macrophages possess distinct developmental origins from their
monocyte-derived counterparts, as they seed the tissue during
embryogenesis developing via an erythro-myeloid precursor
as opposed to a hematopoietic stem cell (Gomez Perdiguero
et al., 2015). This distinct ontogeny appears to imprint a
sort of epigenetic memory on the subsequent TAM, eliciting
distinct gene expression profiles within the TME (Bowman
et al., 2016; Zhu et al., 2017). While clodronate liposome-based
depletion strategies have been used to preferentially deplete
tissue resident macrophages in the pancreas (Zhu et al., 2017),
more selective genetic ablation strategies will be of interest to
translate the differences seen in gene expression studies into
functional capacities. Translation of these studies from themouse
to human disease will require identification of markers capable
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of distinguishing the ontogenetically defined TAM populations.
One such marker, CD49D, has been found to be absent on
brain-resident microglia and present on recruited bone marrow-
derived macrophages in multiple brain malignancies (Bowman
et al., 2016). Markers such as CD49D will likely be found in
many distinct tissues, and may serve as biomarkers for future
TME-targeted therapy.

Cancer-Associated Fibroblasts (CAFs)
In addition to the immune components of the TME described
above, CAFs are an abundant, heterogeneous pool of cells
that play multifactorial roles in cancer progression. CAFs are
sometimes referred to as mesenchymal stem cells or tumor-
associated fibroblasts (Paunescu et al., 2011). Regardless of
the nomenclature, these cells are non-hematopoietic, non-
epithelial cells resident to a tissue. These cells can be identified
microscopically based on the spindle-like shape and large
singular presence within the stroma of a tissue. During tissue
homeostasis, these cells are responsible for deposition of type
I collagen, laminin, perlecan, nidogen, and fibronectin, but
are generally considered quiescent with limited migration and
proliferation (Kalluri, 2016). Much like macrophage activation
paradigms described above, fibroblasts undergo a similar
activation process upon stimulation with factors such as TGFβ,
PDGF, and FGF2 (Elenbaas and Weinberg, 2001). Like the
TAMs described above, CAFs are distinct from their non tumor-
associated counter parts and possess a unique activation state.
Upon activation these cells change morphologically, increasing
in size and with additional spindle-like processes. Functionally
these cells possess increased capacity for migration, collagen
crosslinking and secretion of cytokines and chemokines such as
VEGFA, TGFβ, HGF, FGF, EGF, CXCL10, CCL5, IL-6, TNFα,
and IFNγ (Kalluri, 2016). Through these phenotypic alterations,
activated fibroblasts can orchestrate a wound healing response
concomitant with extracellular matrix repair, recruitment of
immune cells to eliminate pathogens, and regrowth of damaged
epithelial tissue (Öhlund et al., 2014). Critically, fibroblast
activation is a reversible process and as such wound healing
responses are able to resolve and quiescence can be restored.
If however, this process is not resolved tissue fibrosis can
occur. In cancer, this fibrotic phenotype is widespread with
even premalignant lesions are often associated with fibrosis or
desmoplastic reactions (Rønnov-Jessen et al., 1996), however
the causality of desmoplasia and malignant transformation
remain an open discussion in human disease. In developed
tumors, pancreatic adenocarcinoma (PDAC) presents an extreme
example of unrestrained desmoplasia, driven in part through
sonic hedgehog signaling in the stroma (Tian et al., 2009). The
fibrotic stroma of PDACpresents a challenge for effective delivery
of chemotherapy into tumors, and as such reducing the stromal
component of the TME presents an interesting chemo sensitizing
therapeutic option (Olive et al., 2009). A more full understanding
of how CAFs are activated, and the results of inhibiting
these activation states are necessary. While most studies have
been completed in vitro, one study utilized genetic mouse
models of squamous cell carcinoma. CAFs isolated from these
early neosplasms possess a pro-inflammatory gene expression

signature driven by NF-κB (Erez et al., 2010). Interestingly, the
authors demonstrated that normal dermal fibroblasts could be
“educated” to resemble CAFs through co-culture with carcinoma
cells. This activation state has since been shown to be regulated
through promoter hypermethylation (Zeisberg and Zeisberg,
2013; Li et al., 2015; Xiao et al., 2016). Upon activation CAFs
interface with the tumor through many of the same mechanisms
as an activated fibroblast during wound healing, yet many
differences remain. In vitro proteomic studies identified an
altered secretory phenotype in CAFs compared to non-malignant
activated fibroblasts (De Boeck et al., 2013). In this study, CAFs
were found to secrete higher levels of tenascin and the CXCR4
ligand SDF-1, both of which have been shown to be important
in different stages of the metastatic cascade (Oskarsson et al.,
2011; Vanharanta et al., 2013). Additionally, while one of the
primary functions of fibroblasts in wound healing is to recruit
immune cells, CAFs have been shown to negatively regulate
immune responses in a TNFα and IFNγ dependent manner
(Kraman et al., 2010). As such, targeting CAF-derived cytokines
has been shown to enhance CSF1R targeted therapy (Kumar
et al., 2017) as well as immune checkpoint blockade (Feig et al.,
2013). Clinical efficacy of these combinations remains to be
determined.

Angiogenesis and Tumor Vasculature
The formation of new blood vessels, termed angiogenesis, is one
of the hallmarks of the tumor microenvironment (Hanahan and
Weinberg, 2011). The newly formed vascular network serves as
a means to deliver nutrients, cytokines, and oxygen into the
tumor. Thus engaging in angiogenesis is a major step in disease
development, with earlier stage, smaller tumors possessing fewer
vessels than later, more aggressive tumors, which can be highly
vascularized (Bergers and Benjamin, 2003). This is, of course,
a broad generalization as the vascular content also varies by
tissue. For example, while glioblastoma multiforme is one of
the most vascularized tumor types (Das and Marsden, 2013),
pancreatic ductal adenocarcinoma has lowmicrovascular density
and is instead entrenched with dense desmoplastic stroma
(Longo et al., 2016). Unlike its’ normal tissue counterpart, tumor
vasculature often possesses aberrant morphology associated
with increased branching and an overall disrupted network
of endothelial cells. These abnormal structural findings are
often caused by poor pericyte coverage and disruption of a
supportive basement membrane (De Palma et al., 2017). Such
a distorted network can lead to poor diffusion of oxygen
and other small molecules in the tumor resulting in spatial
heterogeneity.

While a critical process in malignant development,
angiogenesis is not unique to tumors, but rather reminiscent of
a wound healing response initiated by inflammation. Indeed,
recruited monocytes, eosinophils, and neutrophils are capable
of secreting pro-angiogenic factors (De Palma et al., 2017). One
of the most potent inducers of angiogenesis is hypoxia, which
activates hypoxia inducible factor 1 (HIF1) in both tumor cells
and surrounding stromal cells leading to the production of
vascular endothelial growth factor (VEGF), a potent mediator
of new vessel growth (Krock et al., 2011). In addition, TAMs
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and CAFs are also capable of stimulating angiogenesis through
the secretion of VEGFA as well as the lymphangiogenic factor
VEGFC and VEGFD (Quail and Joyce, 2013). Given its critical
role in angiogenesis, VEGF-targeted agents have emerged as a
major class of therapeutics with broad applicability in cancer
(Ferrara and Adamis, 2016). Despite success in some tumor
types (renal cell carcinoma), understanding which patients are
most likely to benefit from anti-angiogenic therapy remains
a challenge. Angiogenic signaling is further complicated in
the context of inflammation where the paralogous factors
angiopoietin-1 and angiopoietin-2 play a role in dampening
and amplifying sensitivity to the inflammatory factor TNFα
during wound healing (Fiedler et al., 2006). Two recent studies
demonstrated that dual targeting of angiopoietin-2 and VEGF
resulted in vascular normalization and extended survival in
murine models of glioblastoma (Kloepper et al., 2016; Peterson
et al., 2016). This combination was also found to potentiate
immunotherapy via PD-1 blockage (Schmittnaegel et al., 2017).
Understanding the interplay between these molecules and the
tumor’s dependency will be critical for maximizing future anti-
angiogenic therapeutic approaches. While the vasculature plays
a clear role in delivering nutrients to a tumor, several reports
have provided evidence for an additional role in promoting
cancer stem cells. In colorectal cancer (CRC) endothelial
cells have been shown to support cancer stem cells through
soluble Jagged-1 mediated activation of the Notch signaling
(Lu et al., 2013). Similar results were found for Jagged-1, as
well as DLL4, in glioblastoma models (Zhu et al., 2011). These
studies suggest that targeting of endothelial cells may provide
an avenue for modulating cancer stem cells; however, previous
reports have demonstrated that anti-angiogenic therapies can
actually lead to an increase in cancer stem cells due to increased
hypoxia (Conley et al., 2012). Given the multifaceted role of the
tumor vasculature, careful preclinical studies will be necessary
to understand the consequences of endothelial-targeted
therapy.

In addition to supporting primary tumor growth, endothelial
cells are also involved in the metastatic cascade from the earliest
step of intravasation to vascular cooption at the metastatic
site. Histological interrogation identified a tri-cellular signaling
hub known as TMEM structure, composed of a tumor cell,
a Tie2high TAM and an endothelial cell (Robinson and Jones,
2009). Further intravital imaging studies revealed that at this site
local VEGF signaling leads to increased vascular permeability
followed by a release of tumor cells into the blood stream
(Harney et al., 2015). Later in the metastatic cascade, during
extravasation, endothelial cells can serve as a barrier between
the circulating tumor cells and host tissue. In brain metastasis
for instance, cleavage of the endothelial adhesion molecule,
JAM-B, is necessary for tumor cells to efficiently extravasate
(Sevenich et al., 2014). Upon extravasation, metastatic cells
once again rely upon close association with endothelial cells to
support their survival in a process known as vascular cooption.
These studies collectively highlight that endothelial cells play
critical roles in both tumor development through increased
vascularization, but are also intricately involved in many steps of
disease progression.

CAUSES OF AN INFLAMMATORY
MICROENVIRONMENT

External Factors and Exposures Cause
Acute and Chronic Inflammation
Evidence indicates that chronic inflammation not only increases
the risk of a multitude of cancers, including colon, liver,
pancreatic, lung, bladder, gastric, and breast, but may also
increase the risk of tumor progression and metastasis (Iyengar
et al., 2015). Moreover, it is well known that a variety of
external factors and exposures can cause both acute and
chronic inflammation. Because many of these factors/exposures,
such as diet, are modifiable, there is a growing scientific and
public health interest in understanding the relationship between
extrinsic pressures that promote chronic inflammation and the
TME.

Tobacco
Historically, tobacco has been the most notorious carcinogen.
At present, tobacco exposure is the leading preventable cause
of death. Roughly 85% of all lung cancers are secondary to
smoking with additional cancers attributable to secondary smoke
(Warren and Cummings, 2013). In developed countries, tobacco
is associated with roughly 30% of all malignancies (McGuire,
2016). Tobacco use is associated with numerous other cancers
as well, including but not limited to, head and neck, pancreatic,
gastric, esophageal, acute myeloid leukemia (AML), bladder and
renal cell cancers (United States Public Health Service, and
Office of the Surgeon General, 2010). For example, actively
smoking triples the risk of bladder cancer (Freedman et al.,
2011; McGuire, 2016). Tobacco increases cancer risk not only
by causing direct genetic changes to the epithelium (particularly
the lung), but also through altering epigenetic events, eliciting
epithelial to mesenchymal cell transition, and inducing a
chronic inflammatory and hypoxic microenvironment. Ongoing
inflammation promotes apoptotic arrest, angiogenesis and in
turn cell proliferation (Milara and Cortijo, 2012). Tobacco
inherently contains a multitude of direct carcinogens, including
polycyclic aromatic hydrocarbons, N-nitrosamines, aromatic
amines, aldehydes, volatile organic hydrocarbons, and metals
among others (Pfeifer et al., 2002). The activation of these
carcinogens in the host can result in the formation of DNA
adducts, a form of DNA damage and source of mutagenesis. In
addition to directly affecting DNA function of the cell, tobacco
can modify the immune function of the host (Sopori, 2002).
For example, tobacco can increase the abundance of alveolar
macrophages in the lung, which may increase oxidative stress
and oxygen radicals, thereby promoting tumor growth. In a
study of 1,819 individuals, systemic levels of 78 makers of
inflammation and immunity were measured. The study included
548 never smokers, 857 former smokers, and 414 current
smokers. Significant differences in several immune markers were
noted between active and never smokers. These include but are
not limited to differences in CCL17/TARC, CCL11/EOTAXIN,
IL-15, IL-1B, IL-1Rα, CRP, SVEGFR3, IL-16, sIL-6R, and SCF.
Interestingly, the authors note that many of these makers are
critical to immune function as well as cell growth. Overall,
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they report that on average smokers appear to have an
immune profile consistent with an overall immunosuppressive
function of tobacco (Shiels et al., 2014). Indeed multiple
studies have demonstrated that tobacco has immunosuppressive
functions (Cui and Li, 2010). One mechanism by which nicotine
may be immunosuppressive is by impairing macrophage and
neutrophil function (Milara and Cortijo, 2012). In tobacco
smokers with chronic obstructive airway disease (COPD) the
lung epithelium undergoes repeated injury and repair thereby
inducing transformation of the normal epithelium to a more
malignant phenotype. Tobacco smokers who continue to smoke
also have poorer outcomes from a multitude of cancers, perhaps
as a result of suppression of NK cell activation (Lu et al., 2007).
Despite the significant link between tobacco and lung cancer,
some non-smokers still develop lung cancer. Toward this end,
understanding the mechanisms by which smokers as well as non-
smokers may share common markers related to chronic airway
inflammation may shed important light into molecular targets
for the diagnosis and treatment of lung cancer. Alternatively,
sequencing of non-small cell lung cancers in tobacco smokers
vs. non-smokers identifies distinct genetic signatures. Tobacco
induced tumors have a greater mutational burden than those
found in non-smokers, which may in turn predict response to
immunotherapy (Godwin et al., 2013; Hellmann et al., 2016).

Alcohol
Alcohol can act in concert with tobacco to significantly increase
the risk of cancer. Historically, alcohol was long associated
with liver as well as head and neck cancers (LoConte et al.,
2018). However, alcohol alone is now classified as a carcinogen,
increasing the risk of several cancers in a linear dose dependent
fashion, including breast, pancreas, liver, colon, esophagus and
head and neck cancers. In hepatocellular cancers specifically,
alcohol is known to induce chronic liver inflammation and
fibrosis, which is itself a pre-cursor to malignancy (also discussed
above). In addition, there is also evidence suggesting that patients
with hepatocellular cancers and increased alcohol consumption
show poorer outcomes once diagnosed with cancer (Barbara
et al., 1992). More recently, alcohol has been associated with
a host of other cancers. According to the American Society of
Clinical Oncology (ASCO), between 5 and 6% of new cancers and
cancer deaths globally can be “directly attributable to alcohol”
(LoConte et al., 2018). Alcohol can cause direct DNA damage
as a result of ethanol conversion to acetaldehyde as well as
disrupt folate metabolic pathways (Seitz and Becker, 2007).
With respect to the TME, evolving preclinical data suggests that
ethanol can directly disrupt immune surveillance and innate
immune response as well as induce reactive oxygen species
(ROS) production and oxidative stress in CAFs (Sanchez-Alvarez
et al., 2013). Alcohol may also disrupt the vascular endothelium
thereby creating a microenvironment more permissive to
metastasis and tumor migration (Xu et al., 2012). In breast
cancer patients, particularly those with estrogen receptor (ER)
positive breast cancers, Sanchez-Alvarez and colleagues suggest
that ethanol induces ketone production in CAFs (Sanchez-
Alvarez et al., 2013). In preclinical models, CAFs have also
been shown to fuel tumor growth via oxidative mitochondrial

metabolism and promote a more aggressive breast cancer
phenotype (Donnarumma et al., 2017).

Obesity
Historically, public health campaigns for cancer prevention have
focused on tobacco’s obvious link to cancer risk. More recently,
however, ASCO suggests that obesity may soon outweigh tobacco
as the leading modifiable risk factor for cancer (Ligibel et al.,
2014). Not only does obesity increase the risk for a multitude
of cancers but it may also decrease treatment delivery and
worsen outcomes for those newly diagnosed. Frighteningly,
over two thirds of the adult US population are overweight or
obese and the number is growing (Flegal et al., 2002). Evolving
data suggests that excess fat or “hyperadiposity” drives chronic
inflammation, which in turn engenders a pro-tumorigenic milieu
(Iyengar et al., 2016). White adipose tissue from obese patients
is infiltrated by leukocytes, specifically macrophages, and T
lymphoctyes (Underhill and Goodridge, 2012). When enlarged
fat cells die, they release cytokines that recruit additional
macrophages (Cinti et al., 2005). These macrophages then
form a “crown” around the dying adipocytes, setting off an
inflammatory cascade. The occurrence of these crown- like
structures are commonly observed in obese patients with both
breast and tongue cancers (Morris et al., 2011). Notably, Iyengar
and colleagues have shown that even patients with a normal
body mass index (BMI) but a relatively increased amount of
body fat can also have inflammation in their breast tissue,
indicating that BMI alone is not sufficient to predict for the
influence of fat on body composition (Iyengar et al., 2017).
Specifically, BMI is the ratio of a person’s weight to height.
This weight/height measurement alone does not reflect a more
nuanced understanding of a person’s body composition, or their
relative percentages of fat and muscle. A seemingly lean person
may be in fact “skinny fat,” wherein they have a relatively low
BMI but their body composition is predominantly fat. Much of
the work connecting obesity to cancer has been studied in the
breast cancer population, because both fat and normal tissue
in the breast can be readily evaluated as well as because of the
relationship between fat and steroid/hormonal production. In
breast cancer studies, inflamed fat tissue within the breast itself
can increase local cytokine production, as well as expression
of aromatase and ER gene expression (Cleary and Grossmann,
2009). Not surprisingly, obesity increases the risk of death among
postmenopausal womenwith ER-positive breast cancer (Fuentes-
Mattei et al., 2014). Obese mouse models suggest that activation
of the AKT-mTOR pathway in the breast itself may specifically
promote worse outcomes. Obesity has also been linked to poor
outcomes for other types of cancers (Ligibel et al., 2014). In
squamous cell cancer of the tongue for example, a diagnosis of
obesity prior to tongue cancer diagnosis was associated with a
five-fold increase of death (Iyengar et al., 2014).

Dietary Exposures and Exercise
Given the relationship of obesity and cancer, diet and exercise
modifications have gained increasing interest. Much of the work
to date on the role of exercise, cancer, and inflammation has
been done in the preclinical setting. Preclinical studies suggest
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that exercise can decrease inflammatory markers and modulate
the TME (Koelwyn et al., 2015). Though the mechanisms by
which exercise directly reduces inflammation are not entirely
clear, possible hypotheses include decreasing IL-6, reduction in
adipose tissue, and inhibition of TNFα (Koelwyn et al., 2015).
Exercise may also increase the cytotoxicity and number of NK
cells (Bigley and Simpson, 2015). Much like pharmacologic
interventions, ongoing clinical trials are evaluating whether
exercise as part of ongoing therapy may modulate tumorigenesis.
Early data suggests that exercise leads to a reduction in visceral
fat mass, decreased low grade chronic inflammation, and a
subsequent reduction in pro-inflammatory adipokine secretion,
as well as a reduction in macrophage infiltration into adipose
tissue (Klionsky et al., 2016). In preclinical cancer models,
exercise may decrease TAM and neutrophil infiltration and
increase intratumoral cytotoxic T cell infiltration (Koelwyn
et al., 2017). While the majority of the work in this space
has been preclinical, a more recent randomized controlled trial
evaluated the relationship of exercise and outcomes in breast
cancer survivors. Specifically, this randomized controlled trial
assessed the effects of a 16-week combined aerobic and resistance
exercise intervention onmetabolic syndrome, sarcopenic obesity,
and serum biomarkers among sedentary, overweight, or obese
survivors of breast cancer (Dieli-Conwright et al., 2018). Serum
biomarkers included IGH1, insulin, IL-6, IL-8, TNFα, and steroid
hormones (estrogen and testosterone). Sarcopenic obesity, BMI,
and circulating biomarkers, including insulin, IGF-1, leptin,
and adiponectin were significantly improved after exercise
intervention (Dieli-Conwright et al., 2018). In addition to
exercise, although data have not been entirely conclusive, some
epidemiology studies have linked a higher fiber, lower fat diet to a
decrease in some cancers. In breast cancer patients, for example,
a high fiber, low fat diet results in lower circulating levels of
estradiol among patients with a history of breast cancer, even
in the absence of weight loss (Rock et al., 2004). Traditionally,
designing and interpreting clinical trials to assess diet and cancer
intervention have been challenging.

Gut Microbiota
More recently, gut bacteria have emerged as a possible link
between metabolites in food and the TME. The immune system
is dependent in part on exposure via the gut to microbiota
as part of immunosurveillance (Kroemer and Zitvogel, 2018).
Preclinical data suggests that diet can modify gut bacteria,
specifically altering toll-like receptors on macrophages and
dendritic cells as well as adipose inflammation (Garrett, 2015).
Interestingly, in animal models, modification of gut bacteria
affects CRC incidence and natural history (Song and Chan,
2017). Moreover, as reviewed by Song and Chan, a more
“Western” diet, high in processed foods, red meat, processed
sugars, and refined grains can lead to a dysregulated immune
response and increased levels of inflammatory markers that
is associated with a higher risk of colon cancer. Multiple,
epidemiologic cross-cultural studies of diet and fecal bacteria
indicate that diets high in fiber and low in fat alter gut
bacteria and in turn are associated with a lower colon
cancer risk. Alternatively, a diet high in vegetables, fruits,

and whole grains lowers colon cancer risk. It is also well
known that antibiotics can modify gut flora and recent data
suggests that the use of repeated antibiotics may increase
the incidence of lung, prostate, bladder and breast cancer
possibly by altering gut flora (Velicer et al., 2004; Iida et al.,
2013; Boursi et al., 2015). Evolving evidence suggests that
gut bacteria may even influence response to immunotherapy.
In melanoma patients, analysis of patient fecal microbiome
samples indicated a higher diversity in bacteria and amount
of Ruminococcaceae bacteria among those who responded to
anti-PD-1 immunotherapy (Gopalakrishnan et al., 2018). Chaput
and colleagues also demonstrated that gut microbiota, and
in particular Faecalibacterium and other Firmicutes improved
response to the CTLA-4 blockade by ipilimumab (Chaput et al.,
2017). It is also hypothesized that some chemotherapies may
uniquely alter gut bacteria and modulate immune response
(Viaud et al., 2013).

Infectious Agents
In addition to modifiable behaviors associated with an
inflammatory pro-tumorigenic cascade, several infectious
agents have also been linked to cancer incidence (Moore
and Chang, 2010). Globally, it is estimated that roughly 15%
of all cancers are associated with infections (Parkin, 2006).
Microbes (including bacteria and viruses) have been implicated
in cancer in a number of different mechanisms, sometimes
in combination. Possible mechanisms include direct DNA
damage, via oncogenes or tumor suppressor inhibition, as
well as via the promotion of chronic inflammation and in
some instances, such as HIV, immunosuppression (Kuper
et al., 2000). Common microbial associations with cancer
include helicobacter pylori (gastric cancer and gastric MALT
lymphoma), schistosoma haematobium (bladder cancer),
HPV (human papillomavirus) (cervical and oral cancers),
clonorchis sinensis (cholangiocarcinoma) and hepatitis B and
C viruses (hepatobilliary cancers) to name a few (Kuper et al.,
2000). However, the mechanisms by which each infection
promotes cancer are not entirely linear. Hepatitis B and C
viruses for example do not neatly fit into a category of direct
or indirect carcinogens. Rather, it is likely that they contribute
to carcinogenesis via a host of mechanisms including the
introduction of viral products to the cancer cell as well as by
inducing chronic inflammation (Tsai and Chung, 2010). As it is
beyond the scope of this article, Moore and Chang provide an
extensive review of the relationship between viruses and cancer
(Moore and Chang, 2010). Similarly, the relationship between
H. Pylori and gastric cancer is also multifactorial. H. Pylori both
promotes inflammation of gastric epithelial cells and also induces
specific protein changes and gene mutations (Chiba et al., 2008).
Notably, not all patients with select infections go on to develop
cancer. The ways in which infections promote cancer either by
directly inducing changes to host cells or inducing a chronic
inflammatory response varies significantly. In addition to efforts
to eradicate infections with known cancer associations, such as
with the HPV vaccine or H. Pylori treatment, it will be equally
important to understand why some people are protected while
others progress to infection-associated cancers.
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Intrinsic Mechanisms Leading to an
Inflammatory Microenvironment
The mechanisms by which extrinsic factors can promote a pro-
tumorigenic environment are inextricably linked to the ways
in which genetic and epigenetic alterations can aide a cancer
cell escape host defense mechanisms. Importantly, oncogenic
mechanisms require a tight bidirectional cross talk of cancer
cells with their microenvironment mediated by the production
of chemokines, cytokines, growth factors, prostaglandins, ROS
and nitrogen oxygen species (NOS), as well as recruitment of
inflammatory cells into the tumor tissue. Many of the powerful
oncogenes possess the ability to initiate a signaling cascade
resulting in an inflammatory response in the proximity of the
cells that harbor those oncogenes. The discovery that many
oncogenic drivers are deeply involved in the modulation of a
pro-oncogenic microenvironment and inflammatory processes
suggested possible paracrine effects where altered expression or
activity of the same genes in a stromal and/or immune cell may
dictate epithelial fate and vice versa.

Tumor-Elicited Inflammation, Oncogenes
and Tumor Suppressors
The advent of high-throughput sequencing techniques has led
to the identification of hundreds of genetic and epigenetic
alterations in genes associated with signaling pathways involved
in cancer. Historically, genetic and functional studies have
focused on a better understanding of the consequences of
oncogenic activation in the context of the tumor cell itself
and thus far only a limited number of studies has assessed
their contribution beyond the cell-intrinsic effects. Here, we
review common oncogenic and tumor suppressor pathways that
contribute to tumor-associated inflammation (Figure 1). These
include receptor and non-receptor tyrosine kinases (TKs), RAS
signaling, TP53, APC, and PTEN.

Tyrosine Kinases
The activity of (receptor) TKs is central to many cellular
processes. TKs also play cardinal roles in cytokine function, and
are crucial for the signal transduction of various pro- and anti-
inflammatory cytokines such as TNFα, IL-6, and IL-10. Due to
their central status, TKs have received heightened attention as
therapeutic targets, partially due to their potential to combat the
chronic inflammatory state associated with many malignancies
such as rheumatoid arthritis (RA), cardiovascular diseases,
and cancer. In solid and blood cancers, TKs are frequently
mutated leading to ligand-independent constitutive activation of
downstream signaling pathways. For example, more than 90% of
the non-leukemic classical myeloproliferative neoplasms (MPNs)
are clearly driven by abnormal JAK2 activation, especially the
cytokine receptor/JAK2 pathways and their downstream effectors
(Passamonti et al., 2011). In line with a crucial role of JAK2 in
cytokine signal transduction, MPN patients are characterized by
high levels of pro-inflammatory cytokines in their circulation,
which can be reduced by JAK inhibitor therapy (Verstovsek et al.,
2010; Geyer et al., 2015; Mondet et al., 2015). Indeed, it is believed
that the impressive clinical activity of ruxolitinib is a result of

its anti-inflammatory effects. This suggests that aberrant JAK-
STAT pathway activation is important for the induction and
maintenance of the inflammatory state inMPN patients. Notably,
whether JAK2 is mutated or not, the efficacy of ruxolitinib is
comparable (Deininger et al., 2015). We have recently shown
that both mutant and non-mutant hematopoietic cells are the
source of pro-inflammatory cytokines in MPN mouse models
and patients and that JAK-STAT signaling in mutant and non-
mutant cells has to be inhibited in order to achieve therapeutic
response (Kleppe et al., 2015b). This data suggests that sequential,
interlinked, and selective steps, which bear clear resemblance
to tumor-cell-organ microenvironment interactions commonly
found in solid cancer and metastasis, also drive aberrant cytokine
production in hematological malignancies. Other TKs whichmay
be involved in the induction of an inflammatory state include c-
Kit, EGFR, PDGFR, RET, VEGFR, c-Fms, and FGF (extensively
reviewed in Yang and Karin, 2014).

RAS Signaling
The RAS superfamily of small GTPases comprises a group
of more than 150 small G proteins. RAS proteins are signal
transduction molecules central to many cellular processes.
Mutations in one of the three canonical RAS genes, H-RAS,
N-RAS, and K-RAS, are among the most common genetic
abnormalities in human cancers. It is well established that
aberrant RAS activation drives neoplastic transformation by
influencing diverse aspects of the malignant phenotype in a
cell autonomous manner, most importantly cell proliferation,
survival, and mobility. Interestingly, more recent reports suggest
that the role of oncogenic RAS extends beyond the effects on
the tumor cell itself. Oncogenic Ras causes genotoxic stress and
senescence in cells (Coppé et al., 2008). Intriguingly, senescent
cells are known to secrete a myriad of inflammatory factors. In
line, oncogenic Ras has been shown to accelerate and amplify a
senescence-associated secretory phenotype that largely depends
on IL-8 and IL-6 secretion thereby promoting tumorigenesis
through effects on non-transformed cells during the process of
inducing senescence (Coppé et al., 2008). Interestingly, high Ras
activity in pancreatic acinar cells leads to cellular senescence
and is sufficient to induce an inflammatory phenotype that
is similar to the histological features of chronic pancreatitis
suggesting that mutant K-ras is a cause rather than a secondary
effect of chronic pancreatitis (Ji et al., 2009). Notably, patients
with chronic pancreatitis have an increased risk of developing
pancreatic cancer and K-RASmutations are commonly found in
chronic pancreatitis (Lüttges et al., 2000), but also observed in
hyperplastic ducts within normal pancreas (Tada et al., 1996).
Indeed, a large proportion of the adult human population
possesses RAS mutations in tissues besides the pancreas,
including colon and lung. Ras-mediated cytokine production
has been repeatedly linked to activation of the inflammatory
regulator NF-κB. It has been shown that in presence of mutant
Ras, inflammatory stimuli initiate a NF-κB-dependent positive
feedback loop involving Cox-2 resulting in prolonged Ras
signaling and chronic inflammation and precancerous lesions
in mice (Daniluk et al., 2012). In keratinocytes, expression
of oncogenic Ras instigates an autocrine loop through IL-1α,
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IL-1R, and MyD88 leading to phosphorylation of IκBα and
NF-κB activation (Cataisson et al., 2012). Moreover, activation
of oncogenic Ras has been shown to enhance expression of
squamous cell carcinoma antigens 1 and 2 and IL-6 via the
NF-κB pathway (Catanzaro et al., 2014). K-RAS mutations
mediate therapeutic resistance and are associated with poor
prognosis, and until now, no effective anti-RAS inhibitor has
reached the clinic (Cox et al., 2014). Given the growing body
of evidence linking aberrant RAS and NF-κB it is intriguing to
speculate that the NF-κB pathway could be exploited as potential
preventive and therapeutic target in cancers harboring mutant
RAS.

TP53
TP53 is a stress-responsive transcription factor (TF) and acts as
a major tumor suppressor inhibiting neoplastic transformation
by preventing the escalation of chronic tissue imbalance (Cooks
et al., 2014). TP53 is a central hub for diverse stress signals,
including ROS and NOS, cytokines, and infectious reagents
(Cooks et al., 2014). TP53 also participates in the control of
multiple cell cycle checkpoints. Mutations disabling TP53 tumor
suppressor functions are the most frequent events in human
cancer. For example, molecular alterations of TP53 are a defining
feature of ovarian high-grade serous carcinomas (Cancer
Genome Atlas Research, 2011; Vang et al., 2016). In addition
to the cell autonomous effects of TP53 inactivation/dysfunction,
compelling evidence suggests that TP53 missense mutants may
not merely lose their tumor suppressive functions, but can
also acquire new oncogenic properties through the activation
of cell non-autonomous pathways. Specifically, multiple studies
have linked mutant TP53 (such as TP53 p.R273H) and chronic
inflammation to tumorigenic progression through different
molecular interactions, including NF-κB (Cooks et al., 2013; Di
Minin et al., 2014; Cui and Guo, 2016). In line, it has been
demonstrated that TP53 mutants interact directly with NF-κB
and that both factors impact the other’s binding at diverse
sets of active enhancers thus promoting a unique enhancer
landscape of cancer cells in response to chronic inflammation
(Rahnamoun et al., 2017). Moreover, clinical studies in primary
breast carcinoma, head and neck squamous cell carcinoma,
and CRC suggest that TP53 inactivation or deletion induces
inflammation (Yin et al., 1993; Brentnall et al., 1994; Hussain
et al., 2000; Linderholm et al., 2000; Lee et al., 2007). The effects
of Tp53 loss have also been studied in diverse mouse models.
For example, in a mouse model of prostate cancer, Tp53 loss
resulted in enhanced transcription of cytokines and chemokines,
accumulation of ROS and protein oxidation products, enhanced
macrophage activation and neutrophil clearance, hypersensitivity
to LPS, and high expression of metabolic markers (Komarova
et al., 2005). Further, Lujambio and colleagues showed that
Tp53-deficient hepatic stellate cells secrete factors that stimulate
polarization of macrophages into a tumor-promoting M2 state
leading to increased liver fibrosis and accelerated transformation
of adjacent hepatocytes (Lujambio et al., 2013). Collectively,
inhibition of tumor-associated inflammation is likely another
important tumor suppressive function of TP53.

APC
CRC represents a paradigm for the link between inflammation
and cancer (Lasry et al., 2016). Patients with inflammatory bowel
disease, such as ulcerative colitis, are more likely to develop
CRC and non-steroidal anti-inflammatory drugs show strong
preventive effects (Chia et al., 2012). In mouse models of colitis,
genetic, and functional studies have shown that inflammation
alone suffices for tumor development and that inflammation-
induced DNA damage can link chronic colitis and tumor
initiation. Moreover, colorectal tumors exhibit tumor-elicited
inflammation and upregulation of inflammatory signature genes
(Wang and Karin, 2015). In fact, the type, density, and location
of immune cells within human colorectal tumors have proven
to be a reliable measure of patient outcome (Galon et al.,
2006; Grivennikov et al., 2010; Norton et al., 2015). Inactivating
mutations in APC, resulting in aberrant β-catenin activation,
are found in 80% of all human colon cancers. In addition,
APC loss predisposes humans to familial adenomatous polyposis,
an autosomal dominant syndrome, in which patients develop
numerous colorectal polyps (Groden et al., 1991). The tumor
suppressor activity of APC has been extensively studied in the
setting of epithelial transformation. In mice, the presence of an
autosomal dominant Apc mutation in intestinal epithelial cells
(IECs) leads to tumor development upon inactivation of the
other allele due to spontaneous loss of heterozygosity (LOH)
(Moser et al., 1990, 1993; Jackstadt and Sansom, 2016). Colon-
specific deletion of Apc leads to formation of colorectal tumors
with upregulation of pro-inflammatory cytokines. Interestingly,
this work suggests that epithelial barrier defects and microbial
invasion into the TME leads to an activation of IL-23 producing
myeloid cells, which, in turn, drive IL-17 mediated tumor
growth (Grivennikov et al., 2012). Chronic NF-κB activation in
IECs has been shown to lead to the development of intestinal
adenomas linking inflammation and tumorigenesis (Greten and
Karin, 2004; Vlantis et al., 2011). In line with a pro-tumorigenic
function of NF-κB in CRC, crossing transgenic mice with chronic
epithelial NF-κB activation to ApcMin/+ mice leads to accelerated
LOH and intestinal tumor initiation through iNOS up-regulation
(Shaked et al., 2012). Intriguingly, little is known about the
consequences of APC inactivation in immune cells. While it
has been shown that Apc mutant mice are characterized by an
altered intestinal immune homeostasis and impaired control of
inflammation by regulatory T lymphocytes (Gounaris et al., 2009;
Akeus et al., 2014; Chae and Bothwell, 2015), only a recent
study demonstrated that Apc inactivation in T-cells renders
the immune system unable to tackle gut inflammation due to
deficient T-cell activation (Agüera-González et al., 2017).

PTEN
The phosphatase PTEN (phosphatase and tensin homolog
deleted on chromosome 10) functions as tumor suppressor
by inhibiting PI3K-dependent cellular proliferation, survival,
growth, and motility. PTEN function is frequently disrupted
in human cancer, but has also been shown to play a role
in other diseases (Leslie and Downes, 2004). The phosphatase
has originally been identified as tumor suppressor through its
mutation leading to abolished or greatly decreased phosphatase
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activity. More recently, it has been shown that PTEN protein
expression is lost in a greater number of patients as originally
expected based on mutational frequency. Both genetic and
epigenetic mechanisms are discussed as possible mechanisms
causing loss of PTEN protein expression in the absence of coding
sequence mutations (Leslie and Downes, 2004). PTEN represents
another tumor suppressor that has been shown to exhibit its
oncogenic functions, at least in part, through manipulation of
the microenvironment by triggering the release of inflammatory
mediators from tumor cells. For example, PTEN dysfunction has
been shown to increase the expression and signaling of pro-
inflammatory chemokine CXCL8 in prostate cancer cells that
resulted in a coordinated response of both tumor and stromal
cells. Increased release of Cxcl8 from Pten-deleted tumor cells
augmented the sensitivity and responsiveness of tumor cells to
stromal chemokines by concurrently inducing the upregulating
of chemokine receptors on tumor cells and inducing stromal
chemokine production (Maxwell et al., 2014). In one study,
progression of Kras mutant PDAC was associated with deletion
and loss of expression of Pten. Interestingly, Pten loss and
activation of K-Ras cooperated and accelerated pancreatic cancer
development by promoting NF-κB activation and its cytokine
network, which in turn promoted stromal activation and immune
cell infiltration (Ying et al., 2011). Similarly, Kim and colleagues
showed that knockdown of tumor suppressor Pten and Tp53
in breast cancer cells synergized to activate a pro-inflammatory
Il-6/Stat3/NF-κB signaling axis (Kim et al., 2015). In addition,
loss of Pten has been shown to prevent anti-tumor immunity
(Spranger et al., 2015; Peng et al., 2016). In conclusion, available
data suggests that loss of PTEN leads to activation of an
inflammatory loop that contributes to malignant transformation.

Genetic Studies of the Tumor
Microenvironment
About two decades ago, Fattaneh Tavassoli and his team were
the first to report genetic alterations, specifically LOH at
microsatellite markers, in the stroma of mammary carcinomas
(Moinfar et al., 2000). Since then a number of human studies have
analyzed the mutational spectrum of selected tumor suppressors
and LOH/allelic imbalances of specific markers. In 2001, Kurose
and colleagues analyzed invasive LCM-procured epithelium and
stroma from adenocarcinoma samples of the breast and reported
that both epithelial and stromal cells harbor LOH of specific
markers including those at 10q23 (in the vicinity of PTEN),
17p13–p15 (in the vicinity of TP53) and 16q24 with a higher
frequency in the neoplastic epithelial compartment (Kurose
et al., 2001). Around the same time, a different group reported
LOH on chromosome 17p13, 3p25-26, and 9q32-33 in the
stroma of invasive urothelial carcinoma (Paterson et al., 2003).
In 2002, Kurose et al. reported that mutations in the tumor
suppressors PTEN and TP53 occur at a high frequency in
the neoplastic breast epithelium and/or stroma (Kurose et al.,
2002). Charis Eng and her team followed then up on their
work with a larger study analyzing the mutational status of
TP53 and LOH in 218 invasive breast cancers patients (Patocs
et al., 2007). They found a high frequency of TP53 mutations in

hereditary (49%) and sporadic tumor (27.4%) stroma. Similarly,
60% (hereditary) and 51% (sporadic) of the patients carried
LOH or allelic imbalances in the stroma. In addition to previous
studies, the authors related their genetic findings to clinical
and pathological features of the disease. Interestingly, in the
sporadic group, the presence of TP53 mutations in the stroma
was associated with lymph node status and nodal metastasis.
Those observations suggest that genetic alteration of TP53 in
the stroma may accelerate tumor growth. Overall, numerous
independent investigators have described a variety of genetic,
epigenetic, and genomic alterations in the stroma of a broad
variety of solid tumors and inflammatory conditions (Man et al.,
2001; Tuhkanen et al., 2004; Hu et al., 2006; Ishiguro et al., 2006;
Kim et al., 2006; Bian et al., 2007; Joshua et al., 2007; Weber
et al., 2007; Yagishita et al., 2008).While such findings still remain
controversial (Allinen et al., 2004), it challenges the current
paradigm that the microenvironment, albeit aberrant, would not
be targeted by genetic alterations and highlights the necessity to
further our mutational understanding of this crucial component.
Importantly, the finding of genetic and epigenetic changes in the
stroma raises a number of questions, regarding the mechanisms
leading to these genetic lesions, the populations in which they are
found, their functional importance to tumor development, and
clinical implications for patients with mutations in the stroma.
Using a variety of different approaches, multiple groups have
tried to model how modulation of known tumor suppressors
and/or oncogenes in stromal cell types may affect malignant
transformation using mouse models. Early work by the group
of Terry van Dyke suggested that oncogenic stress mediated by
an initial driver event in the epithelium would create pressure
in the microenvironment that leads to loss and selection of a
Tp53-deficient stromal compartment (Hill et al., 2005). This is
in line with the knowledge that stromal fibroblasts with intact
Tp53 can render the microenvironment less supportive of the
survival and spread of adjacent tumor cells by secretion of a
spectrum of growth inhibitors (Komarova et al., 1998; Moskovits
et al., 2006). Intriguingly, Hill and colleagues further showed
that loss of Tp53 in the stromal compartment disrupts the
homeostasis between the epithelial and stromal tissues ultimately
leading to loss of Tp53 also in the tumor suggesting that
stromal loss may actually precede epithelial Tp53 loss (Hill et al.,
2005; Palumbo et al., 2015). About a decade later, Farmaki and
colleagues also showed that the TME induces strong selective
pressure onto stromal cells, selecting specific subpopulations of
stromal fibroblasts that can survive and expand more efficiently
within the TME (Farmaki et al., 2012). Notably, higher numbers
of cancer cells were associated with a stronger proliferative
advantage of Tp53-deficient fibroblasts as compared to wild-
type cells in line with the concept that loss of Tp53 heightens
the sensitivity of mutant fibroblasts to epithelial-derived
growth factors. Mechanistic studies revealed that the oncogenic
effect of Tp53-deficient microenvironment is mediated by
enhancing the levels of inflammatory cytokines/chemokines
and immunosuppressive molecules, which disturbed immune
cell composition and exacerbated immunosuppressive function
within themicroenvironment (Guo et al., 2013). Further, ablation
of Tp53 in fibroblasts has been shown to promote tumor growth
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in a murine prostate cancer model (Addadi et al., 2010). While
TP53 has been the major focus of most mechanistic studies,
it is conceivable that mutational inactivation of other tumor
suppressors as well as epigenetic alterations such as histone
modifications and DNA methylation may be responsible for the
generation of stromal cells with pro-tumorigenic properties (Hu
et al., 2005; Peng et al., 2005; Bar et al., 2009). It will be important
to uncover the identity and regulation of secreted factors that are
responsible for the tumor cell-induced inhibition of stromal TP53
induction and other potential tumor suppressors.

Clonal Hematopoiesis and Inflammation
Leukocytes represent a crucial component of the inflammatory
TME. The various leukocyte subsets, including macrophages,
neutrophils, basophils, and lymphocytes can interact with each
other, but also with non-hematopoietic stromal cell types and
epithelial tumor cells, thereby orchestrating tumor progression
and invasiveness. To date, many groups have studied the
prognostic value of infiltrating immune cells in solid tumors
(reviewed by Barnes and Amir, 2017; Hammerl et al., 2017).
With the increasing interest in harnessing the immune system to
treat cancer with checkpoint inhibitors and other novel agents, a
better understanding of the composition of the immune infiltrate
as prognostic marker is of increasing importance. However, the
simple presence of a specific immune cell type in the TME
does not predict their function. For example, macrophages
cover a continuum of functional states that allows them to
fulfill different tasks depending on the microbial and cytokine
milieu. Further complicating the scenario, recent data challenge
the paradigm that the integrity of the genome of immune
cells is intact in solid cancer patients. At first, a large body
of genetic data emerged demonstrating that elderly individuals
without signs of overt leukemia harbor somatic mutations in
hematopoietic cells leading to expansion of mutant blood cells.
Most of the mutations were identified in genes encoding for
known leukemia drivers such as the chromatin modifiers TET2,
ASXL1, and DNMT3A (Busque et al., 2012; Genovese et al.,
2014; Jaiswal et al., 2014; Shlush et al., 2014; McKerrell et al.,
2015; Young et al., 2016; Buscarlet et al., 2017). Not surprisingly,
follow up studies showed that patients with clonal hematopoiesis
(CH) are at an increased risk of developing hematological
malignancies. However, the same study showed that patients with
CH are also at an increased risk of atherosclerotic cardiovascular
disease compared to individuals without CH (Jaiswal et al.,
2014, 2017a,b). Atherosclerotic cardiovascular disease has long
been thought of as an inflammatory disease; however, only
recently, data from the CANTOS study was published reporting
that selectively targeting inflammation by using a therapeutic
monoclonal anti-IL-1β antibody can reduce cardiovascular risk
(Ridker et al., 2017a). But is there a mechanistic link between
the presence of mutant cells in the blood, the development
of atherosclerotic cardiovascular diseases, and inflammation?
Intriguingly, a growing body of evidence suggests a causal link
between mutations in epigenetic modifiers seen in CH and
inflammation. For example, Tet2-deficient macrophages exhibit
an increase in inflammasome-mediated IL-1β secretion, which
is associated with accelerated development of atherosclerosis

in these mice (Fuster et al., 2017). Tet2 also seems to
exhibit a suppressive role in the regulation of immunity and
inflammation, independent of its role in DNA methylation
and hydroxymethylation, but by repression of transcription
via histone deacetylation (Zhang et al., 2015). Specifically,
loss of Tet2-mediated gene transcription resulted in increased
expression of inflammatory mediators upon injection of the
mice with the highly potent inflammatory stimulus LPS. Further,
Tet2-deficient mice were more susceptible to experimental colitis
and endotoxin shock (Zhang et al., 2015). Dnmt3a-deficient
mast cells display an increased sensitivity to acute and chronic
inflammatory stimulation (Leoni et al., 2017). Yet in another
immune cell type, both Dnmt3a and Tet2 seem to be important
for the regulation of macrophage activation, polarization and
inflammation (Yang et al., 2014; Li et al., 2016). It is likely that
this is just the tip of the iceberg and the coming years will provide
a greater understanding of the functional and regulatory roles
of these important epigenetic regulators in different immune
compartments, myeloid malignancies, solid tumors, and non-
malignant inflammatory diseases.

The accumulating body of evidence that older individuals
have clinically unapparent CH, together with the increasing
awareness of the importance of microenvironment in tumor
progression, we hypothesized that immune cells infiltrating
tumors might be characterized by clonally selected mutations.
Targeted sequencing analysis of leukocytes isolated from a
small number of tumors from treatment naïve breast cancer
patients demonstrated that indeed infiltrating CD45-positive
hematopoietic cells harbor somatic mutations in cancer genes,
including BCOR, TET2, DNMT3A, in a subset of patients
(Kleppe et al., 2015a). These mutations were not found in
peripheral blood cells, admixed tumor cells, or epithelial
germline samples. This finding suggests that mutant infiltrating
leukocytes may interact with cancer cells, which has significant
clinical implications for tumor development and response to
treatment. Our data was partially corroborated by a recent
report that hematopoietic cells are also genetically abnormal
in a fraction of patients with advanced solid cancers even at
a younger age (Coombs et al., 2017). Coombs and colleagues
analyzed paired tumor and blood samples from ∼8,000 patients
with advanced solid cancers. In total, one fourth of all
patients carried at least one CH mutation in the blood
sample, with 4.5% of the patients harboring presumptive driver
mutations (CH-PD). CH was associated with increasing age,
tobacco use, and prior radiation therapy. Further, patients
with CH had an increased risk of hematologic cancers and
CH-PD was associated with a shorter survival. Notably, the
primary cause of death was progression of the primary non-
hematopoietic tumor. While both studies support the intriguing
idea that immune cells are genetically abnormal which could
be of utmost importance from a diagnostic and therapeutic
standpoint, there are fundamental differences in the study
design and the conclusions. Regardless, neither study data
discerns between the different leukocyte subsets. As such,
it will be critical to assess the distribution and frequency
of CH mutations within the different hematopoietic/immune
compartments.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 11 June 2018 | Volume 6 | Article 56

https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles


Comen et al. Chronic Inflammation, Cancer, and the Microenvironment

PREVENTION AND THERAPEUTIC
INTERVENTION

Checkpoint Blockade Immunotherapy
Historically, there has been a longstanding clinical interest
in the overlap between the immune system and cancer. Most
famously, in the early nineteenth century, William Coley
developed a “Coley’s Vaccine,” a concoction of bacteria, after
noticing tumor regression among patients who developed high
fevers from Steptococcus pyogenes infection. His treatments
and the research therein largely fell out of favor with the
advent of surgical advances, radiation, and chemotherapy. In
the last few years, however, the growing understanding of the
tumor microenvironment and interplay between the immune
system and cancer has dramatically changed the landscape of
immunotherapy options. In addition to investigational efforts
into vaccines and oncolytic viruses, several immunotherapy
treatments have recently been approved. Specifically, an
understanding of immune response and activation in cancer,
and in particular the role of immune blockade by CTLA-4
(cytotoxic T lymphocyte-associated protein 4) and PD-1/PD-L1
(programmed cell death protein 1/programmed cell death
protein ligand 1) has revolutionized the treatment of several
types of cancers, including but not limited to melanoma,
non-small cell lung cancer, urothelial, head and neck, and
renal cancers. Ipilimumab was the first anti- CTLA-4 antibody
to be approved in advanced melanoma (Sharma and Allison,
2015). In determining which cancers benefit from checkpoint
inhibition, evidence suggests that those with a higher mutational
burden (such as in response to tobacco) and in some instances
microsatellite instability-high (MSI-h) tumors may respond best
(Pleasance et al., 2010; Snyder et al., 2014; Le et al., 2015). Not
surprisingly, given the activation of the immune system with
these therapies, oncologists have had to become increasingly
facile with managing a host of immune related side effects
(Postow and Hellmann, 2018; Postow et al., 2018). For a more
extensive review of clinically relevant checkpoint inhibitors and
immunotherapy please see: (Farkona et al., 2016).

Non-steroidal Anti-inflammatory Drugs
(NSAIDs)
COX enzymes (COX1 and COX2) are the primary targets of
non-selective non-steroidal anti-inflammatory drugs (NSAIDs),
which include aspirin, indomethacin, piroxicam, sulindac, and
ibuprofen. Inhibition of COX enzymes results in the inhibition of
prostaglandins, which play important roles inmany physiological
processes. NSAIDs are commonly used for the treatment of fever,
pain, and swelling. Slowly, albeit still somewhat controversial and
largely based on epidemiologic studies, NSAIDs have emerged
as drugs with potential anti-cancer activity which may decrease
the incidence and mortality of colon, breast, stomach, and lung
cancers (reviewed in Ulrich et al., 2006, Figure 2). For example,
chronic use of aspirin has been suggested to reduce the risk
of pro-inflammatory conditions such as inflammatory bowel
disease and the risk to develop colorectal cancer (Chia et al.,
2012). Similarly, different studies suggest that ibuprofen might
also stop certain cancers from developing (Harris et al., 2003;

Johnson et al., 2010). Overall, a large body of observational
data regarding a protective effect of NSAIDs from developing
certain cancers, specifically CRC, is strong. A recently performed
meta-analysis investigated the relationship between NSAIDs and
lymph nodes/distant metastasis. The study suggests that NSAIDs
hold potential in themanagement of cancermetastasis, regardless
of whether NSAIDs are used at pre-diagnosis or post-diagnosis
(Zhao et al., 2017). At this point, it cannot be denied that anti-
inflammatory compounds may represent novel, less toxic, agents
for cancer therapy, nonetheless, carefully designed, controlled,
blinded, and randomized trials are required to create a benefit-
risk assessment and address many outstanding questions such as
the lowest effective dose, the age at which to initiate therapy, the
duration of treatment, and which population benefits of NSAIDs
chemopreventive activity. Toward this end, the AspECT trial, a
large phase III, randomized study is designed to assess the long-
term chemoprevention effect of esomeprazole in combination
with or without aspirin in patients with Barrett’s metaplasia
(NCT02070757).

Glucocorticoids
Glucocorticoids (GCs) have been used in the clinic for over
half a century. Indeed, due to their strong anti-inflammatory
and immunosuppressive properties, GCs are the most prescribed
immune suppressionmedications worldwide. Orally inhaled GCs
are commonly used to suppress various allergic, inflammatory,
and autoimmune disorders. For example, they are by far the
most effective drugs for the treatment of asthma, which is
largely due to their efficacy to inhibit inflammatory cytokine gene
expression (Barnes, 2011). GCs exhibit multiple modes of action
and interfere with the function of basically all immune cell types.
For example, GCs suppress cytokine release and cell migration,
induce apoptosis, and change cell differentiation fates (Perretti
and Ahluwalia, 2000). In oncology, GCs have only shownmodest
efficacy in breast and prostate cancer and not in other cancer
types. In general complexity and controversial observations are
associated with GC treatment in non-hematologic cancer types
(Lin andWang, 2016). Nonetheless, GR antagonists are currently
tested in several clinic trials in combinations with chemotherapy,
including breast, prostate, and lung cancer. In hematological
cancers, GCs such as dexamethasone have proven astonishingly
effective in the treatment of lymphoid neoplasms including acute
lymphoblastic leukemia, chronic lymphocytic leukemia, MM,
Hodgkin’s lymphoma, and non-Hodgkin’s lymphoma where GCs
induce growth arrest and apoptosis. GC-induced apoptosis of
lymphoid cells is sought to be induced via multiple signaling
pathways including Bim, a member of the Bcl2 family, and
suppression of cytokines via inhibition of the activity of different
TFs such as NF-κB (Lin and Wang, 2016). In contrast, only little
is known about the mode of action of GCs in solid cancers.

JAK Inhibitors
The Janus family of kinases (JAKs) comprises four members:
JAK1, JAK2, JAK3, and TYK2. JAKs are critical for the signal
transduction of about 60 different cytokines that rely on type I
and II cytokine receptors. Many of these cytokines are central to
the growth of malignant cells and drivers of immune-mediated
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FIGURE 2 | Anti-inflammatory drugs. The tumor microenvironment (circle) is composed of tumor cells, fibroblasts, endothelial cells, pericytes, and various cells

associated with the immune system such as macrophages and NK cells. Importantly, within the microenvironment a tight bidirectional cross talk of cancer cells with

their microenvironment occurs which is mediated by the production of chemokines, cytokines, growth factors, prostaglandins, ROS, and NOS, as well as recruitment

of inflammatory cells into the tumor tissue. Due to the complex nature of the microenvironment, a large number of druggable dependencies have been identified and

are currently under investigation as therapeutic targets for anti-inflammatory drugs.

diseases. Consequently, JAKs have emerged as a new class of
pharmacologic agents. The first selective JAK inhibitor to enter
clinical trials was tofacitinib. Tofacitinib potently inhibits JAK3
and JAK1 and to a lesser extent JAK2 and shows a high degree
of kinome selectivity (O’Shea et al., 2013). Tofacitinib is the
first JAK inhibitor approved for the treatment of moderate to
severe RA and active psoriatic arthritis. Mechanistically, as a JAK
inhibitor, tofacitinib efficiently blocks the biological effects of
common γchain cytokines including IL-2, IL-4, IL-15, and IL-21
and consequently suppresses allergic Th2 responses (Fukuyama
et al., 2015). For example, in a Th2-dependent asthma mouse
model, tofacitinib reduces pulmonary eosinophilia (Kudlacz
et al., 2008). Further, tofacitinib has been shown suppress
the differentiation of pathogenic Th1 and Th17 cells as well
as innate immune signaling by limiting the production of
pro-inflammatory cytokines in a LPS-induced sepsis model
(Ghoreschi et al., 2011). Interestingly, tofacitinib and ruxolitinib,
a JAK1/2 inhibitor, are currently being tested in patients with skin
and hair disorders, including the autoimmune disease alopecia
areata, and mild to moderate atopic dermatitis (Bissonnette et al.,
2016; Mackay-Wiggan et al., 2016; Liu et al., 2017). Also other
pharmacologic agents targeting different JAK family members
have found increasing attention as anti-inflammatory targets in
different disease contexts. Ruxolitinib (Jakafi) was the first FDA
approved JAK inhibitor for the treatment of myelofibrosis (MF)
and, more recently, for patients with polycythemia vera (PV)
who have had an inadequate response to hydroxurea (Verstovsek
et al., 2010; Raedler, 2015). Ongoing clinical trials also assess
the efficacy of ruxolitinib in patients with post-MPN AML and

CML with minimal residual disease, another form of MPN
(Eghtedar et al., 2012; Pemmaraju et al., 2015; Assi et al., 2018).
Interestingly, on a mechanistic level, recent work from Tarafdar
and colleagues suggests that CML stem cells downregulate MHC-
II, allowing them to evade the host immune response. They
found that this deregulation can be reverted by JAK inhibition
and IFNγ (Tarafdar et al., 2017). Besides ruxolitinib, other
JAK2 inhibitors are also under clinical development for the
treatment of MPNs (Kontzias et al., 2012) and their strong anti-
inflammatory potential provides a rationale for repurposing these
drugs as solid tumor therapeutics (Quintás-Cardama et al., 2011;
Plimack et al., 2013; Buchert et al., 2016). However, clinical
studies of different JAK inhibitors in solid tumors have been
marked by lack of activity. For example, a phase 1 study of JAK1/2
inhibitor AZD-1480 in solid tumor patients was discontinued
due to unusual adverse side effects and lack of clinical activity
(Plimack et al., 2013). A comprehensive table listing clinical trials
conducted with JAK inhibitors can be found in Buchert et al.
(2016). Despite initial excitement, in 2016 Incyte discontinued
several clinical trials due to insufficient level of efficacy including:
the phase III study (JANUS 2) of ruxolitinib or placebo plus
capecitabine in patients with advanced or metastatic pancreatic
cancer, the phase II sub-study of ruxolitinib in patients with
metastatic colorectal cancer and lowCRP, and the phase II studies
in breast and lung cancer. In addition, Incyte discontinued
the investigation of INCB39110, a selective JAK1 inhibitor as
first-line treatment for metastatic pancreatic cancer, however,
preclinical studies still continue. The JAK/STAT pathway also
presents new potential targets in graft-vs.-host disease (GvHD).
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Despite major improvements in allogeneic hematopoietic stem
cell transplantation (HSCT), GvHD still remains a matter of
concern, especially if patients show no adequate response to
systemic corticosteroid. Corticosteroid-refractory (SR) acute and
chronic GvHD is associated with poor prognosis and therapeutic
options for salvage therapy are needed. Due to its strong
anti-inflammatory properties, multiple groups have performed
retrospective studies to assess the potential of ruxolitinib as
salvage therapy in steroid resistant GVHD patients (Zeiser et al.,
2015;Mori et al., 2016; Khandelwal et al., 2017). The data suggests
that while low-dose ruxolitinib shows potential in this setting, it
will be important to determine in prospective studies the optimal
dose to achieve the best-tolerated dose and an optimized tapering
schedule to avoid withdrawal symptoms which are also observed
in MF patients upon discontinuation of the drug. Overall, JAK
inhibitors have a wide range of indications due to their central
role in the regulation of cytokine signaling. It can be expected that
themarket for JAK inhibitors will continue to grow in the coming
years and, similarly, the field will probably move toward using
novel strategies to achieve more specific and versatile inhibition
of this important family of kinases.

Anti-cytokine Therapy
Cytokine and cytokine receptors have been recognized as
excellent drug targets for a variety of diseases characterized by
chronic inflammation due to their important function as rate-
limiting signaling molecules (Feldmann, 2008). TNFα blockade
in patients with rheumatoid arthritic was the first major success
demonstrating the beneficial effect of anti-cytokine therapy in
a disease associated with chronic inflammation (Elliott et al.,
1993; Feldmann and Maini, 2001). The role of TNFα and IL-
6 as master regulators of tumor-associated inflammation and
tumor-promoting functions makes them promising targets for
adjuvant anti-cancer therapy (Yan et al., 2006; Grivennikov and
Karin, 2011). Clinically, elevated TNFα serum levels have been
detected in patients with a wide range of tumor types, although
TNFα is not universally detectable. Notably, high levels of TNFα
have been correlated with tumor stage, extent of para-neoplastic
complications, and worse survival. Due to a prospective study
showing that TNFα and IL-6 levels correlate with the degree
of disease, and PSA progression in prostate cancer patients,
TNFα and IL-6 are currently suggested as additional markers
that reflect the activity level of this disease (Michalaki et al.,
2004). Three biologics targeting TNFα are currently approved
including etanercept, infliximab, and adalimumab and different
small molecules that inhibit TNFα signaling or synthesis (for
example thalidomide) are under development. TNFα blocking
agents may not only find a place as anti-tumor agents, but
may have a role in controlling the severe cancer pain associated
with metastatic bone lesions. Similarly, anti-IL-6 therapy holds
potential to alleviate cancer-related symptoms. Several early
phase clinical studies with IL-6 targeting agents currently support
the hypothesis that IL-6 may be indeed an effective anti-
cancer target. Several humanized monoclonal antibodies against
soluble and membrane bound IL-6R (tocilizumab, REGN88)
or against IL-6 (siltuximab and sirukumab) are currently in
clinical trials at various development stages for several types of

cancer including MM, metastatic renal cell carcinoma, B-cell
lymphoproliferative diseases (Heo et al., 2016). A fully human
anti-IL-8 antibody, ABX-IL8, has shown promising therapeutic
efficacy in preclinical models (Yang et al., 1999; Huang et al.,
2002) however the therapeutic value of blocking IL-8 has yet to
be assessed in cancer patients. Excitingly, recently published data
from the CANTOS study, a randomized trial of the role of IL-
1β inhibition in atherosclerosis, suggests that anti-inflammatory
therapy targeting the IL-1β pathway could significantly reduce
incidence of lung cancer and lung cancer mortality (Ridker et al.,
2017b). CANTOSwas not formally designed as a cancer detection
or treatment trial and will need to be replicated; however, there is
precedent for other cancer types (MAPp1, NCT01767857; Lust
et al., 2009; Hong et al., 2014; Goel et al., 2016). In contrast
to the success stories of anti-TNFα and anti-IL-6 targeting
studies, little clinical success has been observed with therapeutics
targeting single cytokines in other diseases such as COPD or
asthma. One can speculate that the lack of clinical success of
therapeutic targeting single cytokines or cytokine receptors in
other inflammatory diseases may be due to the redundancy of
the cytokine network and thus required to target more than one
cytokine at a time. This may also be true for the treatment of
different types of cancer; however, it is too early to say what place
anti-cytokine therapy will claim in the field of oncology.

Interferons
IFNs present another group of cytokines which exhibit anti-
tumor activity and can activate the immune system and are
leveraged in the clinic (reviewed in Parker et al., 2016). Type I
IFNs, IFNα and IFNβ, can be produced and released by tumor
cells and by most cell types in the human body (Parker et al.,
2016). In contrast, IFNγ, a type II IFN, is primarily expressed
by T cells and NK cells. Regardless of their source, all IFNs can
act via intrinsic and extrinsic mechanisms thereby exerting direct
antitumor effects or indirect effects through antitumor immune
responses. Tumor cell intrinsic effects of IFNs are a result of
their capability to regulate the expression of genes involved in
various cellular processes such as cell growth, proliferation, and
survival. For example in patients with PV, IFNα has been shown
to inhibit the growth of JAK2V617F-mutant hematopoietic stem
and progenitor cells via activation of the p38 MAPK pathway (Lu
et al., 2010). Tumor cell extrinsic effects of IFNs are mediated
through their ability to influence the activity of nearly every
immune cell type including T cells, NK cells, monocytes, and
macrophages (Hervas-Stubbs et al., 2011). Recent work by Parker
and colleagues showed that intact type I IFN signaling is required
to induce anti-metastatic immunity by NK and CD8T cells.
Interestingly, their work further showed that the tumor cells
themselves were a source of type I IFNs and that suppression
of the tumor cells own IFN production functions as immune-
evasion mechanism (Bidwell et al., 2012). IFNs exert their
immunoregulatory effects on the cells of the immune system
through the regulation of tumor antigens on tumor cells (Greiner
et al., 1984) and antigen presentation by MHC complexes and
ligands for receptors of immune checkpoints (Propper et al.,
2003; Schreiner et al., 2004). Further, IFNs can regulate immunity
by triggering the release of “downstream” chemokines, cytokines,
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and interleukins such as IL-15 (Nguyen et al., 2002; Burkett
et al., 2004). Besides their role in immunity, IFNs also promote
angiogenesis and osteoclastogenesis which are important to
tumor growth (Cheon et al., 2014). Unlike most cytokines which
are targeted with antagonists, IFNα is used as therapeutic protein
in the treatment of patients with some types of solid cancer,
including Kaposi sarcoma, melanoma, and renal cell carcinoma,
and different hematologic malignancies such as MPNs, and viral
diseases (Kirkwood, 2002). The first type of IFN-based therapy
showed striking results on the survival rates of patients with
hairy cell leukemia and CML (Platanias, 2013; Stein and Tiu,
2013). While the discovery of the Philadelphia chromosome as
genetic alteration in CML and the arrival of BCR-ABL targeting
TKIs in the clinic have largely replaced the need for IFNα-
based treatment in this disease, some recent clinical studies have
shown that combination of imatinib and IFNα is superior to
either therapy alone, perhaps due to the fact that IFNα targets
preferentially CML stem cells (Talpaz et al., 2013). Notably, due
to its success in numerous clinical trials, IFNα is used as first-
line treatment choice for patients with high-risk PV (Barbui et al.,
2011; Falchi et al., 2015). Regardless of the specific use, IFN-based
therapies have their limitations due to dose-limiting side effects.
As a direct consequence, various other strategies such as the use
of IFNα conjugated with polyethylene glycol moieties or pattern
recognition receptor agonists to stimulate type I IFN production
in patients are under development aimed at increasing efficacy
over toxicity (Parker et al., 2016).

CSF1R Inhibition
In contrast to IFN-based therapy, colony-stimulating factor 1
receptor (CSF1R) has only recently emerged as a cancer drug
target. CSF1 is essential for the development and maintenance
of macrophages, and as such provides a critical target for
depleting these cells within the TME. The efficacy of CSF1R
inhibition, and its capacity to deplete TAMs seems to vary
depending upon tumor type and tissue. Administration of
BLZ945, a small molecule inhibitor of CSF1R, in a murine
model of glioma led to regression and long term increases in
survival (Pyonteck et al., 2013). Surprisingly, this reduction in
tumor burden was not associated with TAM depletion, but
rather TAMs underwent “re-education,” an alteration in gene
expression profile with decreased expression of M2-associated
anti-inflammatory markers. Meanwhile breast cancer models
utilizing either BLZ945 or CSF1R neutralizing antibodies led
to depletion of TAMs with limited therapeutic efficacy as a
monotherapy (DeNardo et al., 2011; Shiao et al., 2015; Olson
et al., 2017). Understanding why an environment is permissive
to maintaining TAMs in the face of CSF1R inhibition will
be critical for clinical implementation. One possibility is the
expression of GM-CSF, IFNγ, and CXCL10, factors that were
shown to rescue macrophage from BLZ945-mediated killing
(Pyonteck et al., 2013). Whether these factors are also causatively
involved in “re-education” remains to be determined. While
CSF1R inhibition as a monotherapy has shown various model
dependent results, combination therapy with cytotoxic agents
has shown broader applicability. In murine breast tumor models,
combinations of CSF1R inhibitors such as PLX3397 or BLZ945

with radiotherapy or paclitaxel displayed greater efficacy than
with either single agent alone (DeNardo et al., 2011; Shiao et al.,
2015; Olson et al., 2017). This combined efficacy does not appear
to be limited to cytotoxic therapy as in a murine model of
pancreatic adenocarcinoma PLX3397 treatment synergized with
immune checkpoint blockade (Zhu et al., 2014). In this setting,
treatment with PLX3397 led to a reduction in macrophages,
where the remaining cells underwent a reprogramming not
dissimilar from that seen in gliomas with BLZ945 treatment
(Pyonteck et al., 2013). Similar combined efficacy was also seen
in glioma models combining CSF1R inhibition with multiple
TKIs (Yan et al., 2017). In another study, prolonged CSF1R
inhibition led resistance through macrophage-derived IGF1
signaling and PI3K activation in tumor cells (Quail et al., 2016).
In this setting, combination CSF1R and PI3K/IGF1R inhibition
was capable of preventing relapse. Collectively, these studies
demonstrate that CSF1R inhibition shows promise in chemo
sensitizing combination therapies and in combination with TKIs.
Multiple clinical trials are currently ongoing evaluating CSF1R
inhibition with checkpoint immunotherapy, radiation therapy,
and targeted small molecules (Cannarile et al., 2017). In addition
to identifying the optimal tumor types for CSF1R inhibition,
proper dosing schedules will also need to be determined. While
the goal of many Phase I trials is to identify the maximum
tolerable dose of the drug, care should be taken to understand
the different outcomes of high dose and low dose CSF1R
inhibition. It is possible, that at high doses, CSF1R inhibitors
may deplete macrophages even in “protective” environments,
and that lower doses may offer a capacity to “re-educate”
macrophages without depleting them in the TME. Proper
biomarkers, potentially derived from gene expression studies
following CSF1R inhibition, will be necessary to determine the
optimal dose based on the desired outcome of depletion vs.
reprogramming.

Inflammation and Drug Resistance
Diverse resistance mechanisms to targeted cancer therapy have
emerged and present one of the foremost challenges in cancer
today. Drug resistance may pre-exist (intrinsic, primary drug
resistance) ormay be acquired under the strong selective pressure
during the course of treatment (acquired resistance) (Zahreddine
and Borden, 2013). Importantly, some of these resistance
pathways lead to multi-drug resistance (MDR), generating an
even more difficult clinical problem to overcome. Alterations
in the level of cytokines, chemokines, and growth factors have
emerged as yet another mechanism conferring resistance to
chemotherapeutic treatments (Jones et al., 2016). For example,
mounting evidence suggests a crosstalk between IL-6 and MDR
in cancer and potential therapeutic opportunities arising from
this role of IL-6 (Ghandadi and Sahebkar, 2016). Since the 1990s,
elevated serum levels of IL-6 have been associated with worse
survival in breast cancer patients (Zhang and Adachi, 1999;
Salgado et al., 2003; Knüpfer and Preiss, 2007). Subsequently,
functional studies revealed that autocrine production of IL-6
by tumor cells confers resistance to several chemotherapeutic
agents, suggesting that acquisition of the ability of tumor cells
to produce IL-6 represents another self-protective mechanism

Frontiers in Cell and Developmental Biology | www.frontiersin.org 15 June 2018 | Volume 6 | Article 56

https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles


Comen et al. Chronic Inflammation, Cancer, and the Microenvironment

(Conze et al., 2001). Further, increased secretion of IL-6 has
been linked to resistance to bortezomib in MM and to etoposide
and cisplatin in hormone-independent prostate carcinomas
(Borsellino et al., 1995; Frassanito et al., 2001; Voorhees et al.,
2007). IL-6-induced STAT3 feedback activation in response
to the EGFR inhibitor erlotinib has been associated with
the development of resistance and poor prognosis in lung
adenocarcinoma (Lee et al., 2014). Work published by Korkaya
and colleagues suggests that trastuzumab resistance may be
mediated by an IL-6 inflammatory loop (Korkaya et al., 2012).
Importantly, soluble factors mediating drug resistance such as
IL-6 can be released by the tumor cell itself or the TME. For
example, Ara and colleagues demonstrated that in neuroblastoma
the bone marrow microenvironment is a source of IL-6 and sIL-
6R, thereby allowing cancer cells to escape the cytotoxic effects
of multiple chemotherapeutics (Ara et al., 2013). Regardless
of the source of the cytokine IL-6, IL-6 targeting strategies
promise to be effective in combination with cytotoxic agents,
TKIs, or targeted antibody therapy to prevent drug resistance.
Besides IL-6, IL-8 has emerged as another resistance cytokine.
Similarly to IL-6, clinical studies have linked high serum levels
of IL-8 to disease progression of various cancer types (Xie,
2001). In line, by using cytokine antibody arrays to identify
cytokines associated with drug resistance, two independent
groups concordantly found that IL-6 and IL-8 are key markers
for the development of drug resistance (He et al., 2011; Shi et al.,
2012). The list of “resistance cytokines” is long including AMF
(autocrine mobility factor), AM (adrenomedullin), IL-4, and IL-
10 (Jones et al., 2016). In addition, a recent study showed that
patients with increased levels of the inflammatory biomarkers
ferritin and C-reactive protein (CRP) had a markedly poorer
response to trastuzumab-containing therapy (Alkhateeb et al.,
2012). Another important factor to consider when discussing
the relation between cytokines and cancer drug resistance
is the fact that the inflammatory master regulator NF-κB is
activated by a variety of cytotoxic chemotherapy agents including
cisplatin, paclitaxel, docetaxel, and doxorubicin (Nakanishi and
Toi, 2005; Li and Sethi, 2010). Anticancer therapeutic induced
NF-κB activation often leads to the activation of pro-survival
signaling pathways. In addition, NF-κB is often constitutively
active in response to a variety of cancer-promoting agents.
Both the constitutive and therapy-induced NF-κB activation
eventuates in drug-resistant tumors, at least in part, by the
induction of inflammatory cytokine secretion. Consequently,
NF-κB signaling has emerged as an attractive molecular target
for pharmacological intervention and its inhibitors as potential
sensitizer to anticancer drugs; however, despite the clinical
success in newly diagnosed and relapsed/refractory multiple
myeloma (MM) and mantle cell lymphoma patients, the NF-
κB inhibitor bortezomib (Valcade) has fallen short of original
expectations (Lin et al., 2010; Godwin et al., 2013). Paradoxically,
in some instances bortezomib has been shown to activate NF-
κB signaling and stimulate cytokine secretion. For example,
exposure to bortezomib of prostate cells led increased expression
and release of IL-8. Mechanistically, bortezomib increased the
accumulation of IκB kinase β (IKKβ) in the nucleus and
increased recruitment of nuclear IKKβ, phosphorylated p65,

and transcription factor early growth response-1 (EGR1) to
the IL-8 promoter (Singha et al., 2014). Given that IL-8 is
another resistance-associated cytokine this may explain why
bortezomib is less effective in certain tumor types. Overall,
there is a strong link between inflammation and drug resistance
and beyond their ability to prevent or decrease chemotoxicity,
anti-inflammatory agents may also have therapeutic effects
when combined with conventional agents, acting additively
or synergistically, or sensitizing cancer cells to treatment
with conventional cancer therapies. In order to optimize
the therapeutic window and regimens of anti-inflammatory
cancer therapy, clinical oncologists, and experimental cancer
researchers will need to identify for each drug the appropriate
molecular target, cancer type, disease stage, and treatment
duration. Based on the current state of knowledge, it can be
expected that anti-inflammatory agents will be most effective
in combination with anti-angiogenic, cytotoxic, and cytostatic
agents.

Future Direction
Herein we discuss the constituents of the TME, the causes
of inflammation within, and therapeutic strategies aimed at
disrupting the signaling pathways critical to bolstering cancer
development. Given the evolutionary nature of cancer, it is
unlikely that any single therapeutic option will lead to durable
cures or eradication of complex tumors. Indeed combinations
therapies targeting tumor cell intrinsic oncogenic pathways,
and TME-derived support pathways will offer the best means
to effectively eradicate disease. These combinations are not
trivial, as the TME itself is an evolving system with relatively
understudied kinetics in the clinical setting. Effective therapeutic
intervention may require new paradigms of dosing and schedule
to identify therapeutically optimal schedules that may be non-
linear and independent of maximum tolerable doses. These
arduous studies may benefit from preclinical animal model
development, but will inevitably require clinical testing. To
expedite studies, the development of biomarkers sensitive to
TME-targeted is of the utmost importance. Without these tools,
potentially viable compounds and strategies may be left behind
due to suboptimal dosing or rather suboptimal understanding
of the correct dosing paradigm. While the molecules and
pathways described here may provide sound mechanistic and
molecular targets for clinical development, unveiling their
full potential will require an integrated understanding of
the systems-level effects of inflammation. Instead of strict
molecular pathways, inflammatory microenvironments
can be thought of as ecological landscapes and causes of
inflammation as selective pressures sculpting tumor evolution
along these landscapes. This ecological landscape is both
dynamic and systemic, extending beyond the simple genetics
within malignant tumor cells and beyond invasive tumor
edge.
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