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ABSTRACT
Batch effects are responsible for the failure of promising genomic prognostic signa-
tures, major ambiguities in published genomic results, and retractions of widely-
publicized findings. Batch effect corrections have been developed to remove these
artifacts, but they are designed to be used in population studies. But genomic
technologies are beginning to be used in clinical applications where samples are
analyzed one at a time for diagnostic, prognostic, and predictive applications. There
are currently no batch correction methods that have been developed specifically for
prediction. In this paper, we propose an new method called frozen surrogate variable
analysis (fSVA) that borrows strength from a training set for individual sample batch
correction. We show that fSVA improves prediction accuracy in simulations and in
public genomic studies. fSVA is available as part of the sva Bioconductor package.
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INTRODUCTION
Genomic technologies were originally developed and applied for basic science research

and hypothesis generation (Eisen et al., 1998). As these technologies mature, they are

increasingly being used as clinical tools for diagnosis or prognosis (Chan & Ginsburg,

2011). The high-dimensional measurements made by microarrays can be used to classify

patients into predictive, prognostic, or diagnostic groups. Despite the incredible clinical

promise of these technologies there have only been a few signatures that have successfully

been translated into the clinic.

One of the reasons for the relatively low rate of success is the impact of unmeasured

technological or biological confounders. These artifacts are collectively referred to as

“batch effects” because the processing date, or batch, is the most commonly measured

surrogate for these unmeasured variables in genomic studies (Scharpf et al., 2011; Johnson,

Li & Rabinovic, 2007; Walker et al., 2008). The umbrella term batch effects also refers to

any unmeasured variables that can vary from experiment to experiment, ranging from

the technician who performs the experiment to the temperature and ozone levels that

day (Lander, 1999; Fare et al., 2003).
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Batch effects are responsible for the failure of promising genomic prognostic signa-

tures (Baggerly, Morris & Coombes, 2004; Baggerly, Coombes & Morris, 2005), major

ambiguities in published genomic results (Spielman et al., 2007; Akey et al., 2007), and

retractions of widely-publicized findings (Sebastiani et al., 2011; Lambert & Black, 2012).

In many experiments, the signal from these unmeasured confounders is larger than

the biological signal of interest (Leek et al., 2010). But the impact of batch effects on

prediction problems has only recently been demonstrated (Parker & Leek, 2012; Luo et

al., 2010). Batch effects were also recognized as a significant hurdle in the development

of personalized genomic biomarkers in the Institute of Medicine’s report on clinical

genomics (Micheel, Nass & Omenn, 2012).

While a number of methods have been developed for removing batch effects in

population-based genomic studies (Johnson, Li & Rabinovic, 2007; Gagnon-Bartsch &

Speed, 2012; Leek & Storey, 2007; Leek et al., 2010; Walker et al., 2008), there is currently no

method for removing batch effects for prediction problems. There are two key differences

between population level corrections and corrections designed for prediction problems.

First, population level corrections assume that the biological groups of interest are known

in advance. In prediction problems, the goal is to predict the biological group. Second,

in prediction problems, new samples are observed one at a time, so the surrogate batch

variable will have a unique and unknown value for each sample.

Here we propose frozen Surrogate Variable Analysis (fSVA) as a method for batch

correction in prediction problems. fSVA borrows strength from a reference database to

address the challenges unique to batch correction for prediction. The fSVA approach has

two main components. First, surrogate variable analysis (SVA) is used to correct for batch

effects in the training database. Any standard classification algorithm can then be applied

to build a classifier based on this clean training data set. Second, probability weights and

coefficients estimated on the training database are used to remove batch effects in new

samples. The classifier trained on the clean database can then be applied to these cleaned

samples for prediction.

We show with simulated data that the fSVA approach leads to substantial improvement

in predictive accuracy when unmeasured variables are correlated with biological outcomes.

We also apply fSVA to multiple publicly available microarray data sets and show

improvements in prediction accuracy after correcting for batch. The methods developed in

this paper have been implemented in the freely available sva Bioconductor package.

FROZEN SURROGATE VARIABLE ANALYSIS
METHODOLOGY
Removing batch effects from the training set
The first step in batch correction for prediction problems is to remove batch effects from

the training set. In the training set, the biological groups are known. This setting is similar

to the population genomics setting and we can use a model for gene expression data

originally developed for population correction of unmeasured confounders. If there are m
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measured features and n samples in the training set, we let Xm×n be the matrix of feature

data, where xij is the value of feature i for sample j. For convenience, we will refer to X as the

expression matrix for the remainder of the paper. However, our methods can be generally

applied to any set of features, including measures of protein abundance, gene expression,

or DNA methylation.

We propose a linear model for the relationship between the expression levels and the

outcome of interest yj: xij = b0 +
p1

k=1 sk(yj) + eij. The sk(·) are a set of basis functions

parameterizing the relationship between expression and outcome. If the prediction

problem is two-class, then p1 = 1 and s1(yj) = 1(yj = 1) is an indicator function that

sample j belongs to class one. In a multi-class prediction problem k > 1 and the sk(·) may

represent a factor model for each class. In matrix form this model can be written (Leek &

Storey, 2007; Leek & Storey, 2008).

X = BS + E (1)

where Sp1×n is a model matrix of p1 biological variables of interest for the n samples, Bm×p1

are the coefficients for these variables, and Em×n is the matrix of errors.

In genomic studies, the error term E is not independent across samples (Johnson, Li

& Rabinovic, 2007; Leek & Storey, 2007; Leek & Storey, 2008; Walker et al., 2008; Friguet,

Kloareg & Causeur, 2009; Leek et al., 2010; Gagnon-Bartsch & Speed, 2012). That is, there is

still correlation between rows of E after accounting for the model S. The correlation is due

to unmeasured and unwanted factors such as batch. We can modify model (1) to account

for these measured biological factors and unmeasured biological and non-biological

factors:

X = BS + ΓG + U (2)

where Gp2×n is a p2 × n random matrix, called a dependence kernel (Leek & Storey, 2008)

that parameterizes the effect of unmeasured confounders, Γm×p2 is the m × p2 matrix of

coefficients for G, and Um×n is the m × n matrix of independent measurement errors. We

previously demonstrated that such a decomposition of the variance exists under general

conditions typically satisfied in population genomic experiments (Leek & Storey, 2008).

In the training set, the biological classes are known, so S is known and fixed. But the

matrices B, Γ and G must be estimated. fSVA first performs surrogate variable analysis

(SVA) on the training database in order to identify surrogates for batch effects in the

training samples. The training set can be “cleaned” of batch effects by regressing the effect

of the surrogate variables out of the data for each feature. Any classification algorithm can

then be developed on the basis of the clean training data set.

SVA is an iterative algorithm that alternates between two steps. First SVA estimates the

probabilities πiγ = Pr(γi· ≠ 0⃗|X,S,Ĝ),πib = Pr(bi· ≠ 0⃗|γi· ≠ 0,X,S,Ĝ) using an empirical

Bayes’ estimation procedure (Leek & Storey, 2008; Efron, 2004; Storey, Akey & Kruglyak,

2005). These probabilities are then combined to define an estimate of the probability that a
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gene is associated with unmeasured confounders, but not with the group outcome

πiw = Pr(bi· = 0⃗ & γi· ≠ 0⃗|X,S,Ĝ)

= Pr(bi· = 0⃗|γi· ≠ 0,X,S,Ĝ)Pr(γi· ≠ 0⃗|X,S,Ĝ)

= (1 − πib)πiγ .

The second step of the SVA algorithm weighs each row of the expression matrix X by the

corresponding probability weight π̂iw and performs a singular value decomposition of the

weighted matrix. Letting ŵii = π̂iw the decomposition can be written ŴX = UDVT . After

iterating between these two steps, the first p2 weighted left singular vectors of X are used

as estimates of G. An estimate of p2 can be obtained either through permutation (Buja &

Eyuboglu, 1992) or asymptotic (Leek, 2011) approaches.

Once estimates Ĝ have been obtained, it is possible to fit the regression model in

Eq. (2) using standard least squares. The result are estimates for the coefficients B̂ and

Γ̂. Batch effects can be removed from the training set by setting X̂clean
= X − Γ̂Ĝ. Any

standard prediction algorithm can then be applied to X̂clean to develop a classifier based

on batch-free genomic data. The result is a prediction function f (X̂clean
·j ) that predicts the

outcome variable yj based on the clean expression matrix.

Removing batch effects from new samples
Removing batch effects from the training database is accomplished using standard

population genomic SVA batch correction. But the application of classifiers to new

genomic samples requires batch correction of individual samples when both the batch and

outcome variables are unknown. The fSVA algorithm borrows strength from the training

database to perform this batch correction.

To remove batch effects from a new sample X·j′ , it is first appended to the training data

to create an augmented expression matrix Xj′
= [XX·j′] where [·] denotes concatenation

of columns. To estimate the values of G for the new sample, fSVA uses a weighted singular

value decomposition, using the probability weights estimated from the training database

ŴXj′
= U j′Dj′V j′T . The result is an estimate Ĝj′ that includes a column for the new sample.

Note that only one new sample was appended. Had all the new samples been appended at

once, the singular value decomposition would be highly influenced by the similarity in the

new samples, rather than detecting similarities between the new sample and the database

samples.

To remove batch effects from the new sample, fSVA uses the coefficients estimated from

the training database Γ̂ and the estimated surrogate variables: X̂clean j′
= Xj′

− Γ̂Ĝj′ . If

there are n training samples, then the (n + 1)st column of Xclean j′ represents the new clean

sample. The classifier built on the clean training data can be applied to this clean data set to

classify the new sample.

FAST fSVA METHODOLOGY
fSVA requires that a new singular value decomposition be applied to the augmented

expression matrix once for each new sample. Although this is somewhat computationally

Parker et al. (2014), PeerJ, DOI 10.7717/peerj.561 4/12

https://peerj.com
http://dx.doi.org/10.7717/peerj.561


intensive, in typical personalized medicine applications, sample collection and processing

will be spread over a long period of time. In this setting, computational time is not of

critical concern. However, for evaluating the fSVA methodology or developing new

classifiers using cross-validation, it is important to be able to quickly calculate clean

expression values for test samples.

We propose an approximate fSVA algorithm that greatly reduces computing time by

performing a streaming singular value decomposition (Warmuth & Kuzmin, 2007; War-

muth & Kuzmin, 2008). The basic idea behind our computation speed-up is to perform the

singular value decomposition once on the training data, save the left singular vectors and

singular values, and use them to calculate approximate values for the right singular values

in new samples.

When removing batch effects from the training data, the last step is a weighted

singular value decomposition of the training expression matrix WX = UDVT . After

convergence, the first p2 columns of the matrix V are the surrogate variables for the

training set. Since U and V are orthonormal matrices, we can write VT
= D−1UTWX.

The matrix P = D−1UTW projects the columns of X onto the right singular vectors VT .

Pre-multiplying a set of new samples Xnew by P results in an estimate of the singular

values for the new samples: V̂Tnew
= PTXnew. The surrogate variable estimates for the new

samples consist of the first p2 columns of V̂Tnew. We obtain clean data for the new samples

using the estimated coefficients from the training set, identical to the calculation for the

exact fSVA algorithm: X̂clean,new
= Xnew

− Γ̂Ĝnew.

Estimates obtained using this approximate algorithm are not identical to those obtained

using the exact fSVA algorithm. The projection matrix used in the approximation, PT , is

calculated using only the samples in the training set. However, there is only a one-sample

difference between the projection calculated in the training set and the projection that

would be obtained with exact fSVA. As the training set size grows, the approximation

is closer and closer to the answer that would be obtained from the exact algorithm. For

smaller databases, there is less computational burden in calculating the exact estimates.

However, for large training sets, the computational savings can be dramatic, as described in

the simulation below.

SIMULATION RESULTS
We performed a simulation to examine the benefit of fSVA in prediction problems. In order

to do this, we simulated data using Eq. (2) under different distributions of each parameter.

We also created discrete probability weights πiγ and πib, each equal to 1 to indicate batch-

or outcome-affected, and 0 to indicate otherwise. We also varied the distribution of these

probability weights (Table 1). We crafted these simulations to mimic scenarios with a

subtle outcome and a strong batch effect, which is frequently the case in genomic data.

We also specified that both the simulated database and the simulated new samples have

two batches and two outcomes. Each outcome was represented in 50% of the samples in

both the database and the new samples. Similarly, each batch was represented in 50% of the

database and new samples.
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Table 1 Specifications for the three simulation scenarios used to show the performance of fSVA. We
performed three simulations under slightly different parameterizations to show the effectiveness of
fSVA in improving prediction accuracy. Parameters from Eq. (2) were simulated using the distributions
specified in this table. Additionally, the percentage of features in the simulation affected by batch,
outcome, or both are as indicated in this table. Results from these simulations can be found in Fig. 1.

Parameter distributions

B ∼ N(0,1)

Γ ∼ N(0,3)Scenario 1

U ∼ N(0,2)

B ∼ N(0,1)

Γ ∼ N(0,4)Scenario 2

U ∼ N(0,3)

B ∼ N(0,1)

Γ ∼ N(0,4)Scenario 3

U ∼ N(0,3)

Affected features

50% batch-affected

50% outcome-affectedScenario 1

40% affected by both

50% batch-affected

50% outcome-affectedScenario 2

40% affected by both

80% batch-affected

80% outcome-affectedScenario 3

50% affected by both

In the database, we varied the amount of confounding between batch and outcome

from a Pearson’s correlation of 0 to a correlation of over 0.90. This mimics common

database structures in publicly available repositories. Since the new samples are simulating

a collection of single samples (such as new patients coming to the doctor), the correlation

of batch and outcome within the new samples matrix is unimportant. To have a

representative amount of new samples from each combination of batch and outcome, we

found it best to simulate the new samples by leaving the batch and outcome uncorrelated.

That way, each of the four test-cases of batch and outcome combinations was represented

in 25% of the new samples.

We simulated 100 database samples and 100 new samples using the parameters

described above. Each sample had 10,000 features. As a control, for each iteration in

addition to performing fSVA correction, we performed SVA correction on the simulated

database alone, and also performed prediction with no batch correction on the simulated

database or new samples.

To quantify the effect that fSVA had on prediction, we performed exact fSVA as

described above on the simulated database and new samples. We then performed

Prediction Analysis of Microarrays (PAM), a commonly used method for classifying

microarrays (Tibshirani et al., 2002). The PAM prediction model was built on the
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SVA-corrected database, and then used to predict the outcomes on the fSVA-corrected

new samples. Each simulation was repeated 100 times for robustness. We performed the

simulation for a range of potential values for the correlation between the outcome we were

predicting and the batch effects. The correlation quantifies how much the outcome and the

batch effects overlap in the training set. When the correlation is zero, the batch effects and

outcome are perfectly orthogonal. When the correlation is one, then the batch effect and

outcome are the same in the training set.

We found that in general the prediction accuracy measures for different iterations of

a simulation varied highly, but the ordinality remained relatively constant. Therefore to

display results we randomly selected three graphs from each of the scenarios, using the

sample function in R (Fig. 1). Each of the graphs from the 100 iterations for each scenario

can be found on the author’s website.

We found that fSVA improved the prediction accuracy in all of our simulations (Fig. 1).

Interestingly, exact fSVA generally outperformed fast fSVA at all of the correlation

levels except the highest correlation levels. However both fSVA methods out-performed

our control of performing SVA on the database alone. Additionally any method of

batch-correction generally outperformed no batch correction whatsoever.

When the batch and outcome were not correlated with each other, we saw ambiguous

performance from using fSVA. This is not unexpected since it has been shown that in

scenarios with no confounding between batch and outcome, batch has a minimal effect

on prediction accuracy (Parker & Leek, 2012). When databases had extreme confounding

between batch and outcome (above 0.85) we saw the benefits of all the batch-correction

methods drop off. This is because in these situations, SVA on the database cannot

differentiate batch and outcome in the database.

While in each of the simulations there was an accuracy cost to using fast fSVA vs. exact

fSVA, the computational time savings was dramatic. In the scenario described, with 100

samples in the database and 100 new samples, the wall-clock computational time using a

standard desktop computer for exact fSVA was 133.9 s, vs. just 1.3 s for fast fSVA. Using

50 samples in the database and 50 new samples, exact fSVA required 17.9 s vs. 0.4 s for fast

fSVA. We encourage users to consider both the accuracy and computational times when

selecting which algorithm to use for a particular data set.

RESULTS FROM MICROARRAY STUDIES
We examined the effect that fSVA had on several microarray studies, obtained from the

Gene Expression Omnibus (GEO) website (Edgar, Domrachev & Lash, 2002). All except

three of the studies were preprocessed/standardized as described previously. Three of the

studies (GSE2034, GSE2603, GSE2990) were obtained from GEO and fRMA-normalized.

Each of the studies was randomly divided into equally-sized “database” and “new

sample” subsets. We SVA-corrected the database subset, and then built a predictive model

(PAM) on that corrected data. We then performed fSVA correction on the new samples.

After performing fSVA correction, we measured the prediction accuracy of the model built

on the database by calculating the number of times that the predicted outcome equaled
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Figure 1 fSVA improves prediction accuracy of simulated datasets. We created simulated datasets
(consisting of a database and new samples) using model (2) and tested the prediction accuracy of these
using R. For each simulated data set we performed either exact fSVA correction, fast fSVA correction,
SVA correction on the database only, or no correction. We performed 100 iterations on each simulation
scenario described in Table 1. We performed the simulation for a range of potential values for the
correlation between the outcome we were predicting and the batch effects (x-axis in each plot). These
plots show the 100 iterations, as well as the average trend line for each of the four methods investigated.
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Table 2 fSVA improves prediction accuracy in 5 of the 9 studies examined. The remaining 4 studies
showed indeterminate results since the 95% confidence intervals overlapped zero. In order to find the
prediction accuracy results, each of the studies was randomly divided into “database samples” and “new
samples”. Exact fSVA-correction was then performed as described above. We then built a predictive model
(PAM) on the database and tested the prediction accuracy on the new samples.

Study No correction Improvement
with fSVA

GSE10927 0.97 (0.96, 0.97) 0.02 (0.01, 0.02)

GSE13041 0.61 (0.59, 0.63) 0.07 (0.05, 0.10)

GSE13911 0.93 (0.93, 0.94) 0.01 (0.00, 0.01)

GSE2034 0.51 (0.49, 0.52) 0.03 (0.01, 0.05)

GSE2603 0.68 (0.66, 0.70) −0.02 (−0.04, 0.00)

GSE2990 0.59 (0.58, 0.61) −0.02 (−0.04, 0.00)

GSE4183 0.89 (0.88, 0.91) −0.02 (−0.03, 0.00)

GSE6764 0.74 (0.72, 0.76) 0.01 (−0.01, 0.03)

GSE7696 0.78 (0.76, 0.79) 0.02 (0.01, 0.04)

the true outcome status, divided by the number of samples. This process was iterated 100

times for each study to obtain confidence intervals. This method is virtually identical to the

simulation described above.

Results from this process can be found below (Table 2). Five of the studies showed

significant improvement using fSVA. One study showed marginal improvement, with

its 95% confidence interval overlapped zero. Three studies showed a cost to using fSVA,

though in all three cases the 95% confidence interval for the true cost overlapped zero.

CONCLUSIONS
Batch effects have been recognized as a crucial hurdle for population genomics experi-

ments (Leek et al., 2010; Parker & Leek, 2012). They have also been recognized as a critical

hurdle in developing genomic signatures for personalized medicine (Micheel, Nass &

Omenn, 2012). Here we have introduced the first batch correction method specifically

developed for prediction problems. Our approach borrows strength from a training set to

infer and remove batch effects in individual clinical samples.

We have demonstrated the power of our approach in both simulated and real gene

expression microarray data. However, our approach depends on similarity between the

training set and the test samples, both in terms of the genes affected and the estimated

coefficients. In small training sets, these assumptions may be violated. Similarly, training

sets that show near perfect correlation between batch variables and biological classes

represent an extreme case that can not be directly corrected using fSVA. An interesting

avenue for future research is the use of publicly available microarray data to build

increasingly large training databases for batch removal. We note that when the correlation

between batch effects and the outcome is high it is impossible to remove these effects

entirely and this may lead to poor prediction performance (Chikina & Sealfon, 2014).
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Therefore, it is critical to create properly designed training sets where batch effects and the

outcome are not highly correlated with each other.

We have discussed here applications of fSVA to microarray data but the methodology

may also be useful for other applications where genomic technologies are being applied

for prediction or classification. For example, with appropriate transformations, SVA

can be applied to RNA-sequencing (Leek, 2014) or DNA methylation (Jaffe et al., 2012)

data. The methods we have developed here are available as part of the sva Bioconductor

package (Leek et al., 2012). Code and data to reproduce this project are available at https://

github.com/hilaryparker/fSVA.
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