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ABSTRACT
Atomically precise nanoclusters comprising 1–100 atoms have emerged as a new class of nanomaterials with intriguing size-dependent physico-
chemical properties. The significant changes in the properties of nanoclusters were observed in tailoring the number of metal atoms and ligands
that determines their functions and applicability. Since 1990, thiolated gold nanoclusters have been studied. The separation of monodispersed
clusters was crucial and time-consuming. To address these shortcomings, several separation techniques have made it possible to separate
the series of metal nanoclusters with a precise composition of metals and ligands. Among these techniques, polyacrylamide gel electrophore-
sis was utilized for hydrophilic cluster separation. This review shall focus on the principle, operation and application of the polyacrylamide gel
electrophoresis technique to encourage a greater understanding of the characteristics and usefulness of this method.

TWEETABLE ABSTRACT
Separation of atomically precise hydrophilic metal nanoclusters using polyacrylamide gel electrophoresis technique
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Monodispersity refers to the amount of uniformity in the particle size and shape of nanomaterials, which is one of the key factors
for their unique properties and its diversified applications in photoluminescence, sensors, catalysis and energy fields [1–5]. Among
these nanomaterials, atomically precise metal nanoclusters (MNCs) have been a hot-spot topic in recent years due to their unique
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and size-dependent properties. MNCs are particles that comprise atoms in precise numbers with particle sizes ranging between ∼1–
3 nm. Mostly, MNCs are synthesized using ligands like thiolates, phosphines, carbenes and biomolecules [6–9]. These ligands act as
a stabilization agent to control the growth of atoms into nanoclusters (NCs). However, the type of ligand has significantly regulated
the functions of NCs [10,11]. In general, hydrophobic ligands have been utilized for NC synthesis to attain precise composition and
understand the mechanisms involved in NC formation. These hydrophobic ligand-protected MNCs possess excellent stability under
atmospheric conditions. Hence, it will be easy to synthesize the MNCs with precise composition by using hydrophobic ligands. However,
some synthesis protocols of MNCs may produce atomically accurate clusters, avoiding the need for additional separation [12,13]. The
majority of the methods result in mixtures of clusters, therefore separation techniques must be used to isolate the mixtures. Indeed,
the choice of hydrophobic ligands in NC formation limits their applicability in the biomedical field, because of their toxicity and lower
biocompatible nature. The preparation of atomically precise MNCs with hydrophilic ligands readily undergoes chemical changes on
environmental exposures, which has questioned their stability [14,15]. So, there is a high necessity to synthesize and characterize the
hydrophilic, stable and biocompatible NCs with precise composition for their practical applications [16]. Even though they are small in
size, their applicability in various fields is highly dependent on the countable metal atoms and ligands in NCs.

In recent times, the exact number of metal atoms (n) and ligand molecules (m) for metal (M) and ligand (L) in MNCs (denoted
as Mn(L)m) are well-quantified by advanced mass techniques like MALDI–MS and ESI–MS [17]. The function and properties of NCs are
altered based on the number of core-shell metal atoms and ligands, and even the charge and isomers of the clusters also play a cru-
cial role. Among the two structural isomers of Au38 NCs, one isomeric product – Au38T – drives catalytic reduction reaction, whereas
another one – Au38Q – does not [18]. The solubility of these MNCs differs widely with n and m values of Mn(L)m, that is, solvent-driven
particle separations. The diafiltration method is mostly used for water-soluble NCs and involves the sample solution being pumped
by a peristaltic pump through the diafiltration membrane. Small molecule impurities or small nanoparticles are eluted in the permeate,
while the large nanoparticles (purple) are retained. Sweeney et al. [19] reported diafiltration membranes with molecular weight cutoff of
70 kDa, 50 kDa, 30 kDa and 10 kDa membranes for separation of Au clusters of particle sizes ranging between 2.9, 2.6, 2.5 and 2.0 nm
respectively. The clusters that differ from single atoms or ligands are moreover identical in size, hence there will be a little complication
in the separation of clusters with regular diafiltration and solvent-derived size separation methods based on size factor. Ghosh et al. [20]

reported TLC for the separation of a multicomponent mixture of mixed monolayer-protected Au25 clusters with closely similar chemical
ligand compositions, that is, separation of Au25(BT)18 and Au25(PET)18 (BT: butanethiol and PET: phenylethanethiol). However, the sep-
aration of clusters with TLC is only restricted to hydrophobic ligand-protected NCs. The specific size and precise composition of MNCs
have distinct reactivity for catalytic and sensing applications. Precise and monodisperse NCs with tunable sizes by using aromatic lig-
and as a stabilizing agent were easily achieved through the two-phase Brust–Schiffrin method as well as the miscible-solvent-assisted
two-phase synthesis method reported by Yuan et al. [21,22] According to their size and composition, the physicochemical properties
of NCs differ. The changes in size and composition bring definite changes in the spectral pattern of UV-vis spectrum and fluorescence
properties with tunable emission wavelength, thereby altering their reactivity in support of various catalytic, sensing and biomedical
applications [23–25].

The polyacrylamide gel electrophoresis (PAGE) method to separate individual MNCs with improved monodispersity is highly signif-
icant. In 1972, Joseph Sambrook, Phillip Sharp and William Sugden created a biotechnique called gel electrophoresis for separating
and visualizing DNA fragments. This technique still serves as the foundation for the molecular biology field. The underlying principle of
this PAGE is that at an applied potential, mass-to-charge (m/z) ratio-based isolation takes place. Due to complex interactions between
samples, gel matrix, buffers and electric current, particles migrate at various rates based on their total charge, size and shape, resulting
in distinct bands of individual molecules. By crosslinking polyacrylamide and bis-acrylamide, a network of pores is formed in the gel.
Due to the pore size, molecules can be sorted via the gel matrix. Gel pore size depends on the concentration of monomers (% T). These
successful efforts to separate the clusters of the noble metals encouraged us to use this method to isolate the less stable CoNCs as
well. Even though few reviews on MNCs and separation methods are available in the literature, this mini-review will present detailed
illustrations for the separation of ultrasmall MNCs specifically using the PAGE biotechnique.

Experimental methods
Setting up of PAGE apparatus
The essential parts of the PAGE apparatus include glass plates with integrated spacers, plastic combs, sample loading guides, casting
frames, casting stands, clamping frame electrode assemblies and apparatus cell units. The setting up of the apparatus involves sev-
eral stages as described in Figure 1. Finally, the two glass plates should be combined with integrated spacers, fixed in the casting frame
and positioned in the casting stand. As quickly as the resolving gel solution is ready, it must be gently poured into the spacers of the glass
plates at a specific distance, leaving space for stacking gel. The as-prepared gel composition is then kept ready in the proper percentage.
Ammonium persulphate (APS) is always added at the end during the preparation of the gel composition. A plastic comb is then placed
on top of the resolving gel, followed by the addition of the stacking gel solution. After a short while, the plastic comb is gently removed
from the stacking gels, revealing wells where the nanomaterials samples can be dropped. The casting frame is taken out of the casting
stand once the samples have been loaded, set in the clamping frame electrode assembly and then put into the tetra-cell. In addition, the
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Figure 1. Schematic illustration of setting up of polyacrylamide gel electrophoresis apparatus for the separation of nanoclusters.

Table 1. Composition of resolving gel and stacking gel used for the separation of metal nanoclusters.
Stacking gel (total volume 4 ml)

Components 4%

H2O (ml) 2.70

30% polyacrylamide (ml) 0.67

Tris-HCl-1.0M-pH-6.8 (ml) 0.5

10% ammonium persulfate (ml) 0.04

N,N,N,N-tetramethylethylenediamine 0.004

Resolving gel (total volume 10 ml)

Components 10% 15% 17% 20% 22.5%

H2O (ml) 4.0 2.3 1.3 0.8 0.5

30% polyacrylamide (ml) 3.3 5.0 6.0 6.5 7.0

Tris-HCl-1.5M-pH-8.8 (ml) 2.5 2.5 2.5 2.5 2.5

10% ammonium persulfate (ml) 0.1 0.1 0.1 0.1 0.1

N,N,N,N-tetramethylethylenediamine 0.004 0.004 0.004 0.004 0.004

cell must then be filled with the buffer solution, the tetra cell connected to the electrical circuits, the necessary potential and the duration
fixed before running the sample through the PAGE according to the m/z ratio.

Preparation of PAGE gel composition
The proportion of monomer acrylamide in the gel determines the gel’s pore size, which in turn is directly proportional to the size-
dependent separation of MNCs. As the acrylamide concentration rises, the gel’s pore diameter contracts, thereby separating the lower
mass of NCs. The acrylamide concentrations of 10, 15, 20 and 22.5% can isolate clusters with mass ranging between 16–68 KDa, 12–
43 KDa, 8–30 KDa and 1–7 KDa, respectively. The polyacrylamide gel is made of the monomer acrylamide, the crosslinker N,N’-methylene
bis-acrylamide, the accelerator N,N,N’,N’-tetramethylethylenediamine (TEMED) and the free radical generator APS. Gel buffer solutions
must be stacked and resolved to separate NCs as they move through the porous gel when an applied potential is present. Tris-HCl buffer,
often known as Trizma, is used to prepare the buffer solutions. To separate NCs using the mass-to-charge (m/z) method, the pH gradient
of the stacking and resolving gel buffer solutions must be maintained at 6.8 and 8.8, respectively. The pore size in the gel is influenced
by two variables: 1) acrylamide and bisacrylamide concentrations (% T) and 2) crosslinker concentration (% C) The size of the pores
inside the gels reduces as the % T is raised. As a result, gels with a larger percentage are suited for separating small nanomolecules
from one another. The pore size reduces as the % C rises. Table 1 provides specific examples of gel formation regarding the percentage
of monomer, APS, and TEMED.

General illustration for the isolation of MNCs
The separating and stacking gels are prepared by acrylamide monomers with total contents of 30% and 3 wt % (acrylamide/bis-
acrylamide, 94:6), respectively. The eluting buffer consisted of 192 mM glycine and 25 mM tris(hydroxymethylamine). The as-prepared
clusters were dissolved in a 5% (v/v) glycerol/water solution (0.5 ml) at a concentration of 60 mg/ml. To obtain an adequate separa-
tion, the sample solution (0.5 ml) was put onto the stacking gel without lanes and eluted for 9 h at a constant voltage of 150 V. The
clusters’ threat of thermal breakdown was reduced by carrying out the elution in a cooling atmosphere. The cluster fractions containing
sections of the separating gel were cut out, crushed and soaked in distilled water. Using a filter with 0.2 m pores, the gel lumps that were
suspended in the solution were taken out. The precipitate was then thoroughly cleaned by centrifugal ultrafiltration twice, using a filter
with a cutoff molecular weight of 5 KDa, and redissolved in water. According to the size and charge of NCs, the gel composition, applied
voltage and eluting time varied for better separation.

The PAGE apparatus is easy to use and reasonably inexpensive. Additionally, visual confirmation of the separation of individual
clusters is possible when the cluster mixture is separated using PAGE. By exposing luminous clusters to UV light, one may also define
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Figure 2. Isolation of gold nanoclusters separated by polyacrylamide gel electrophoresis, fractionated into six bands constituting magic number
clusters. The isolated gel bands examined with ESI–MS indicates the molecular weight of Aun(SG)m nanoclusters. The chemical composition of
fractionated nanoclusters are listed.
SG: Glutathione.
Adapted with permission from [28], C© American Chemical Society (2004).

the photoluminescence characteristics present in them. Further, PAGE helps assess the size and form of the product because the mobility
of each metal cluster differs based on the size, shape, charge and interactions with the solvent of the particle.

Recent trends in isolation of MNCs
Isolation & purification of NCs using PAGE
Polymer-based gel electrophoresis separation of NCs helps to understand the reaction pathway of NC formation. In general, this tech-
nique is limited to studying water-soluble, hydrophilic NCs. Most of the MNCs are synthesized by adopting aqueous ligands as a capping
agent containing the mixture of magic-number NCs. Hence, the separation of these clusters is done by PAGE, followed by the optical
and mass spectrometric analysis of separated bands derived the information on the electronic transitions and quantification of core and
shell atoms in NCs. The MNCs protected by a monolayer of ligands with distinct charges can be fractionated into different sizes by the
PAGE technique. In PAGE, larger particles (or NCs) typically pass through the gel more slowly than smaller molecules. By using gels that
are substantially denser than those typically used for ordinary protein separation, PAGE separation resolution is significantly increased.

The stability of MNCs is the inevitable factor to consider before performing PAGE. Discrete size distributions made up of specific
sizes of metal clusters have emerged as a result of the stability of MNCs being attributed to closed electrical and geometric shells. The
introduction of unstable NCs in PAGE separation may result in the agglomeration or aggregation of particles through interacting with gel
contents. In general, the stability of clusters has been achieved through tuning the pH, temperature and chemical environment or through
ageing studies under various atmospheric conditions [26]. Through the series of spectroscopic measurements in a timely manner, the
stability of NCs has been investigated. The stable NCs are subjected to the PAGE separation technique to identify the species present
in them.

In 1998, Gregory Schaaf et al. [27] used PAGE to separate Aun(SR)m clusters (SR-thiol ligand) for the first time. Using PAGE, Aun(SG)m

clusters (SG = glutathione) separated into several bands. The high-resolution separation of Aun(SG)m clusters was achieved by gel
concentration optimization. They prepared gels with a higher concentration (about 40%) for the separation than the gels concentration
used for protein separations. The third band from the bottom was observed for 4 cm, to be the most abundant species at ∼40%. With the
aid of MALDI–MS and ESI–MS, the precise composition of Aun(SG)m clusters in each band was determined, and the peak at 10.4 kDa
corresponds to the chemical composition of Au28(SG)16.

The mass spectrometric characterization of electrophoretically fractionated Aun(SG)m clusters was published in 2004 by Negishi
et al. [28] Aun(SG)m NCs are isolated into six bands by PAGE, with the bands corresponding to a series of magic-numbered clusters
– namely Au18(SG)11, Au21(SG)12, Au25-1(SG)14-1, Au28(SG)16, Au32(SG)18 and Au39(SG)23 – which were analyzed by ESI–MS (Figure 2). The
photoluminescence quantum yields of these magic number clusters (� = 10-3-10-4) are comparatively higher than the bulk gold (� = 10-10).

In 2005, Yao et al. [29] reported the chiroptical activity of D-/L-penicillamine-protected gold NCs. After the successful synthesis, the
crude NCs were separated into three bands of D-/L-/rac-Pen-protected AuNCs based on the enantiomer and racemic mixture, according
to their size and charge. Kothalawala et al. demonstrated the PAGE separation of molecule-like as well as plasmonic nanoparticles [30].
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Figure 3. Isolation of gold nanoclusters and identification of molecular formula. (A) PAGE isolation of gold nanoclusters fractionated into nine bands.
The isolated gel bands were examined with ESI–MS analysis that indicates the molecular weight of Aun(SG)m nanoclusters. (B) The chemical
composition of fractionated nanoclusters are listed. (C) A plot of chemical composition of nine bands against the number of gold atoms and ligands.
SG: Glutathione.
Adapted with permission from [32], C© American Chemical Society (2005).

They used different acrylamide gel concentrations for separating larger and smaller NCs. By this method, water-soluble Aun(SG)m clus-
ters were fractionated into 26 bands, that is, a wide range of 10′s to 1000′s Au atoms based on size and mobility. The 35% gel separated
the crude into 13 bands of smaller nanoparticles, due to the lower pore size of the denser gel. Hence, the larger particles could not pass
through this gel. The bigger plasmonic particles were separated in the 23% gel. The smaller particles, however, were not resolved and
showed up as a black band running along the gel. The optical spectrum of bands 1–13 constituted less than 200 atoms. The absorption
spectrum of bands 0–4 depicted the distinct peaks corresponding to the smaller NCs containing less than 40 atoms. The particles
containing approximately 40 to 200 atoms – that is, bands 5–13 – exhibited the monotonous absorption spectra. The nanomolecules
that constitutes more than 200 Au atoms showed a broad plasmonic absorption band around 530 nm, which shifted toward a higher
wavelength on increasing size.

Monitoring reactions using PAGE
Cao et al. [31] demonstrated a cycle of reaction that involved the reversible addition and elimination of one thiolate surface ligand on
gold NCs. To explore this precise ligand engineering, crude gold NCs were successfully synthesized by using 6-mercaptohexanoic acid
(MHA) as a protecting ligand. The further oxidative etching process was carried out after the successful separation and purification
of Au25(MHA)18 by the PAGE method. Negishi et al. [32] demonstrated the synthesis and separation of individual Aun(SG)m NCs. The
synthesis of Au clusters was done by reductive decomposition of Au(I)-SG polymer at a low temperature and followed by the fractionation
of individual clusters by PAGE. The crude Au clusters were separated into nine fractions based on their size and mobility. Fractions 1,8
and 9 were composed of NCs of adjacent sizes, and fractions 2–7 constituted single species. The molecular weight of these fractions
was analyzed by ESI–MS measurements, according to their precise composition of atoms and ligands in NCs of each fraction calculated.
The stability of these clusters was also examined with PAGE followed by optical spectroscopic measurements. To study more about
the intrinsic stabilities of the bands 1–9, the stability of these atoms against decomposition was investigated. The as-prepared Au:SG
clusters in an aqueous solution were kept at room temperature for 2 weeks. The PAGE separation of these two samples yielded fractions
1′′–9′′ that had mobilities similar to those of 1–9, respectively (Figure 3A). The fractions 4, 5, 7 and 8 became pale, indicating that they
were more susceptible to decomposition than the other bands, which was also evidenced by optical spectra and ESI–MS analysis. The
clusters associated with 4, 5, 7 and 8 were formed as a decay product, that loses its stability during storage for a longer period. The
increased stability of 1–3, 6 and 9 may be the cause of a stable protective shell by hydrogen-bonded networks among the SG ligands.

The effect of various thiol ligands in the stabilization of NCs was demonstrated by Negishi et al. by a series of PAGE followed by
ESI–MS analysis [33]. SG , N-(2-mercaptopropionyl)glycine (S[PG]) or mercaptosuccinic acid (S[SA]) protected AuNCs were fractionated
by PAGE (Figure 4). These fractions were further examined with ESI–MS. A relatively better resolution was obtained for Au:GS than for
Au:S(PG) and Au:S(SA). This might be because interligand interactions cause the gold cores deformation. The electronic structures of
the sub-nanometer-sized gold clusters are significantly influenced by the thiolate structures, according to a comparison of the optical
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Figure 4. Polyacrylamide gel electrophoresis separation and identification of various thiol-protected gold nanoclusters. PAGE separation of Au
nanoclusters stabilized with (A) SG, (B) (PG)SH, (C) (SA)SH and their negative-ion ESI mass spectra and optical absorption spectra of Au:S(PG) (1–6)
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SG: Glutathione; S(PG): N-(2-mercaptopropionyl)glycine; S(SA): mercaptosuccinic acid; PAGE: Polyacrylamide gel electrophoresis.
Adapted with permission from [33], C© American Chemical Society (2006).

spectra of materials with comparable chemical compositions. This finding suggests that passivation with thiolates inhibits the formation
of small clusters produced by the reduction of the Au(I)-thiolate polymers kinetically.

Similarly, precise composition clusters of N-Isobutyryl-L-cysteine and 3-mercapto phenylboronic acid-protected AuNCs were sepa-
rated and isolated through PAGE to investigate their physicochemical properties [34,35]. Pyo et al. adopted the PAGE separation tech-
nique to optimize a reaction time to obtain a monodisperse precise gold NC [36]. After 2 h of stirring, the raw product constituted three
clusters: Au15(SG)13, Au18(SG)14 and Au22(SG)18 as the predominant species. The extension of reaction to 6 h resulted in Au15 and Au22

as a major product with a high yield of Au22. The prolonged reaction time reduces the yield of Au22(SG)18.
Extensive studies in the determination of precise composition formula of hydrophilic AuNCs were established by PAGE separation

and isolation methods. In this series, the chemical composition of hydrophilic silver, copper, cobalt and platinum NCs were studied with
the utilization of the PAGE technique and mass spectrometric studies. In 2010, Kumar et al. reported the separation of magic-number
clusters from SG-stabilized AgNCs [37]. Overall, 21 discrete bands were observed in PAGE separation, which was compared with Au:SG
NCs (Figure 5A & B). The optical absorption spectrum depicts that the light absorption energy decreases monotonically with increasing
the size of clusters. The stability of these clusters was investigated with the PAGE method. However, stability in an aqueous solution
was size-dependent. The smaller particles seemed to be stable, but bands 14 and above were lost in an aqueous solution after about
a day. This is in agreement with a characteristics of smaller clusters, which have wider Highest Occupied Molecular Orbital (HOMO)-
Lowest Unoccupied Molecular Orbital (LUMO) gaps, would be more stable. Within the gel, all cluster sizes remained stable. The same
group assign the formula of one of the bands after PAGE separation as Ag32(SG)19 for the first time [17]. Desireddy et al. [26] gave an
exciting report on the temporal stability of Ag:SG clusters, wherein they reported insights on the effect of pH, solvents, salts and ageing
parameters on the stability of Agn(SG)m clusters using PAGE. The detailed mechanism involved in determining the stability of AgNCs
was explained through the use of PAGE. The raw mixture of AgNCs was divided into bands of the component magic-numbered Ag:SG
clusters, each with a wide range of colors and abundances. Homemade polyacrylamide gels with a 30% density and no surfactants
were used for PAGE studies. The solutions of Ag clusters are mostly not stable. The color changes that occur over days define that
they undergo chemical changes. The color of some clusters changes in solution state while compared with clusters in the band as well
as in solid form, which shows that clusters undergo chemical changes. To understand the changes that occur in time, unseparated
particle solutions were aged for differing durations of time before being separated simultaneously on the same gel. The separation of
clusters shows that the smaller clusters are more stable than the larger ones; this is due to the larger HOMO-LUMO gaps in smaller
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(2020).

clusters. Different salts were used to screen the clusters before ageing to assess the impact of surface charges. Surprisingly, cluster
degradation was not seen to be accelerated by salt screening. pH was utilized to directly alter the surface charge and the efficacy of
cluster–cluster repulsions, because screening the surface charges had no discernible impact on the stability of the clusters. The pH
of the cluster solutions was then changed with a variety of buffers. To analyze the stability of clusters, samples were aged for 3 days
before being subjected to PAGE analysis. The sample was more stable in pH 5–8 and pH 2. This is due to the changes in the charge
state of clusters. Recently, Yang et al. reported the water-soluble Cu30 NCs as a catalyst for cycloaddition reaction [38]. The effect of pH
and volume fraction of ethanol/water on the synthesis of CuNCs was investigated through performing native PAGE analysis. Our group
reported the synthesis and luminescent characteristics of CoNCs protected by glutathione [39]. The separation and purification of raw
products of CoNCs were carried out through PAGE. The three bands can be seen on PAGE separation, and the lower band possesses
molecular-like smaller NCs that constitute less than 8 Co atoms (Figure 5C). The physicochemical properties of these three bands
of CoNCs were examined. The optical spectra showed the increasing band gap with decreasing the size of clusters. The lower band
possessed higher stability in an aqueous medium. The blue emissive CoNCs of band 1 exhibited a quantum yield of 10%.

Identification of luminescent clusters
Numerous metal clusters are anticipated to play a significant role in biolabeling and fluorescence resonance energy transfer in addition
to producing luminescent patterns due to their fluorescence [10]. Elements like Au and Ag are capable of forming compound semicon-
ductors with enhanced luminescence [3,40]. The identification of such luminescent NCs that produce photoluminescence with higher
quantum yield in a mixture of clusters is a tedious process. The advancement of the PAGE technique aids isolating and separating
luminescence clusters. After separating the mixture through PAGE, the irradiation of UV light exposes the luminescent NCs in the gel.
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Yu et al. group reported the identification of luminescent Au22(SG)18 in the raw product of glutathione-protected gold NCs synthesized
by using CO as a reducing agent through PAGE separation. Among the four bands in PAGE isolation, band 4 exposed strong red emission
under UV illumination, which was assigned as Au22(SR)18 by mass spectrometric studies (Figure 6A & B). The strong red emission of Au22

was located at 665 nm and the quantum yield of these clusters was evaluated to be 8%. The molecular composition of other bands was
determined by comparing their mobility and color with previously reported AuNCs on PAGE separation [41]. The same group reported the
high yield synthesis of Au22 NCs by optimizing the incubation time before and after reduction in addition to optimizing pH with the use of
the PAGE technique [12]. Rao et al. succeeded in the interfacial synthesis of mercaptosuccinic acid (H2MSA)-protected Ag NCs [42]. The
orange-color crude mixture of silver NCs was separated into differently sized clusters by PAGE. The presence of two different clusters
was shown by two distinct bands: these bands are red and light yellow in color in visible light. Under UV illumination, band 1 exposes
red luminescence (emission at 650 nm) and band 2 shows blue-green emission (emission at 440 nm) at room temperature (Figure 6C).
The emission of clusters 1 and 2 are located at 650 and 440 nm at an excitation wavelength of 550 and 350 nm, respectively. These two
bands are assigned as Ag8(H2MSA)8 and Ag7(H2MSA)7, respectively [42].

Other techniques for NC separation
Chromatographic separation
Normal phase (NP) chromatography is more suitable for hydrophobic NCs. Reverse phase (RP) chromatography has the hydrophobic
stationary phase; hydrophilic NCs are separated by interacting with ion-pairing reagents, which induces the hydrophobic surface on the
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hydrophilic NCs for effective separation. By employing the RP-HPLC (Reverse Phase - High-Performance Liquid Chromatography) tech-
nique, a wide range of sizes of AuNCs from Au38(SR)24 to Au∼520(SR)∼130 have been isolated [43]. Niihori et al. reported the separation of
AuNCs using RP-HPLC, and the range from Au10 to Au39 was successfully separated and isolated (Figure 7A) [44]. The cluster-containing
two different ligands, as well as two different metal atoms was also separated and investigated by using RP-HPLC. For the separation
of CuNCs, Baghdasaryan et al. utilized normal phase-HPLC [1]. The RP- and NP-HPLC are purely based on adsorption or partition mecha-
nism, whereas size-exclusion chromatographic separation is based on the sizes of particles, in these there is no interaction between the
clusters and stationary phases. By using size-exclusion chromatographic separation technique, both hydrophilic and hydrophobic NCs
were separated. The reports on the utilization of the size-exclusion chromatographic-based gel filtration chromatography technique for
the isolation of hydrophilic clusters are limited, because of the PAGE technique.

TLC separation
TLC uses an inexpensive and simple device different from that used for HPLC. Furthermore, in TLC, the separation can be visually
confirmed similarly to PAGE. The use of preparative TLC using a thicker silica gel than that used in commercial TLC plates makes it
possible to isolate each cluster on a relatively large scale. Therefore, TLC is often used to confirm the purity of a product.
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Antigalvanic reduction of anion Au25(PET)18 (PET= Phenylethanethiol)by different chelating agents containing Ag was demonstrated
by Tian et al. [45]. This antigalvanic reduction was highly dependent on ion precursor and ion dosage, which was investigated with the
aid of the TLC method. The size conversion of Au44(TBBT)28 (TBBT = 4-tert-butylbenzenethiolate) to Au36(TBBT)24 was also observed
by Liao et al. using preparative TLC[46]. They were therefore successful in identifying efficient reaction conditions for these exchange
processes. This technique can be used to separate clusters depending on size and charge state for a mixture of Aun(SR)m and related
clusters made up of clusters with a wide range in size and charge state. In 2014, Ghosh et al. [20] used TLC to successfully separate the
product’s Au25(SC2H4Ph)18 and Au144(SC2H4Ph)60. They also had success using TLC to separate Au25(SC2H4Ph)18 and Au25(SC4H9)18

with various ligands (Figure 7B), [Au25(SC2H4Ph)18]0 and [Au25(SC2H4Ph)18]- with different charge states, and Au25(Calix)x(SC4H9)y

(Calix = 25,26,27,28-tetrakis (4-mercapto-n-butoxy)calix[4]arene) with various ligand combinations. Tian et al. succeed in the separation
of isomers of Au38(SC2H4Ph)24 through preparative TLC. The change in temperature induces the isomeric transformation which was
supported by TLC analysis [18].

Solvent fractionation
Yang et al. employed the size-selective separation method by using a solvent to isolate AuNCs. On increasing the fraction of acetone,
the NCs precipitated from a larger to a smaller size [47]. By this method, Au11, Au18, Au28 and Au38 NCs were isolated and quantified with
MALDI–MS analysis (Figure 7C). Pyo et al. reported the solvent-induced separation of SG -protected AuNCs [36]. The ratio of polar and
nonpolar solvents was used in this type of separation. They used a different ratio of acetonitrile and water for Au22 separation. The initial
ratio that contained higher acetonitrile volume facilitated the precise separation and purification of Au22(SG)18 NCs.

Conclusion
This review has focused on PAGE to highlight earlier studies on the high-resolution separation of metal clusters. NCs are proving to be
greatly beneficial materials in a variety of fields. Hydrophobic ligands-protected NCs are highly employed for catalytic, optoelectronic
fields. Their toxic nature limits their applicability in biomedical fields. Hence, there is a high necessity for the synthesis of atomically
precise and biocompatible MNCs. Hydrophilic thiol-protected MNCs provide a pathway for their utility in biomedical applications. For
application purposes, the effective purification and separation of these NCs become crucial. Hydrophilic MNCs can be isolated by chro-
matographic techniques like size-exclusion chromatography, HPLC and PAGE. Polarity-based precipitation techniques efficiently purify
NCs, but they face the possibility of altering the NCs’ stability and consequently their characteristics. HPLC techniques offer an efficient
separation but are highly expensive compared with other separation methods. TLC separation is limited only to hydrophobic clusters.
PAGE method overcome these drawbacks in the separation of hydrophilic nanoclusters that facilitates the better isolation of NCs based
on precise composition.

Future perspective
PAGE thus offers a unique opportunity for the separation of NCs with high resolution and cost–effectiveness, which can also assist
in reaction tracking and stability-focused research. The in-depth research on MNCs separation with PAGE by tuning gel concentration,
applied voltage, choice of buffer, separation time, and temperature helps for better isolation of NCs and monitoring reactions, which can
be used for focused applications. The above discussions and literature findings demonstrate PAGE is a versatile tool for the separation
of monodispersed NCs that explores new materials for cutting-edge research in technological and biomedical fields.

Executive summary

• The general method of separation of hydrophilic metal nanoclusters (NCs) using polyacrylamide gel electrophoresis (PAGE) method was
discussed.

• The PAGE method has been utilized to isolate NCs based on size, shape and charge, which was further confirmed by mass spectrometric
analysis.

• To attain monodisperse, atomically precise metal NCs, the reaction was monitored by PAGE method. The stability of NCs was also studied
by tracking the position of the band during PAGE isolation.

• The effect of pH, temperature, and reaction time in the formation of MNCs was determined with the aid of PAGE.
• The significance of the PAGE method over other separation techniques was discussed. In comparison with other separation techniques,

PAGE affords a simple, cost-effective and high resolution for the separation of clusters with atomic precision.
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