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Abstract: We have been studying simple prebiotic catalytic replicating networks as prototypes for
modeling replication, complexification and Systems Chemistry. While living systems are always
open and function far from equilibrium, these prebiotic networks may be open or closed, dynamic
or static, divergent or convergent to a steady state. In this paper we review the properties of these
simple replicating networks, and show, via four working models, how even though closed systems
exhibit a wide range of emergent phenomena, many of the more interesting phenomena leading to
complexification and emergence indeed require open systems.
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1. Introduction

Complex systems in nature are most appropriately modeled as open networks [1], where energy,
raw materials and reactants are continuously being pumped in, and reactants and products are prone
to dissipation and decay. The ecosystem, for example, exists far from equilibrium, in a continuous state
of flux [2,3]. Living organisms, in order to stay alive, are constantly importing nutrients and energy in
various forms and exporting waste products and heat. Individual cells within organisms also interact
with their local environment. Similarly, many natural and artificial non-living systems, such as rivers,
fountains and reactors, exist far from equilibrium, at times exhibiting steady-state behavior but always
interacting with their environments [4].

Studying synthetic networks exhibiting emergent phenomena is at the focus of Systems Chemistry
research [5–8]. The design and analysis of such networks may shine light on early chemical evolution
processes that led to emergent properties in prebiotic environments, while at the same time they might
be useful for the construction of synthetic cells. Simple (prebiotic) replicators and networks may be
open or closed, namely, interacting with their environments, or alternately, chemically and thermally
isolated. Both systems have therefore been studied, enabling precise modeling and rigorous analysis,
and allowing crucial insight into the minimal requirements for various emergent phenomena.

In this paper, we review several of the simple replicators and catalytic networks we have previously
investigated as prototypes for modeling replication, complexification and emergence. We discuss each
model, its properties and emerging phenomena. In order to analyze the unique features of each model,
we begin with the simplest model and proceed towards increasing complexity. Furthermore, we will
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attempt to answer a broader query: when using these simple prebiotic models, is it necessary to use
open systems, or are closed systems sufficient in order to observe many of the interesting phenomena
that emerge from these models?

2. Minimal Self-Replication and Catalytic Reaction Networks

Catalytic reaction networks, based on simple models of minimal self-replication and higher order
catalysis, consist of molecular arrays interconnected by autocatalytic and cross catalytic pathways
among reactants and templates [9,10]. These synthetic networks have been studied in order to unravel
complex system behavior, and can serve as “bottom-up” models for the design and understanding of
molecular evolution and emergent phenomena [11,12]. In the context of Systems Chemistry [13–17],
catalytic reaction networks have been studied theoretically and computationally [18–33], and have
been realized experimentally in several distinct chemical systems, including nucleic acids [34–40], fatty
acids [40], peptides [38,41–45], organic abiotic molecules [40,46–48] and enzymatic networks [49,50].
Subsequent studies have shown how small catalytic networks may be designed to perform Boolean
logic operations [51–67], and to mimic computational modules [31] and network motifs [68,69], and
they may further display oscillations and circadian rhythms [70,71], bistability and bifurcations [72–74]
and control competition and cooperation [75,76].

The models we discuss throughout the paper were developed to account for our experimental
work, in which the basic replication motifs are driven by coiled coil peptides assembly, self-replication
and/or cross catalysis [53,72,75,76]. Nevertheless, the same theoretical and simulation framework can
be used to probe other minimal replication systems, such as those developed with short nucleic acid
sequences or abiotic molecules. Our peptide-based replication system has been described in detail in
our previous papers and reviews [10–12,31,32,67,70,71,77]; briefly, during replication, a dimeric peptide
assembly serves as the template for association of two shorter precursors, which then, due to their
close proximity and end-groups positioning, react and ligate. In the case of an autocatalytic process,
the product of this ligation is the same as (at least one of) the template monomeric peptides, while in a
cross catalytic scenario the product is a peptide of the same length as the template monomers but differs
in its sequence (a ‘mutant’). Note that in several places along the paper we mention modifications
made to the basic replication systems in order to facilitate a specific function; these changes to the
models are also explained in more detail in the original papers.

The most basic model consists of minimal self-replication, consisting of two fragments (we use the
letters E and N since many experimental systems, such as peptides, are composed of electrophilic and
nucleophilic fragments) termed E and N joining together to form a template product T, either directly
(Equation (1)), or through template-assisted ligation via first order catalysis (Equation (2)) or second
order catalysis (Equation (3)):

E + N
g
→ T (1)

E + N + T
a
→

←
a

ENT b
→ TT

d
→

←

d

T + T (2)

E + N + TT
a
→

←
a

ENTT b
→ TTT

f
→

←

f

TT + T
d
→

←

d

T + T + T (3)

The rate constants, describing ligation, diffusion and dissociation, are contained in the equations.
Since T itself serves as a catalyst in its own formation, this is a form of self-replication.

Since we have previously shown how the behavior of second order catalysis is richer, more
versatile [32] and more relevant to actual experiments [73], and furthermore, how higher order
catalytic reactions are necessary for processes of emergence, evolution, self-organization and
complexification [77]—as will be elaborated on below—we will concentrate here mainly on the
second order replication and network pathways.
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Equations (1) and (3) can be expanded to describe a replication network:

Ei + N
gi
→ Ti (4)

Ei + N + T jTk

a
→

←
ai jk

EiNT jTk
bi
→ TiT jTk

fi jk
→

←

f

Ti + T jTk

d jk
→

←

d

Ti + T j + Tk (5)

In the above simple network, several Ei’s react with a common N (without loss of generality),
producing several products Ti. The i = j = k case is autocatalytic, since Ei’s are being catalyzed by
Ti’s to produce more Ti’s. On the other hand, i , j,k describes cross catalytic pathways, since the Ti’s
being formed from the Ei’s are being catalyzed by Tj’s and/or Tk’s. As before, each product can also be
produced by a slower background reaction (Equation (4)).

As stated above, very similar models can be used to study minimal replication processes based
on nucleic acid or organic abiotic molecules. While the high order aggregation states existing for
protein assembly facilitated the second order replication discussed here, only first order replication was
demonstrated so far using short DNA sequences or RNA ribozymes. Still, one can imagine a scenario
in which DNA duplexes serve as templates and/or catalysts for the formation of a third molecule,
presumably even an RNA ribozyme.

As an additional twist to the original model, when appropriate, the ligation steps in the above
reactions can be made reversible:

Ei + N

gi
→

←
gi

Ti + S (6)

Ei + N + T jTk

a
→

←
ai jk

EiNT jTk

bi
→

←

bi

TiT jTk + S

fi jk
→

←

f

Ti + T jTk + S

d jk
→

←

d

Ti + T j + Tk + S (7)

Here, the ligation reactions also produce S. Note that in many cases we monitor the values of ti,
which are the net sums of the Ti concentrations in all aggregation states.

This reversible scheme has also been implemented experimentally in peptide networks by
replacing an amide bond with a thioester bond [75] and using free thiol molecules S to drive the
reversible ligation. Since the template trimer TTT is much more stable than the template monomer
T [72], the reverse ligation rate constant b is practically zero in the experimental system.

We now describe several options for modeling each network as open or closed, as shown in
Scheme 1, which also correspond to four different experimental (and possibly prebiotic) conditions:

(1) A closed system, consisting of fixed amounts of starting reactants that ligate and converge
to equilibrium.

(2) An “open bath” configuration, consisting of reactants that ligate (reversibly) in a
stoichiometrically closed system that is continuously fueled by energy (and a large excess of certain
molecules).

(3) An open flow reactor, consisting of a continuous flow of reactants in a chemostat configuration
or a CSTR (continuously stirred tank reactor), where the intake flow (of starting materials) is at the
same rate as the clearance (of products and unreacted starting materials).

(4) An open flow reactor in a different mode, consisting of a continuous intake flow of reactants
and enzymatic degradation of the products only.

These four models begin with the most simple, closed system and progress towards increasing
openness and complexity.

Remarkably, we note that chemical thermodynamics imposes constraints upon the closed
system [78,79]. If we take the reactions of Equations (6) and (7) at equilibrium, we obtain

g a b f

g a b f
= 1 (8)
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This means that 	cannot be zero unless ̅ 	is also zero. Therefore, the closed system must either 
be fully irreversible, or have both non-zero  and ̅. The suggested semi-reversible model using 		> 
0 and  = 0 cannot exist in a closed system. In fact, the corresponding experimental systems are not 
closed, but are constantly being pumped in with TCEP (tris(2-carboxyethyl)phosphine) as a 
reducing agent [72,76], making them into “open bath” configurations. 

 

Scheme 1. Four working models for open or closed networks that correspond to four different
experimental conditions. The reactants E and N and product T directly participate in the reactions,
while the chemical species represented by S (“chemical energy”) and the enzyme do not directly take
part; S plays an important role in keeping the reactants from unwanted decay, and the enzyme enables
an enzymatic decay of the product only.

Since our system is described by mass-action kinetics, these constraints on the reaction rate
constants are independent of the concentrations, and therefore should hold true not only at equilibrium,
but also far away from equilibrium.

A similar constraint exists for the rate constants in the network case. For each reactant i, it can be
shown, using the Wegscheider Condition [80], that the product of the equilibrium constants around
any cycle (see Scheme 2) must be equal to unity:

gi a bi fi jk

gi ai jk bi f
= 1 (9)

This means that b cannot be zero unless g is also zero. Therefore, the closed system must either be
fully irreversible, or have both non-zero b and g. The suggested semi-reversible model using g > 0
and b = 0 cannot exist in a closed system. In fact, the corresponding experimental systems are not
closed, but are constantly being pumped in with TCEP (tris(2-carboxyethyl)phosphine) as a reducing
agent [72,76], making them into “open bath” configurations.
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Scheme 2. The fully reversible replication network of Equations (6) and (7), emphasizing the closed
cycles involved in the corresponding Wegscheider condition (Equation (9)), for which the product of
the equilibrium constants around any closed reaction pathway must be equal to unity. The clockwise
sense is depicted by the blue pathway, whereas the counter-clockwise path is indicated in red. Note
that since the dissociation of template dimers into single templates is not involved in these cycles (see
upper right corner), the corresponding rate constants d and djk are not constrained.
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3. Emergent Phenomena

We now describe several representative examples of emergent phenomena that appear in these
systems and networks.

3.1. Cooperation and Competition

As was shown earlier for nucleic acid replication [18] and later on for peptide-based replication [10],
the rate of product formation is a critical issue in modeling replication and evolutionary dynamics.
Even the simplest first order minimal self-replication in a closed system can display varying rates of
growth, depending on its parameters and rate constants, ranging from exponential growth to parabolic
growth. In a network of replicators competing for resources, exponential growth leads to “survival of
the fittest,” while parabolic growth leads to “coexistence” [10,18–21,77].

We can model a simple binary replication network using the reactions of Equations (6) and (7)
for two distinct autocatalytic templates. Since the templates compete for common resources (i.e., the
common N), their behaviors will be interdependent even without any mutual cross catalysis. The
behaviors of the relative templates can be differentiated by different initial concentrations, different
efficiency (i.e., distinct values of a, f and d or b and g), different stability (i.e., distinct values of g and b)
or by using separate external cross catalytic external templates. The distinct kinetic behaviors may
result in various expressions of product selectivity. In Figure 1, we show computational results for two
competing distinct replicators in an “open bath” network (Model #2 in the above description), i.e., with
b = 0. These results exhibit interesting effects of crossover and reversal and product selectivity, which
are examples of more complex cooperative and competitive network behavior. Actual experiments
with peptides have demonstrated these types of behavior, as seen in the two examples displayed in
Figure 2 [75,76].
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Equations 6 and 7 with  = 0 for all templates. In all cases, the blue is a more efficient replicator than 
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Figure 1. Computational results for two competing replicators, T1 (blue) and T2 (red), in an “open
bath” binary network. The distinct kinetic behaviors show various expressions of product selectivity.
The results were computed using our mass-action kinetic simulation [31] according to Equations (6)
and (7) with b = 0 for all templates. In all cases, the blue is a more efficient replicator than the red.
(a) Irreversible case, i.e., all g = 0; (b) With the blue replicator more stable than the red, i.e., g1 < g2,
displaying monotonic growth in the blue template with a reversal in the growth of the red template; (c)
With the blue replicator less stable than the red, i.e., g1 > g2, displaying a crossover effect in the growth
of the templates and a reversal in the blue template; (d) With the blue replicator more stable than the
red, but with a third external template catalyzing the formation of the red, displaying an opposite
crossover effect and a reversal in the red template. Reproduced from [76] with permission from Wiley.
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these two templates will result in the production of T3. The Exclusive OR (XOR) gate is set up like 
the OR gate, with the additional strong catalytic pathways that allow the heterodimeric template 

Figure 2. Experimental results for two competing reversible peptide replicators. (a) The blue replicator
is more efficient and more stable than the red replicator, displaying monotonic growth in the blue
template with a reversal in the growth of the red template. Reproduced from Ref. 75 with permission
from the Royal Society of Chemistry. (b) The blue replicator is less efficient but more stable than the
red, displaying a crossover effect in the growths of the templates and a reversal in the red template;
this experiment was carried out in the presence of several other inefficient replicators (gray lines).
Reproduced from [76] with permission from Wiley.

Interestingly, for similar scenarios in a closed reversible system, where the reverse ligation rate
constants follow Equation (9), we obtained the crossover effect without the reversal effect and practically
no product selectivity, as can be seen in Figure 3.
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Figure 3. Computational results for two competing reversal replicators in a closed binary network.
The results were computed using our mass-action kinetic simulation [31] according to Equations (6), (7)
and (9). In both cases the blue replicator is more efficient and more stable than the red replicator. (a)
With the red replicator beginning with a higher initial concentration; (b) With a third external template
catalyzing the formation of the red replicator. The results show a minimal crossover effect without the
reversal effect and practically no product selectivity.

3.2. Chemical Computation and Logic Operations

Simple closed ternary networks have succeeded in producing logic gates and arithmetic modules,
both computationally [11,12,31] and experimentally [53]. These computational abilities are examples
of complex and cooperative network behavior that are considered to be related to complexification,
emergence and the collective behavior of living systems. Several representative examples and
computational results, based on the reactions of Equations (4) and (5), are displayed in Figures 4 and 5.
In the OR gate, both T1 and T2 are capable of cross catalyzing T3, so the initial presence of either of
these two templates will result in the production of T3. In the AND gate, only the heterodimeric
template T1T2 is capable of catalyzing T3, so only the initial presence of both of these two templates
will result in the production of T3. The Exclusive OR (XOR) gate is set up like the OR gate, with the
additional strong catalytic pathways that allow the heterodimeric template T1T2 to catalyze T1 and/or
T2; in this case, the initial presence of both of these templates will actually prevent the production of
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T3. In the arithmetic module (Figure 5), a special network setup allows simultaneous AND, XOR and
INHIBIT (i.e., T1 and not T2) gates, resulting in a half-adder and a half-subtractor—computational
circuits that implement binary arithmetic.
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closed ternary catalytic network. The graphs show the results of T1, T2 and T3 production for four
possible configurations of initial T1 and T2. Reproduced from [31] with permission from Wiley.
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An experimental AND gate has also been constructed employing light as an inducer, and
using a caged random coil template that is catalytically inactive; shining light uncages the peptide,
facilitating its folding into a coiled coil helical structure, and driving the replication and computational
functionality [81]. Note that this system is essentially open, requiring the input of an external
energy source.

By opening up the system with an open flow reactor and enzymatic degradation of the products
(Model #4), we have computationally produced “oscillating logic gates,” producing integrators/
counters—that integrate or count the appropriate input signals; triggers—one-time non-repeating
output signals upon arrival of the first appropriate input signal; and detectors—one-time indicators
that an appropriate input signal has arrived, as displayed in Figure 6. The network connectivities of
the OR and AND gates are similar to the corresponding gates of Figure 4 above (the IF gate is just like
the OR but with only one input), but the inputs T1 and T2 are now oscillating intakes, resulting in a
more dynamic logic being produced in T3.
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Figure 6. Coupled oscillations in ternary replication networks. The columns corresponding to the
IF, OR and AND Boolean logic functions. Oscillations in the intakes of T1 and/or T2 are coupled to
the production of T3, resulting in oscillating logic gates (a), Integrators/Counters (b), Triggers (c), and
Detectors (d). Reprinted with permission from [70], Copyright (2015) American Chemical Society.
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Additionally, opening up these small networks has enabled us to mimic the mechanisms of
biological oscillators. For example, the circadian clock of S. elongatus, based on a core of only three
proteins KaiA, KaiB and KaiC [82–84], can be modeled by the simple ternary network of Figure 7,
consisting of autocatalytic, cross catalytic and inhibitory negative feedback pathways. This simple
configuration contains a stabilizing mechanism that effectively functions as an internal clock, leading to
constant frequencies of oscillation that are independent of the intake and decay rates. The robustness
of this network enables it to function as a biological oscillator in living systems that require internal
clocks. In Figure 7, we compare the oscillations of this proposed Circadian Network with those of
a simple autocatalytic network, without any internal stabilizing mechanism, whose frequencies of
oscillation vary significantly with differing intake and decay rates [70,71].
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Figure 7. (a) Proposed Circadian Network, based on the circadian clock of S. elongatus, consisting of
autocatalytic, cross catalytic and inhibitory negative feedback pathways. The output frequencies of
oscillation are independent of the intake and decay rates. (b) A simple autocatalytic network, without
any internal stabilizing mechanism, whose frequencies of oscillation vary significantly with differing
intake and decay rates. Each case compares two sets of intake and decay rates that differ by 20%.
Reprinted with permission from [70], Copyright (2015) American Chemical Society.

3.3. Bistability and Bifurcations

Numerical steady-state solutions for reversible one-template second order catalysis, with g > 0 but
b = 0, have displayed bistability and bifurcations, i.e., regions allowing for two possible stable steady
states. The system will converge to one of these states, depending on the initial concentrations (Figure 8).
Subsequently, bistability was also found to occur experimentally using the peptide replication networks
(Figure 9), and an important experiment was devised that enabled switching from one steady state to
the other (Figure 10) [72]. In our “open bath” simulations, bistability was never found in the first order
systems, and it was proven mathematically that bistability requires at least second order catalysis for
these systems [73]. Significantly however, bistability has also been found in open flow (Model #3) first
order systems (for example [74]; see also additional references in [73]).
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or above the bifurcation points, there exists only one steady state solution. The red curve is also the
demarcation line for the initial concentrations, determining which stable solution will eventually be
reached. Reproduced from [73] with permission from Wiley.
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Figure 9. Experimental template concentrations as a function of time. showing a clear separation
between the lower and the higher steady states, depending solely on the initial concentration. In this
example, initial concentrations of 40 µM or above lead to the higher steady state, while initial
concentrations of 23 µM or lower lead to the lower steady state. Reproduced from [72] with permission
from Wiley.

Further analysis of the conditions leading to bistability have shown that if b > 0, the bistability
decreases (Figure 11) [72]. If b is set according to Equation (9), there is no bistability. This is well
understood in light of our discussion above, since the system is then closed and must eventually lead
to one equilibrium solution. Bistability requires open systems, as summarized by Epstein and Pojman:
“Because the alternative states of a multi-stable system are all stable over time, thermodynamics
imposes that multi-stability is fundamentally an energy-consuming, out-of-equilibrium process” [85].
Therefore, the choice of g > 0 with b = 0 crudely approximates an open system for which it might
be possible to establish a unidirectional flux of matter in a cyclic reaction path, and so overcome the
condition imposed by Wegscheider. Essentially, we are forcing the system to be open, but since we
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are not using an intake of materials, this corresponds to the “open bath” stoichiometrically closed
system. The corresponding experimental systems are also not closed; they are kept with high thiol
concentration and are constantly being pumped in with TCEP as a reducing agent [72,75], which
prevents the reactants and products from decaying due to hydrolysis and other side reactions that are
destructive to the autocatalytic process [73].
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Figure 10. Schematic description of the experimental bistable system. The high steady state is
characterized by a high concentration of template in trimer form (T-T-T), while the low steady state is
dominated by high concentrations of the reactants E and N. The system can be switched between the
two steady states by applying heat or by initiating the forward reaction in the absence of S (thiol) at
higher temperature. Reproduced from [72] with permission from Wiley.
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3.4. Chemical Oscillations

The original Belousov–Zhabotinsky Reaction [85] was produced in a closed system when operating
in the early stages of material consumption far from equilibrium. We have not succeeded in
producing oscillations in closed catalytic networks—neither experimentally nor computationally.
While sustained oscillations clearly require open systems, damped oscillations in closed systems
are not thermodynamically prohibited [86]. Even so, we have not observed them, not even in the
stoichiometrically closed “open bath” configuration; at most, we observe one or two reversals in
the template concentration (e.g., see above in the section on “Cooperation and Competition” and in
Figure 1). Since living organisms are replete with rhythmic and oscillatory behavior at all levels, to the
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extent that oscillations have been termed a “defining attribute of life” [87], this further underscores the
important connection between life and open systems.

Oscillations can be produced in an open flow reactor with a continuous intake flow of reactants
and degradation of products (Models #3 and #4). If the product decays linearly, first order systems can
produce only damped oscillations, while second order systems can also produce sustained oscillations.
On the other hand, if the product decays enzymatically, both first order and second order systems
are capable of exhibiting sustained oscillations. This has been proven theoretically [26–29] and
demonstrated computationally (see Figure 12) [70].
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from [70], Copyright (2015) American Chemical Society.

4. Conclusions

In this paper we have looked at simple replicating networks, and have shown how multiple
examples of emergent phenomena are critically dependent on the degree to which the model systems are
either open or closed. We have shown that closed systems can exhibit a range of emergent phenomena.
On the other hand, many of the more interesting phenomena leading to complexification and emergence,
such as bistability, bifurcations and oscillations, indeed require open systems! Apparently, the degree
of openness also plays a role, as seen by comparing the fully open systems (Models #3,4) with the
partially open systems (Model #2).

One of the key differences between the closed and open systems is the reversibility of all the
reactions and its impact on the outcome. In the closed systems, all the reactions are reversible (at least
in principle) and the only final state is equilibrium. Recalling that a closed system is generally not
isolated thermally and heat exchange is allowed, we can control the temperature and change the value
of the equilibrium constant, but if all the reactions are kept reversible, we again only have equilibrium
as the final state.

Most models that show complex dynamics have at least one or two irreversible steps. In the
case of the Belousov–Zhabotinsky Reaction, although closed, we observe transient oscillations in the
concentrations of the catalysts in a system where the forward rate constants are much greater than
the backward rate constants. Therefore, in a model, we can just neglect those backward processes by
making several mechanistic steps irreversible (provided there is no Wegscheider condition that might
get violated). In our simpler models, however, the reverse ligation steps cannot be neglected if we want
to keep the system closed. Accordingly, some of our conclusions regarding the limitations of closed
systems may be true only for simple, prebiotic models, and may not extend to more complex systems.
This is also consistent with the fact that higher order catalysis or enzymatic decays (i.e., increased
complexity) are more adept at producing oscillating behavior.

Open systems are characterized by heat and/or mass exchange, although most models ignore
heat exchange when the range of experimental temperature is small and close to room temperature.
A chemostat or CSTR can be used as a model, but any exchange of energy with the system that yields
a chemical change will do. For example, in the case of dimerization with a negligible reverse rate
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constant, we can irradiate the sample and break the dimer, so one effectively changes the reverse
rate constant.

In the case of bistability, we maintain a high concentration of active (thiol) molecules by regularly
adding a reducing reagent. Thus, we have an open system. Using the minimal model, we argue
that the excess thiol makes some reactions reversible, except for the catalytic ligation, so we model
the open system by keeping one reaction irreversible. Furthermore, we have proven that first order
self-replication cannot sustain bistability, but second order can. The numerical solutions show clearly
the high product and the high reactant states of the system. We can even argue that the second order
self-replication divides the network into two subnetworks of chemical reactions controlled by the
irreversible reaction, and the system gets trapped in one of the subnetworks. If we make the system
fully reversible, we lose the bistability.

This can also be understood as follows: bistability requires a mismatch between forward and
reverse processes. In our case, this was achieved by a system with template-assisted ligation,
but with reverse ligation possible only in the slower background reaction. In a closed system,
the template-assisted ligation also becomes reversible, and the mismatch is removed.

In an open semi-batch system with an enzymatic sink, we find complex dynamics for the first and
second order self-replication. The sink may balance the input and shift the non-equilibrium steady
state and therefore modify its stability, thus producing oscillations. We can interpret the enzymatic sink
as a reaction that degrades the product into compounds that can be removed from the reactor, avoiding
any accumulation. Although the enzymatic sink may not be an experimental option, in prebiotic
conditions a catalytic surface can play the same role, because a surface, as well as an enzyme, can be
saturated by the reagents.

In summary, we have demonstrated the crucial role of open systems in driving complexity and
emergence, by looking at simple replicating networks using four working models for open or closed
networks. We have also shown how studying synthetic replication networks has enabled us to mimic
many aspects of life-like behavior. Considering the central role played by catalytic order in driving
emergent phenomena [77], there may be a more general rule here: emergence can be driven by either
increasing openness or by increasing complexity.
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