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Progesterone is a gonadal steroid hormone whose physiological effects extend well
beyond the strict confines of reproductive function. In fact, progesterone can have
important effects on a variety of tissues, including the bone, the heart and the
brain. Mechanistically, progesterone has been thought to exert its effects through the
progesterone receptor (PR), a member of the nuclear steroid hormone superfamily,
and as such, acts through specific progesterone response elements (PRE) within the
promoter region of target genes to regulate transcription of such genes. This has been
often described as the “genomic” mechanism of progesterone action. However, just
as progesterone has a diverse range of tissue targets, the mechanisms through which
progesterone elicits its effects are equally diverse. For example, progesterone can activate
alternative receptors, such as membrane-associated PRs (distinct from the classical PR),
to elicit the activation of several signaling pathways that in turn, can influence cell
function. Here, we review various non-nuclear (i.e., non-genomic) signaling mechanisms
that progesterone can recruit to elicit its effects, focusing our discussion primarily on those
signaling mechanisms by which progesterone influences cell viability in the brain.
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THE BIOLOGY OF PROGESTERONE
Progesterone (Pregn-4-ene-3, 20-dione, P4), the natural pro-
gestin, is a major gonadal hormone that is synthesized primarily
by the ovary in the female, and the testes and adrenal cortex in
the male. While progesterone levels are generally higher in the
female, it is worth noting that levels of progesterone during the
female follicular phase of the menstrual cycle are similar to those
seen in males (Strauss and Barbieri, 2004), and thus, may have
important functions in males. Although the paradigmatic role for
progesterone is on reproduction function, it has also been shown
to exert significant extra-reproductive actions via multiple non-
genomic signaling pathways. These different functions include
immunomodulation (Hughes et al., 2013), inhibition of choles-
terol biosynthesis (Metherall et al., 1996), and neuroprotection
(Jodhka et al., 2009).

The “classical” mechanism by which progesterone elicits its
effects is via the progesterone receptor (PR), which, like the estro-
gen receptor (ER), has classically been described as a nuclear tran-
scription factor, acting through specific progesterone response
elements (PRE) within the promoter region of target genes to reg-
ulate transcription. Two major isoforms of the classical PR exist,
PR-B, and its N-terminally truncated form, PR-A [for review,
see (Conneely and Lydon, 2000)]. The latter has been shown to
exert negative control of not only PR-B-mediated transcription,
but that mediated by the ER and glucocorticoid receptor as well
(Vegeto et al., 1993). This negative regulation of ER function by
a PR may underlie, at least in part, the mechanism by which

progestins functionally antagonize the effects of estrogen. For
example, progesterone can inhibit estrogen’s ability to increase
serum levels of 1, 25, dihydroxy vitamin D (Bikle et al., 1992),
whose consequence may be to antagonize estrogen’s beneficial
effects on the bone. Relevant to post-menopausal hormone ther-
apy, the functional antagonism exerted by progestins on estrogen’s
actions also underlie the rationale for combined estrogen and
progestin therapy in women with an intact uterus, as the addi-
tion of a progestin reduces the risk of uterine cancer associated
with un-opposed estrogen therapy (Hirvonen, 1996). However,
the relationship between progesterone and ERs may not always
be antagonistic. For example, Migliaccio et al. demonstrated not
only a physical interaction of the PR with the ER, but that this
association was necessary for progesterone to elicit the activation
of a signal transduction pathway, the mitogen activated protein
kinase (MAPK) pathway, in mammary tumor cells (Migliaccio
et al., 1998).

While the classical mechanism by which progesterone elicits
its actions is through the regulation of gene expression, proges-
terone has also been shown to elicit its effects via non-genomic
mechanisms such as through the activation of signal transduction
pathways, which in turn may be mediated by distinct PRs, includ-
ing the more recently described membrane-associated PRs. Here,
we review various non-nuclear signaling mechanisms by which
progesterone can elicit its effects, focusing our discussion primar-
ily on non-nuclear mechanisms by which progesterone influences
cell viability in the brain.
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DIVERSITY OF SIGNALING PATHWAYS THAT MEDIATE THE
EFFECTS OF PROGESTERONE
The classical PR-mediated cellular/physiological effects of pro-
gesterone are generally not rapidly elicited, given the time
required to induce the transcription of genes and then, trans-
late those genes into protein products. In contrast, it is now
clear that progesterone can elicit rapid, non-genomic actions in
various tissues including the brain through alternative mech-
anisms. These “non-classical” effects of progesterone can be
initiated rapidly at the cell surface to activate intracellular
signaling pathways, through modulation of putative cell sur-
face receptors, ion channels, and cytoplasmic second mes-
senger cascades. It is worth noting, however, that though
these effects of progesterone are termed “non-genomic,” the
rapid activation of cytoplasmic kinase signaling can result
in both transcription-independent and transcription-dependent
effects.

Among those rapid non-nuclear signaling pathways known
to be activated by progesterone include the extracellular signal-
related kinase (ERK) pathways (Migliaccio et al., 1998; Singh,
2001; Nilsen and Brinton, 2002; Boonyaratanakornkit et al.,
2008; Su et al., 2012), cAMP/protein kinase A (PKA) signaling
(Collado et al., 1985; Petralia and Frye, 2006), PKG signaling
(Peluso, 2003), Ca2+ influx/PKC activation (Swiatek-De Lange
et al., 2007), phosphatidylinositol 3-kinases (PI3 K)/Akt pathway
(Singh, 2001; Zheng et al., 2012) and other signal transduction
cascades. In addition, progesterone (or its metabolites) can act
directly and rapidly on such neurotransmitter receptors such
as the GABA-A receptor (Ishihara et al., 2013) and Sigma-1/2
receptors (Cai et al., 2008; Xu et al., 2011) to regulate cellular
function.

With respect to calcium signaling, several reports suggest
a functional link between progesterone and intracellular Ca2+
levels [(Ca2+)i]. For example, progesterone elicits increases in
intracellular Ca2+ [(Ca2+)i] levels in Xenopus oocytes resulting
in oocyte maturation (Wasserman et al., 1980). However, the cel-
lular mediators involved in the progesterone-mediated changes in
[Ca2+]i remain to be determined. What is known is that intra-
cellular Ca2+ channels (ICCs), such as IP3Rs, have been shown to
be major components of the cytosolic Ca2+ regulation machinery
(Berridge et al., 2000, 2003). Furthermore, several steroid hor-
mones activate other signaling molecules that might in turn lead
to activation of ICCs. In fact, both estradiol and progesterone
elicit the phosphorylation of Akt in cerebral cortical cultures
(Singh, 2001), a signaling protein that has been implicated in
the phosphorylation of IP3Rs in Chinese hamster ovary T-cells
(Khan et al., 2006). Progesterone, through an Akt-dependent
pathway, can activate IP3R type 2, leading to enhancing chan-
nel activity of IP3R type 2 (Koulen et al., 2008; Hwang et al.,
2009).

The consequences of activation of these signaling pathways are
numerous and include influences on neurotrophin release (Su
et al., 2012), neural progenitor proliferation (Liu et al., 2009),
regulation of intracellular Ca2+ levels (Cai et al., 2008), and regu-
lation of cell viability (Nilsen and Brinton, 2002, 2003; Kaur et al.,
2007; Ishihara et al., 2013), all of which can contribute to the
overall health and function of the brain.

RECEPTORS MEDIATORS OF PROGESTERONE-INDUCED
SIGNALING
From a receptor pharmacology standpoint, the mechanism of
progesterone action implicates the classical PR (e.g., PR-B or its
N-terminally truncated variant, PR-A). Indeed, there are neuro-
protective mechanisms of progesterone that require the classical
PR. For example, our laboratory has determined that the ability
of progesterone to increase the expression (mRNA and protein
levels) of brain-derived neurotrophic factor (BDNF), a key medi-
ator of progesterone’s protective effects, requires the classical
PR (Figure 1) (Jodhka et al., 2009). Further, Cai and colleagues
(2008) have implicated the classical/intracellular PR in the pro-
tective effects of progesterone against an experimental model
(middle cerebral artery occlusion) of stroke. However, evidence
also exists for alternative mechanisms of action, including that
which involves integral membrane PRs. For example, the effect
of progesterone has been reported in the brain of PR knock-out
mice (Krebs et al., 2000), suggesting PRs other than the classical
PR may mediate the effect of progesterone in the CNS. In fact,
several lines of evidence now support the role of cell membrane-
associated PRs in mediating the effects of progesterone on the

FIGURE 1 | Mechanism of progesterone action in the brain. This figure
provides a conceptual overview of how progesterone can elicit both
genomic and non-genomic effects that impact its protective effects on the
brain, and exemplifies how activation of complementary signaling cascades
may be required for progesterone to fully elicit its effects. Using BDNF and
two members of the ERK/MAPK family as paradigmatic examples of key
mediators of progesterone-induced neuroprotection, this diagram
underscores the fact that the protective effects of progesterone cannot be
elicited by one signaling pathway alone, but rather, require complementary
activation of multiple signaling pathways. In this example, the induction of
BDNF synthesis requires the PR operating through its classical, genomic
mechanism of action. However, such synthesis may not be meaningful
unless the cellular content of BDNF can be secreted, leading in turn to the
activation of its cognate receptors (ex. TrkB and/or p75) which can then
elicit additional signaling pathways associated with cellular protection. This
release of BDNF is mediated by a distinct receptor, Pgrmc1. In addition,
other membrane-associated progesterone receptors, such as the mPR
family of receptors, may elicit the activation of related signaling pathways
that help finely regulate the process. In the example illustrated, activation
of mPR may lead to activation of ERK1/2, which in turn, has been shown to
exert an inhibitory influence on BDNF gene expression.
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brain (Balasubramanian et al., 2008; Liu and Arbogast, 2009;
Tokmakov and Fukami, 2009; Intlekofer and Petersen, 2011).
The notion that membrane PRs exist is not new, and in fact,
was supported by Hans Selye’s pioneer work in the 40′s that
showed various steroid hormones, including progesterone, had
very rapid anesthetic effects in contrast to the delayed “main”
hormone actions (Selye, 1942). Four decades later, specific, dis-
placeable binding sites for progesterone were identified in synap-
tosomal membrane preparations (Towle and Sze, 1983; Ke and
Ramirez, 1990). Further, progesterone’s is quite lipophilic, hav-
ing a logP value, or octanol/water partition coefficient, of 4. This
value reflects the relative solubility of a compound in an organic
phase (i.e., octanol) vs. an aqueous phase (e.g., water). As such,
a logP value of 4 indicates that for every molecule of proges-
terone that partitions into the aqueous phase, 10,000 molecules
partition into the organic phase. This further supports the idea
that progesterone interacts with a plasma membrane-associated
receptor.

Two types of distinct cell surface-associated proteins unre-
lated to classical PRs have been identified so far: membrane PRs
(mPRs) and the progesterone membrane receptor component
(PGMRC). The mPRs (molecular mass of approximately 40 kDa)
had thought to be comprised of three subtypes, mPR α, β, and γ,
which belong to the seven-transmembrane domain adiponectin
Q receptor (PAQR) family (Zhu et al., 2003a,b). Two new sub-
types, mPRδ and mPRε, have also been characterized recently in
human brain (Pang et al., 2013). The mPRs bind to progesterone
with high affinity (Kd ∼5 nM) (Zhu et al., 2003a), and mediate
important physiological functions in male and female reproduc-
tive tracts, liver, neuroendocrine tissues, and the immune system
as well as in breast and ovarian cancer (Sleiter et al., 2009; Pang
and Thomas, 2011). Uniquely, recent experimental evidence sup-
ports mPRs as G-protein-coupled receptors, as supported by the
observation that activation of the mPRα can result in recruit-
ment/activation of pertussis-sensitive inhibitory proteins (Gi) to
down-regulate membrane-bound adenylyl cyclase activity in the
sea trout and in humans (Thomas et al., 2007).

Despite the fact that the classical PR and mPRs have
overlapping regional expression (e.g., both are expressed in the
hippocampus, cortex, hypothalamus, and cerebellum) (Brinton
et al., 2008; Meffre et al., 2013), their profile of ligand
specificity is not identical. For example, mPRs bind to 17α-
hydroxyprogesterone and 5-dihydroprogesterone with greater
affinity than to the classical PRs (Grazzini et al., 1998; Smith
et al., 2008). In terms of cellular distribution, under non-injured
conditions, the mPRα isoform was expressed principally by neu-
ronal cells and not by oligodendrocytes or astrocytes. However,
following traumatic brain injury (TBI) mPRα expression was
observed in oligodendrocytes, astrocytes, and reactive microglia.
This increase in mPR expression was proposed to mediate the
anti-inflammatory effects of progesterone under conditions of
injury (Meffre et al., 2013). Thus, the complement of PRs
expressed in the brain may be driven by the health of the tissue.

In comparison to the mPRs, the single-transmembrane
protein Pgrmc1 (molecular mass 25–28 kDa) and the closely
related Pgrmc2 are thought to be a part of a multi-protein
complex that binds to progesterone and other steroids, as

well as pharmaceutical compounds (Thomas, 2008). Pgrmc1
was originally discovered in porcine liver and vascular smooth
muscles (Falkenstein et al., 1996; Meyer et al., 1998), and later
cloned in other species, including humans. Pgrmc1 has also
been termed 25-Dx in rat and Hpr6 in human [for review, see
(Cahill, 2007)], a result of being identified in different biolog-
ical systems from multiple species. Pgrmc1 has an N-terminal
transmembrane domain and a putative cytoplasmic cytochrome
b5 domain ligand-binding motif. The cytoplasmic domain has
target sequences for binding by SH2- and SH3-domain contain-
ing proteins as well as tyrosine kinases, implicating a potential
role for Pgrmc1 as an adaptor involved in protein interactions
and intracellular signal transduction. The subcellular localiza-
tion of Pgrmc1 has been open to argument, since it was reported
to localize in endoplasmic reticulum (Nolte et al., 2000), Golgi
apparatus (Sakamoto et al., 2004) and nuclei (Beausoleil et al.,
2004). However, evidence supporting the cell surface localiza-
tion of Pgrmc1 includes the reports by Peluso et al., (Peluso
et al., 2005) and ours (Su et al., 2012), in which biotinylated
Pgrmc1 was localized to the surface (i.e., plasma membrane) of
non-permeabilized cells.

Both mPRs and Pgrmc are expressed at high levels in the brain,
but their functions relevant to progesterone effect in the CNS
have only just started to be revealed. For example, a recent report
demonstrated that allopregnanolone and other neurosteroids
bound to mPRδ and decreased starvation-induced apoptosis in
in hippocampal neuronal cells at low nanomolar concentra-
tions (Pang et al., 2013). In addition, mPRα, mPRβ and Pgrmc1
have been implicated in progesterone-repressed gonadotrophin-
releasing hormone release from hypothalamic neurons (Sleiter
et al., 2009; Bashour and Wray, 2012). Progesterone-increased
neural progenitor proliferation may also be mediated by Pgrmc1
as this effect was blocked by siRNA against Pgrmc1/2 (Liu et al.,
2009). Further, a recent study by Frye, et al., revealed that
progesterone-facilitated lordosis (sexual behavior) was signifi-
cantly reduced by antisense oligodeoxynucleotides (AS-ODNs)
against mPRβ, or AS-ODNs against both mPRβ and mPRα,
when administered into the ventral tegmental area (VTA) (Frye
et al., 2013). This data supports the potential role of mPRs in
progesterone-facilitated lordosis of rats. The cell signaling path-
ways and associated downstream effects for progesterone-induced
non-genomic actions are summarized in Table 1.

The functions of membrane-associated PRs in the CNS are
not limited to neurons. In fact, work from our laboratory sup-
ports that progesterone triggers BDNF release via Pgrmc1 sig-
naling specifically from glia (Su et al., 2012). Another report
showed that mPRα expression was induced in oligodendrocytes,
astrocytes and reactive microglia after TBI (Meffre et al., 2013),
supporting a potential role in mediating the effects of proges-
terone in inflammation and water homeostasis in the injured
brain.

The two receptors do not always work independently. For
example, Thomas and colleagues reported that activation of
mPRα and -β in human myometrium leads to transactivation of
PR-B (Karteris et al., 2006), as the first evidence that cross talk
between the classical PR signaling and membrane-associated PR
signaling exists.
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Table 1 | Receptor pharmacology and signaling pathways associated with progesterone-induced non-genomic effects.

Receptor Signaling pathway Effect Species/cell/tissue type [references]

PR Gβγ/adenylyl cyclase Oocyte maturation Xenopus oocyte [Guzman et al., 2005; Evaul et al., 2007]

PR Src/ERK1/2/PI3K/Akt Activation of transcription factors (e.g., Elk1) Breast cancer [Saitoh et al., 2005; Fu et al., 2008]

PR Src/RhoA Inhibition of proliferation Smooth muscle cells [Hsu et al., 2011]

Pgrmc1 ERK5 BDNF release Glia [Su et al., 2012]

Pgrmc1, mPRα, mPRβ N.D. GnRH release Hypothalamic neurons [Sleiter et al., 2009]

Pgrmc1/2 ERK Neuronal progenitor proliferation Dentate gyrus [Liu et al., 2009]

mPRα, mPRβ N.D. Lordosis Ventral tegmental area [Frye et al., 2013]

mPRα Gi /adenylyl cyclase N.D. Sea trout, humans [Thomas et al., 2007]

mPRβ MAPK Oocyte maturation Xenopus oocyte [Josefsberg Ben-Yehoshua et al., 2007]

N.D. ↑ [Ca2+]i Oocyte maturation Xenopus oocyte [Wasserman et al., 1980]

BDNF, brain-derived neurotrophic factor; ERK, extracellular-signal regulated kinase; GnRH, gonadotropin releasing hormone; MAPK, mitogen-activated protein kinase;

mPR, membrane progesterone receptor; N.D., not determined; PI3K, phosphatidylinositol-3 kinase; Pgrmc, progesterone membrane component; PR, classical

progesterone receptor.

It is also worth noting that the classical PR can also
mediate the effects of progesterone on signaling pathways
through non-genomic/extranuclear mechanisms of progesterone.
Human PR-B contains a polyproline motif in its amino-
terminal domain that interacts with the SH3 domain of Src
(Boonyaratanakornkit et al., 2001). Therefore, cytoplasmic PR
can mediate progesterone-induced rapid activation of c-Src and
downstream Ras/Raf/ERK1/2 signaling independent of its tran-
scriptional activity. Activation of the MAPK pathway ultimately
results in the phosphorylation/activation of transcription factors
such as c-Fos, c-Jun and nuclear PRs to control gene transcrip-
tion. For example, progesterone was shown to inhibit aortic
smooth muscle cell proliferation via Src phosphorylation that in
turn, results in RhoA inactivation. The involvement of the PR
was supported by the fact that this effect was blocked by RU486,
a PR antagonist (Hsu et al., 2011). PR also mediates proges-
terone’s effects on breast cancer development and progression by
activating the Src/ERK1/2 or PI3K/Akt pathways (Saitoh et al.,
2005; Fu et al., 2008), which leads to activation of the tran-
scription factor Elk-1 and consequent changes in gene expression
(Boonyaratanakornkit et al., 2008).

In addition to the well-characterized Src pathway downstream
of extranuclear PR, there is evidence supporting the activation of
G-protein signaling by PR in frogs (Xenopus laevis). For exam-
ple, the Xenopus PR isoform related to the mammalian PR-B
localizes to the plasma membrane of oocytes, and that activa-
tion of the PR regulates Xenopus oocyte maturation via the Gβγ

activation of adenylyl cyclase (Guzman et al., 2005; Evaul et al.,
2007). Interestingly, another study concluded that the Xenopus
ortholog of mPRβ mediated progesterone-induced oocyte mat-
uration via the MAPK signaling (Josefsberg Ben-Yehoshua et al.,
2007). Whether there is a cross talk between the PR/Gβγ path-
way and the mPRβ/MAPK pathway in this system remains
unclear.

REGULATION OF BRAIN FUNCTION THROUGH METABOLITES
OF PROGESTERONE
Another mechanism by which progesterone can exert protective
effects is through its metabolites, which in turn, can interact

with membrane-associated receptors coupled to ion-channels,
such as the GABAA receptor system [see (Deutsch et al., 1992)
for review]. Such metabolites include allopregnanolone (or 3α,
5α tetrahydroprogesterone), which bind to discrete sites within
the hydrophobic domain of the GABAA receptor complex, and
result in the potentiation of GABA-induced chloride conduc-
tance. Indeed, allopregnanolone has been suggested to play a
role in mediating the protective effects of progesterone (Djebaili
et al., 2004; He et al., 2004a,b; Vitarbo et al., 2004; Ardeshiri
et al., 2006; Sayeed et al., 2009). In addition to the effects of
allopregnanolone on the GABAA receptor, as outlined above, allo-
pregnanolone may also elicit its protective effects through its
actions on the mitochondria (Robertson et al., 2006). For exam-
ple, allopregnanolone was reported to inhibit currents associated
with the opening of the mitochondrial permeability transition
pore (mtPTP) (Sayeed et al., 2009), and as such, may help reduce
the potential apoptotic consequences of mtPTP opening (such
as cytochrome c release) during insult or injury. Moreover, allo-
pregnanolone has also been shown to exert significant effects
on neurogenesis [see (Wang et al., 2008) and references cited
therein for review]. Interestingly, it has been shown that allo-
pregnanolone may also elicit its protective effects through the
regulation of BDNF [see (Nin et al., 2011) and references cited
therein], although the precise mechanism by which allopreg-
nanolone elicits BDNF [i.e., what receptor(s) allopregnanolone
works through] is still unclear.

In addition to the allosteric effects described above, proges-
terone itself may have non-allosteric influences on the GABAA

receptor. Progesterone may influence the GABAA receptor via
the activation of a signal transduction pathway, which in turn,
influences GABA-gated currents through phosphorylation of
discrete sites within certain subunits of the GABAA receptor
(Vasan et al., 2003; Bell-Horner et al., 2006). Since the reg-
ulation of the GABAA receptor has been shown to modulate
cell survival, particularly in models of excitotoxicity, the regu-
lation of the GABAA receptor by progesterone may be relevant
to the protective effect of progesterone seen against kainate-
induced seizure activity and subsequent cell death (Hoffman
et al., 2003).
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And yet another non-classical by which progesterone can elicit
its effects is through its interaction with the sigma 1 (σ1) recep-
tor (Selmin et al., 1996; Seth et al., 1998). Given the reported
role of the sigma 1 receptor in neuroprotection [for review, see
(Maurice et al., 2006)], this mechanism may also be relevant to
progesterone’s protective actions.

Collectively, reports from numerous laboratories sup-
port the critical involvement of “non-genomic” signaling
in mediating progesterone’s effects, including its cytopro-
tective effects. This highlights not only the complexity by
which progesterone exerts its effects on target tissues, but

also reveals insight into discrete mechanisms that may be
modulated for the purpose of developing novel therapeutic
strategies.
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