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Spatial calibration and PM2.5 
mapping of low‑cost air quality 
sensors
Hone‑Jay Chu*, Muhammad Zeeshan Ali & Yu‑Chen He

The data quality of low-cost sensors has received considerable attention and has also led to PM2.5 
warnings. However, the calibration of low-cost sensor measurements in an environment with high 
relative humidity is critical. This study proposes an efficient calibration and mapping approach based 
on real-time spatial model. The study carried out spatial calibration, which automatically collected 
measurements of low-cost sensors and the regulatory stations, and investigated the spatial varying 
pattern of the calibrated low-cost sensor data. The low-cost PM2.5 sensors are spatially calibrated 
based on reference-grade measurements at regulatory stations. Results showed that the proposed 
spatial regression approach can explain the variability of the biases from the low-cost sensors 
with an R-square value of 0.94. The spatial calibration and mapping algorithm can improve the 
bias and decrease to 39% of the RMSE when compared to the nonspatial calibration model. This 
spatial calibration and real-time mapping approach provide a useful way for local communities and 
governmental agencies to adjust the consistency of the sensor network for improved air quality 
monitoring and assessment.

Air pollution is a severe global problem, especially in developing countries. A major air pollutant in urban 
environments is fine particulate matter (PM2.5), which affects human health negatively. However, the traditional 
existing air quality monitoring networks are sparsely deployed and lack the measurement density, because the 
installation and maintenance of air quality monitoring instruments are expensive. In the race to develop high-
resolution, spatiotemporal air pollutant monitoring systems, low-cost air quality sensors are promising supple-
ments to regulatory monitors for PM2.5 exposure assessment1,2. Low-cost sensors have been used to collect real-
time high-density air pollution data3,4. Low-cost sensors for PM2.5 were developed from Internet of Things (IoT)5. 
Investigators can also deploy additional sensors to increase spatial coverage of air quality monitoring network6. 
Moreover, low-cost sensors can gather air quality information of the community within real time at any location. 
The sensors are potentially easy to use and maintain because they require less energy and space to operate2,7.

Low-cost sensors have been proposed to stand alone or as complementary components of existing air qual-
ity monitoring regulatory networks, which measure air pollution concentrations. However, previous studies 
have pointed out the inconsistency between low-cost sensors and high-quality regulatory instruments7–9. Low-
cost observations may contain uncertainties mainly due to aerosol schemes, temperature, and high relative 
humidity10,11. The sensors may also indicate bias, as the models are dependent on location, hygroscopic growth, 
and specific range of relative humidity12,13. Each sensor type has distinct characteristics, and many factors affect 
light scattering, including particle size, shape, composition, and relative humidity11. Moreover, the particle num-
ber and mass concentrations significantly increase in high relative humidity12.

To minimize low-cost sensor bias and uncertainties, calibration is essential for producing validated data. 
Calibration should be processed before, during, and after the data collection14. The response of low-cost sensors 
could then be compared to the response of a reference instrument or a reference system. Even though low-cost 
sensor data attain low systematic bias after calibration, their precision is still not comparable to that of reference-
grade measurements. Holstius8 et al. (2014) calibrated PM2.5 from a reference instrument with Federal Equivalent 
Method (FEM) status. However, keeping the regional sensors well-calibrated during deployment is a challenge9. 
Few approaches have been used to create field calibration formulas7,15. For example, linear models are used to 
adjust the raw data in certain cases16. Furthermore, nonlinear equations or machine learning methods are neces-
sary to improve lower-cost sensor performance for air quality monitoring4,15,17,18. The reduction of measurement 
errors of large-scale low-cost sensor data is difficult with current multivariate calibration models2. To avoid 
regional misunderstanding of the measurements of low-cost air quality sensors, the development of a spatial 
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calibration procedure is necessary. Thus, in the current study, we propose a real-time, regional, and simple way 
for low-cost sensor calibration based on reference-grade measurements at regulatory stations.

The objectives of the study are to develop the spatial varying relationship between the low-cost sensors and 
regulatory stations for calibration; to calibrate regional, low-cost air quality sensors against regulatory stations 
at one time slice; and to estimate the reliable PM2.5 concentration map from calibrated low-cost air quality sen-
sors. The real-time calibration function would vary with the specific location. As a basis for the spatial calibra-
tion model, the function was assumed to be related to locations, and the coefficient estimation was carried out 
in spatial regression. Moreover, regional PM2.5 concentration estimations were conducted after the calibration. 
Hence, the spatial calibrated concentration from low-cost sensors would be able to identify the reliable regional 
pollution hotspots.

Materials
As the program for the low-cost PM2.5 sensor was launched in 2015, cooperation between the Academia Sinica 
and businesses, e.g., Edimax, led to the installation of thousands of boxes in Taiwan wherein local communities 
have volunteered to install low-cost PM2.5 sensors. The majority of air quality detection sensors, called AirBox, 
used the Realtek Ameba development board with the PMS5003 optical particulate matter sensor5. In this case, 
2963 low-cost sensors were set-up (Fig. 1). The data are available from https​://pm25.lass-net.org/. The AirBox 
PM2.5 observations along with the environmental variables, e.g., temperature (°C), and relative humidity (%), 
were updated roughly every 5 min.

The Taiwanese Environmental Protection Agency (TWEPA) has been regularly recording the air quality and 
meteorological data throughout Taiwan. Since August 2005, the TWEPA has completed the installation of 76 
automatic monitoring instruments for PM2.5 (Fig. 1). The current study used the hourly PM2.5 data obtained by 

Figure 1 please help to update fig 1 from the attachment.   Spatial distributions of AirBox devices (green 
points) and TWEPA air quality monitoring stations (pink points) in Taiwan. The figure has been generated with 
ESRI-ArcGIS, version 10.6 (https​://www.esri.com/arcgi​s/about​-arcgi​s).

https://pm25.lass-net.org/
https://www.esri.com/arcgis/about-arcgis
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the TWEPA stations that complied with the regulatory air monitoring procedures. The data were accessed from 
https​://opend​ata.epa.gov.tw/Data/Conte​nts/ATM00​625/.

In this case study, the PM2.5 hourly data obtained by the TWEPA’s Air Monitoring Network and low-cost 
sensor real-time data were obtained for the fine aerosol concentration in Taiwan. The time-slice at 12:00 pm 
(UTC), 2020-02-24 is used as a case study. At that time, the relative humidity was high, and the air quality was 
poor from high PM2.5 concentrations in the western part of Taiwan due to weak diffusion condition. The average 
relative humidity is 82.1% and average temperature is 22 °C in the low-cost sensors. In high relative humidity, 
problematic observations from the low-cost sensor are expected to be found. Temperatures between 17 and 27 °C 
were mostly insignificant factors of sensor bias in the study area7.

Method
The main steps involved calibrating the low-cost sensors and estimating the accurate map of PM2.5 (Fig. 2). In 
the preprocessing of calibration (adjustment) model, the nearest neighbor data pair from low-cost sensor and 
regulatory station is used for collocation. Subsequently, the nonspatial and spatial calibration models are applied. 
After calibration, the regional PM2.5 concentrations from the sensor data are estimated.

Suppose that n regulatory observations are found in the dataset for low-cost sensor calibration in the time 
slice. Each observation consists of a response variable Yi , and B-dimensional covariates Xi = (x1i , . . . , xBi)

T , 
i = 1, . . . , n . Here, Yi and Xi are assumed to be random variables, and E(Yi|Xi) is the conditional expectation 
of Yi given Xi . 

Here, the calibration model considers x1i , which is the PM2.5 concentration from the collocated low-cost 
sensors (nearest neighbors of regulatory observations), and Yi is the PM2.5 concentration of regulatory sensors 
from TWEPA. The low-cost sensor calibration from nonspatial calibration model (global calibration: a single 
coefficient set β0,β1 for all sensors) is expressed as.

The spatial calibration model is defined from a kernel-based varying-coefficient model19, which is spatial 
regression20. The spatial calibration model requires the 2D coordinates of each observation as geographical 
information. Let (ui , vi) be the coordinate of the i th observation.

The spatial regression coefficients, β0(ui , vi), . . . ,βB(ui , vi) , are estimated by weighted least-square method 
wherein the weights are evaluated by the distance between coordinates of the observed data (ui , vi) and the 
neighborhood coordinate. Here, the PM2.5 of the regulatory station is the response variable and the PM2.5 of the 
collocated low-cost sensor is the covariate. Therefore, the spatial calibration model (local calibration: individual 
coefficient set each low-cost sensor) is expressed as.

In the spatial adjustment, the estimated spatial coefficient β̂k(ui , vi) at each observation i is derived from 
weighted least-squares

 where W(ui, vi) is a weight matrix based on the kernel function. The kernel distances are defined as Euclidian 
and Gaussian function. The Gaussian distance decay-based function is one of the typical functions of spatial auto-
correlation. The geographical distance is quoted in meters. The elements in a weight matrix Wij is the weighted 
function between observations i and j. The weight element can be computed as a kernel function

 where b is a nonnegative parameter known as bandwidth, and dij is the Gaussian distance decay-based function 
based on the geographical distance. The optimal bandwidth is determined by the criteria, i.e., cross validation. 
Meanwhile, the model residual ( ei ) at observation i is defined as

where Yi is the observed concentration from regulatory station i, and Y ′

i is the calibrated concentration of the 
low-cost sensors near regulatory station i. To evaluate the model performance, the common measures, R2 and 
RMSEs, are used based on the observation data and the estimated values at the regulatory stations.

Furthermore, the inverse distance weighting (IDW) method is a straightforward and low-computational 
approach for spatial interpolation procedures of the PM2.5 concentration map. The IDW method is used in 
this study to generate a 2 km-resolution PM2.5 concentration map after spatial calibration. The weights of the 
observations in the IDW are based on the inverse distances of the unknown point and observations. The param-
eter power value is 2 as the inverse distance squared weighted interpolation.

(1)E(Yi|Xi) = β0 +
∑B

b=1
βbxbi

(2)E(Yi|Xi) = β0 + β1x1i .

(3)E(Yi|Xi , (ui , vi)) = β0(ui , vi)+
∑B

b=1
βb(ui , vi)xbi.

(4)E(Yi|Xi , (ui , vi)) = β0(ui , vi)+ β1(ui , vi)x1i .

(5)β̂k(ui , vi) = [XT
W(ui, vi)X]

−1
XT

W(ui, vi)Y,

(6)Wij = exp

(
−
d2ij

b2

)
,

(7)ei = Yi − Y
′

i ,

https://opendata.epa.gov.tw/Data/Contents/ATM00625/


4

Vol:.(1234567890)

Scientific Reports |        (2020) 10:22079  | https://doi.org/10.1038/s41598-020-79064-w

www.nature.com/scientificreports/

Results
Data description.  The raw PM2.5 concentrations from (a) low-cost sensor and (b) regulatory stations and 
their corresponding histograms (c and d) are shown in Fig. 3. The peaks of raw low-cost sensor data distribution 
are approximately over 20 and 50–60 μg/m3, but the peaks of raw regulatory station data are 10–20, 40–50 μg/m3, 
respectively. In addition, the average values of low-cost sensors and regulatory sensors are 51.9 and 36.7 μg/m3, 
and the standard derivations are 26.1 and 17.5 μg/m3, respectively. The average values of the low-cost sensor data 
are double than those of the regulatory sensors. Furthermore, the variance of low-cost sensor data is significantly 
larger than the EPA monitoring data (681 and 306 (μg/m3)2 in the low-cost sensor and EPA data, respectively). 
The low-cost sensor data calibration is needed in the condition. Most PM2.5 measurements from raw low-cost 
sensors and regulatory stations showed extremely high correlation with the time series, and these can be used to 
identify the PM2.5 pollution hotspots7. However, the correlation of low-cost sensors and regulatory sensor data is 
only 0.8 from the collocated stations in this time slice.

Figure 2.   Study flowchart including data preprocessing, e.g., json to csv, data collocation, nonspatial and spatial 
calibration models, i.e., linear regression (LR) and spatial regression (SR), spatial interpolation, and mapping 
(IDW: inverse distance weighting). The bottom plot was created in MATLAB_R2018B (https​://www.mathw​orks.
com/produ​cts/matla​b.html).

https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
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Spatial and nonspatial calibration models.  The nonspatial and spatial calibration models have 
R-square values of 0.64 and 0.94, respectively (Fig. 4). The RMSE of the low-cost sensor is modified from 17.7 to 
10.5 μg/m3 after calibration from the nonspatial model, but can be improved to 4.1 μg/m3 using the spatial cali-
bration model. Considering the spatial calibration model, the model performance improved, that is, the spatial 
scheme can reduce the inconsistency of low-cost sensors and the neighboring regulatory observations. Figure 5 
shows the spatial pattern and data distribution of calibrated results based on nonspatial and spatial calibration 
models. The data distribution considering the nonspatial model is similar to the original low-cost sensor data. 
After calibrating by spatial model, the peaks of data distribution are 10–20, and 40–50 μg/m3, respectively, and 
the standard derivation decreased from 26.1 to 18.0 μg/m3. The distribution of calibrated data in the spatial 
model is transformed to similar data distribution of regulatory stations. The result shows that the spatial calibra-
tion model performed better than the nonspatial calibration model.

The spatial calibration model is a local linear transformation used to model spatially varying relationships20. 
However, the nonspatial approach, i.e., global linear transformation, can lead to biased estimations of regression 
model parameters due to the sample outliers. The proposed spatial calibration model is based on a weighted 
local fitting approximation to the function being estimated. The approach adopted in this study can identify a 
nonlinear and spatial varying relation between a pair of low-cost sensors and regulatory stations. The spatial 
calibrated data can be used directly to estimate a reliable air quality map.

Spatial calibration coefficient.  Figure 6 shows the spatial coefficients in the spatial calibration model and 
indicates that the coefficient varies with locations. When considering spatial calibration model, the average slope 
is 0.33, but the average intercept is 21.4 (the slope is 0.58 and the intercept is 9.4 in the nonspatial calibration 
model). The spatial calibration model can consider the effects of a spatially heterogenous pattern and explore 
spatial non-stationarity in the sensor calibration by allowing regression coefficients to vary spatially. Further-
more, the system in the sensor calibration is local linear with weights because sensor relationships exhibit spa-
tially heterogeneous patterns.

Model residual plots.  Examining residuals is a key part of statistical modeling. Figures 7 and 8 show the 
residual plots, residual histograms, and normal probability plot of residuals, respectively. The residuals of the 

Figure 3.   Raw PM2.5 concentrations from (a) low-cost sensors and (b) regulatory stations and their histograms 
(c, d) in the case study. The plots were created in MATLAB_R2018B (https​://www.mathw​orks.com/produ​cts/
matla​b.html).

https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
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Figure 4.   Calibrated results (estimations) when compared to observations in the (a) nonspatial and (b) spatial 
calibration models (slope: 0.64 and 0.93; intercept: 13.3 and 2.8 in the nonspatial and spatial calibrations, 
respectively).

Figure 5.   Spatial patterns of calibrated PM2.5 based on the (a) nonspatial and (b) spatial calibration models, 
and the data distribution of calibrated PM2.5 from the (c) nonspatial and (d) spatial calibration models. The plots 
were created in MATLAB_R2018B (https​://www.mathw​orks.com/produ​cts/matla​b.html).

https://www.mathworks.com/products/matlab.html
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nonspatial calibration model are between − 16 and 36  μg/m3, whereas the residuals of the spatial calibration 
model are between − 11 and 14 μg/m3. In Fig. 7, the overestimations of the PM2.5 concentration values exist in 
most areas of Taiwan, but the underestimations of the PM2.5 concentration values exist at the hotspots in the 
central and southern regions21. Hence, the spatial calibration model reduces the bias when compared to the 
nonspatial calibration model. The model, i.e., traditional linear regression, cannot work with the regional sensor 
data calibration, because the linear regression model is easily failed by spatial heterogeneity. After performing 
the calibration using spatial model, the results show the most random and normally distributed residual pat-
terns in the spatial model (Fig. 8). The normal probability plot is a tool for assessing whether or not a data set 
is approximately normally distributed. The residual plot of the spatial calibration model shows a straight line, 
because the data set is approximately normally distributed. The smaller normally distributed residuals represent 
better model performance compared to the nonspatial methods.

Spatial mapping of PM2.5.  In the nonspatial and spatial calibration models, the mapping RMSE values of 
PM2.5 concentrations are 7.9 and 4.8 μg/m3, respectively. The spatial calibration model can improve the bias and 
decrease the mapping of RMSE to 39% compared to the nonspatial calibration model. Figure 9 shows the PM2.5 
estimation based on the nonspatial and spatial calibration models and regulatory stations. The hotspots from the 
low-cost sensors in the nonspatial calibration (Fig. 9a) are underestimated in the central and southwestern areas 
of Taiwan. After calibration, the spatial pattern of air pollution from low-cost sensors are similar to the results 
of the regulatory stations (Fig. 9b,c). The results (Fig. 9b,c) have similar large-scale patterns but vary in terms of 
details and spatial distributions in the local area. In addition, the spatial PM2.5 pattern from sparse regulatory 
stations are smooth and ideal. The spatial PM2.5 distribution from the low-cost sensors after calibration are com-
plete and reasonable. Considering a large number of calibrated low-cost sensors, the spatial details can be shown 
in the estimation. The spatial pattern of air pollution showed that the air pollution levels of eastern and western 
Taiwan varied. The hotspots of air pollution are in the central and southwestern areas of Taiwan.

Discussion
Strict collocation becomes a challenge when the low-cost sensor and regulatory networks are already established2. 
In this study, a nearest neighbor strategy was used by matching a low-cost sensor to its nearest TWEPA station. 
The overall average nearest neighbor distance of low-cost sensors is approximately 610 m, but the average nearest 
neighbor distance decreases to 311 m after excluding 7 data pairs with distances over 2 km. The high density of 
low-cost sensor network and the reasonability of this nearest neighbor strategy allowed for sufficient collocated 
samples to conduct the calibration.

Previous studies highlighted the association of the environmental conditions with the observation biases in 
low-cost sensors, as well as the calibration function that must be changed across space and time7. When used 
under environmental conditions with high relative humidity (> 80%), appropriate automated correction routines 
must be established to remove problematic observations from the datasets or transform these observations based 
on regulatory stations1. Increased relative humidity is associated with a near-exponentially increased low-cost 

Figure 6.   Coefficients of the spatial calibration model: (a) slope and (b) intercept based on the spatial 
calibration model (Eq. 4). The plots were created in MATLAB_R2018B (https​://www.mathw​orks.com/produ​cts/
matla​b.html).

https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html


8

Vol:.(1234567890)

Scientific Reports |        (2020) 10:22079  | https://doi.org/10.1038/s41598-020-79064-w

www.nature.com/scientificreports/

sensor data bias13. The observed influences of high humidity on low-cost sensor bias may be related to the issues 
in electronic circuits and the hygroscopic growth of fine particulates2. In a time series, the PM2.5 bias and relative 
humidity show positive association, while the relative humidity is high, particularly over 85%1,7. In this case, 43% 
of sensors exist with the relative humidity over 85%, and the total of 56% sensors exist with the relative humid-
ity over 80%. We easily faced this condition because the area had humid subtropical climate in the north and a 
tropical monsoon climate in the south of Taiwan. Therefore, low-cost sensors with high relative humidity must 
be established to eliminate the possibility of problematic observations. Multi-variable models may be fitted to 
obtain reasonable formulas, which can be easily interpreted and implemented from each sensor22. However, the 
current spatial calibration model performs the best (4.8 μg/m3), because the model is already considered a local 
weighting for the spatial heterogeneity of calibration. Not considering the environmental variables further may 
simplify the low-cost sensor data spatial calibration. When considering the relative humidity into the spatial 
calibration model, the model RMSE increases to 5.4 μg/m3. This result implies that the relative humidity shows a 
negligible association with the spatial calibration. The relative humidity is not the influencing factor in the spatial 
model, because the high relative humidity spreads everywhere at this time (average relative humidity is 82.1%).

Meanwhile, the calibration limitations and the risk of overfitting exist in small calibration datasets23. In 
practice, an appropriate and simple choice is to convert the low-cost sensor data to the reference system. The 
flexibility of an empirical spatial (location-specific) adjustment resulted in the consistent performance. After 
effective calibration, distributed low-cost sensors can help understand the spatial details of air pollution. In addi-
tion, data calibration commonly requires the space–time homogeneity of environmental conditions; however, 
the suitability of homogeneous assumption could not easily be validated7. If the environment is with high rela-
tive humidity, the real-time calibration for low-cost sensors is necessary. The calibration requires the real-time 
referenced and low-cost sensor data. The proposed approach did not find the general calibration equation, but 
needed to calibrate spatially at any time. In practice, the low-cost sensor will be real-time adjusted. In this case, 
computational time loading of the model is low (< 5 min) in the computer with Intel Core i5-10210U. The associa-
tions among low-cost sensors can be automatically converted to the reference system. In this case, the frequency 
of the monitoring systems of low-cost and regulatory sensors maybe inconsistent. The low-cost sensor updated 
rate is up to 5 min but the regulatory station is hourly updated. Thus, the real- or near real-time operation can 
only be set as the hourly calibration, then the real-time mapping of PM2.5 can be applied based on the current 
data with hourly-calibrated functions.

Low-cost sensors are cheap, compact, user-friendly, and provide high-resolution spatiotemporal air pollutant 
concentration data3. However, several types of low-cost sensors are also available for air quality monitoring in 
which the calibration may be applied diversely. In this spatial calibration model, the location-based and individual 
calibration coefficients at any time are considered.

This study offers an effective approach for exploring the low-cost sensor data transformation using the spatial 
calibration model, which is a local weighting method and is easy to fit between low-cost sensor and regulatory 

Figure 7.   Patterns of model residuals from the (a) nonspatial and (b) spatial calibration models. The plots were 
created in MATLAB_R2018B (https​://www.mathw​orks.com/produ​cts/matla​b.html).

https://www.mathworks.com/products/matlab.html
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stations. The spatial calibration and mapping model provide additional details on the spatial variations of sen-
sor transformation, which can be identified from the nonlinear and spatially varying relationship between the 
low-cost sensor and regulatory stations. Given that the observations of low-cost sensors play a critical role, the 
bias of the PM2.5 measurements from raw low-cost sensors can induce the biases of the risk perception from the 
public7. Even though the bias can be significantly improved through spatial calibration, the residuals can still be 
present in the result. For example, Fig. 9a,b show the differences in the observations from the low-cost sensors 
using nonspatial and spatial calibration. Such system biases were significantly reduced by the present calibration. 
Although the biases cannot be adjusted to exact zeros, the overall residuals were significantly mitigated in the 
spatial calibration process. Spatial calibration and mapping are very important in managing public perceptions 
of air quality levels. Using the spatial calibration, the spatial patterns of air pollution from low-cost sensors are 
consistent with those obtained from regulatory stations with high relative humidity. After spatial calibration, the 
pollution hotspots determined by the low-cost sensors can provide the detailed spatial patterns of PM2.5 better 
when compared to using regulatory stations. The pollution hotspots which were measured from the calibrated 
low-cost sensors happened in the central and southwestern areas of Taiwan.

Conclusions
The study conducted spatial calibrations, which collected measurements of and investigated the spatial varying 
relations of low-cost sensors and regulatory stations. This work also presented the derivation of the spatial cali-
bration approach for low-cost sensors given that the observed low-cost and regulatory measurements exhibited 
inconsistency and spatial heterogeneity.

Figure 8.   Residual histograms from the (a) nonspatial and (b) spatial calibration models, and normal 
probability plot of residuals from the (c) nonspatial and (d) spatial calibration models. The plots were created in 
MATLAB_R2018B (https​://www.mathw​orks.com/produ​cts/matla​b.html).

https://www.mathworks.com/products/matlab.html
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The proposed model considered spatial regression and IDW interpolation for calibrating and mapping 
regional air quality. The low-cost sensor data can be adjusted using spatial calibration, especially in the environ-
ment with high relative humidity. Results showed that the proposed approach can explain the variability of the 
biases from the low-cost sensors with an R-square value of 0.94. The mapping RMSE values of PM2.5 concentra-
tions decreased to 4.8 μg/m3. The spatial calibration model can reduce the bias and decrease the mapping of 
RMSE to 39% compared to nonspatial calibration. Moreover, the use of regional maps after spatial calibration—
instead of regulatory stations—provided spatial information on air pollution. Spatial pattern of air pollution 
showed the reliable hotspots of air pollution in the central area and in the southwestern area of Taiwan. The 
proposed model provides planners with relevant information by which to understand air pollution after the spa-
tial calibration of low-cost sensors based on regulatory observations. The spatial calibration and mapping model 
can effectively mitigate the misleading pollution risk perceptions from decreasing the biases of low-cost sensors 
in the environment with high relative humidity. In the future work, we will consider more spatial information, 
such as elevation into the kernel function. In addition, the model is available for both real-time calibration and 
offline calibration. The offline calibration will be applied based on long-term monitoring data.

Real-time visualization is available at https​://sites​.googl​e.com/gs.ncku.edu.tw/ttest​/%E9%A6%96%E9%A0%81

Received: 15 July 2020; Accepted: 4 November 2020
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