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Abstract: Type 2 diabetes (T2D) is a complex metabolic derangement that has a strong genetic basis.
There is substantial population-specificity in the association of genetic variants with T2D. The Indian
urban Sindhi population is at a high risk of T2D. The genetic basis of T2D in this population is
unknown. We interrogated 28 pooled whole blood genomes of 1402 participants from the Diabetes In
Sindhi Families In Nagpur (DISFIN) study using Illumina’s Global Screening Array. From a total of
608,550 biallelic variants, 140 were significantly associated with T2D after adjusting for comorbidities,
batch effects, pooling error, kinship status and pooling variation in a random effects multivariable
logistic regression framework. Of the 102 well-characterized genes that these variants mapped
onto, 70 genes have been previously reported to be associated with T2D to varying degrees with
known functional relevance. Excluding open reading frames, intergenic non-coding elements and
pseudogenes, our study identified 22 novel candidate genes in the Sindhi population studied. Our
study thus points to the potential, interesting candidate genes associated with T2D in an ethnically
endogamous population. These candidate genes need to be fully investigated in future studies.

Keywords: type 2 diabetes; genome-wide association study; ethnicity

1. Introduction

It is well established that type 2 diabetes (T2D) has a strong genetic basis. Studies
around the world report that T2D as a trait has a heritability ranging from 35–80% indicating
that a large proportion of the variability in T2D can be explained by genetics [1–5]. Genome-
wide association studies have identified several potential single nucleotide polymorphisms
(SNP) that significantly contribute to the genetic basis of T2D [6]. Still, it is recognized that
the strength of association of these SNPs with T2D can vary across world populations [7–10].
In that vein, a search for population-specific genetic determinants of T2D still continues.

The Indian Sindhi ethnically endogamous group has historically encountered the
challenges of stress and migration. The partition of India and Pakistan in 1947 led to
an exodus of Hindu Sindhis residing in the Sindh province (now in Pakistan) to various
parts across India. This exodus remains a critical root of the chronic stresses experienced
by generations of Indian Sindhis [2,11]. Combined with these stressors, the energy-rich
diet and relative lack of physical activity place this population at an enhanced risk of T2D.
Despite these well-known environmental determinants of T2D, in the first study of extended
and complex Sindhi pedigrees, we observed that the heritability of T2D was 35% [2]. In the
era of personalized medicine, this information is important since individual susceptibility
to T2D and the individual’s response to T2D treatment can both be determined, in part,

Genes 2022, 13, 1298. https://doi.org/10.3390/genes13081298 https://www.mdpi.com/journal/genes

https://doi.org/10.3390/genes13081298
https://doi.org/10.3390/genes13081298
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/genes
https://www.mdpi.com
https://doi.org/10.3390/genes13081298
https://www.mdpi.com/journal/genes
https://www.mdpi.com/article/10.3390/genes13081298?type=check_update&version=1


Genes 2022, 13, 1298 2 of 13

by the genetic disposition [12]. To that end, a genome-level interrogation of the potential
markers of T2D in the Indian Sindhi population is needed.

We conducted a pooled blood genome-wide association study of T2D in the pedigrees
of Indian Sindhi families enrolled in the Diabetes In Sindhi Families In Nagpur (DISFIN)
study [2]. This population has a substantial coexistence of metabolic comorbidities such
as hypertension, dyslipidemia, general obesity and central obesity. We used innovative
statistical approaches to account for these comorbidities and—constrained by the project
costs—conducted a pooled whole blood genome-wide association study (GWAS). Here, we
report the results of our study that identified interesting leads into the genetic basis of T2D
in the Indian Sindhi families.

2. Materials and Methods
2.1. Study Participants

The clinical and genetic data for the present study came from the participants in
the DISFIN study. Details of the enrollment protocol, inclusion and exclusion criteria
and overall design of the study have been described elsewhere [2]. Briefly, we enrolled
endogamous Sindhi families to construct family pedigrees. The pedigrees ranged from
simple nuclear ones to complex and extended three generation families. Consenting
participants with at least one known patient of T2D in the family were included in the study.
Other inclusion criteria were a resident of the study area (Jaripatka, Mecosabag and Khamla
areas of Nagpur where the Sindhi ethnic population mostly resides); self-reported Sindhi
ethnicity and age≥20 years. Pregnant or lactating women and patients with type 1 diabetes
(known or suggested by serum C peptide) were excluded. After investigator-administered,
semi-structured interviews and clinical examination, a trained phlebotomist collected blood
samples for laboratory assays. Part of the sampled venous blood was stored at −80 ◦C to
conduct genetic investigations later. Participant enrollment and blood sample collection
took place between 1 March 2016 and 28 February 2017.

2.2. Definitions of Metabolic Conditions

The primary goal of the study was to conduct a genome-wide interrogation in the
context of T2. Since metabolic comorbidities such as obesity, hypertension and dyslipi-
demia commonly coexist with T2D, we also investigated the study participants with
respect to these conditions. T2D was defined [13] as self-reported diabetes OR cur-
rently on anti-diabetics OR fasting plasma glucose ≥ 126 mg/dL OR random blood
glucose ≥ 200 mg/dL OR HbA1c concentration ≥ 6.5%. Hypertension was defined [14]
as self-reported hypertension OR currently on anti-hypertensives OR systolic blood pres-
sure ≥ 130 mmHg OR diastolic blood pressure ≥ 85 mmHg. Central obesity was defined
based on cutoffs for Indian population [15] as a waist circumference ≥ 90 cm for males and
≥85 cm for females. Dyslipidemia was defined [16] as presence of any of the following:
serum triglycerides ≥ 150 mg/dL and serum high density lipoproteins < 40 mg/dL (for
males) or <50 mg/dL (for females).

2.3. Pool Definitions for GWAS

We conducted a pooled whole blood genome-wide association study. This technique
is now well established as an acceptably accurate and inexpensive alternative to individual
genome-wide genotyping [17]. To account for the potential contribution of metabolic
comorbidities to genome-wide associations, we constructed whole blood pools based on
a combination of the presence of T2D, central obesity, hypertension and dyslipidemia.
Using these four binary traits we first generated a total of 16 potential combinations. We
combined those categories that had a frequency < 1% with preceding categories. This
strategy resulted in a total of 14 adequately represented pools that were based on the
metabolic comorbidity profile. To ensure repeatability, we ran the genotyping analyses
on duplicate pools. Therefore, we had a total of 28 whole blood pools that were used for
genotyping analyses.
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2.4. Whole Blood Pool Construction and Genotyping

We aimed to collect at least 3 µg of DNA for each pool from the K-EDTA stored blood
samples were thawed gradually to room temperature in a vibration free environment.
From these samples, 100 µL of thawed blood was pipetted per sample and added to
specific pools defined by the comorbidity profile. From these pooled blood samples, two
aliquots of 2 mL each were prepared, thus resulting in 28 pooled samples for GWAS. Whole
blood samples were transported to the genotyping laboratory within 6 h on dry ice. All
genotyping was carried out at the Genetics Laboratory, MedGenome Labs Ltd. (https:
//diagnostics.medgenome.com/, accessed on 30 June 2022), Bangaluru, India. Genotyping
of the pool samples was conducted using Illumina’s Infinium Global Screening Array (GSA)
platform from harvested genomic DNA (Qiagen, DNeasy Blood and Tissue Kit). A total
of 200 ng of genomic DNA was amplified and incubated on day 1. This was followed
next day with fragment amplification, precipitation, resuspension, bead chip preparation
and hybridization of the sample on the bead chip. Stained samples with red and green
channel tags on the bead chip were then imaged and subjected to an auto calling algorithm
to generate the B allele frequencies in the pools.

2.5. Statistical Analyses

For each included variant on the GSA array, we had 28 estimations of the B allele
frequencies. We accounted for the potential of confounded associations ascribable to the
presence of comorbidities, batch effects, intra-replicate correlation, within-pool degree of
kinship and the random effects across pools. For this we used the mixed effects logistic
regression format to estimate the T statistic from a Wald test to test the significance of
association of a given variant with the risk of T2D. Specifically, we used the following
regression model to estimate the strength of association:

logit(T2D) = β0+ βs BAF + β1 HT + β2 COB + β3 DYL + βb BAT + βr REP + βk PHI + RE(POOL)

where, T2D is an indicator variable for presence of T2D; BAF is a continuous variable
indicating the B allele frequency; HT, COB and DYL represent the concomitant presence of
hypertension, central obesity and dyslipidemia, respectively; BAT is an indicator variable
for the chip identifier; REP represents the replicate ID; PHI is the within pool degree of
kinship and RE(POOL) represents the random effects across the study pools. The regression
coefficients in the equation were used to quantify the differential B allele frequency (βs),
influence of comorbidities (β1–β3), batch effect (βb), pooling error (βr) and kinship effect
(βk). All the models used a weighted approach based on pool frequency weights. The rigid
Bonferroni correction was used to account for multiple testing and the global type I error
rate was thus adjusted to 8.216 × 10−8. These analyses were conducted using dedicated
scripts in R. Manhattan and QQ plots were generated using the qqman library [18] in R.
Pooling error was estimated as described by MacGregor et al. [19].

2.6. Functional Relevance of Strongly Associated Variants and Genes

To understand the detected associations from a functional perspective, we used three
approaches. First, all the variants and genes were annotated using the DisGeNet database
(https://www.disgenet.org/, accessed on 30 June 2022) by selecting the diabetes-specific
associations. Second, the T2D Knowledge portal (T2DKP) [20] is a meta-analytic summary
of genome-wide associations from worldwide populations. We compared the significant
associations found in this study with those reported in the T2D Knowledge portal. Third,
we also searched the Harmonize database [21] for diabetes-specific gene associations in the
context of those observed in the present study. Finally, we constructed a functional gene
network of the significantly associated genes using the NetworkAnalyst web resource [22].

https://diagnostics.medgenome.com/
https://diagnostics.medgenome.com/
https://www.disgenet.org/
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3. Results
3.1. Study Participants, Pools and the GSA Variants

The DISFIN study enrolled a total of 1444 participants whose detailed description has
been given elsewhere [2]. From this group of participants, blood samples and all laboratory
assays were available on 1402 (97%) participants and were included in the present study.
The distribution of sociodemographic and clinical features of the included study partici-
pants (n = 1402) was similar to that in the entire study sample of 1444 participants. The
prevalence of T2D, central obesity, hypertension and dyslipidemia in the study sample was
29.82%, 71.98%, 52.93% and 31.03%, respectively.

Whole blood pools were designed based on the presence of four metabolic conditions
(T2D, central obesity, hypertension and dyslipidemia). From a potential 16 combinations
of these metabolic conditions, we combined infrequent combinations (<1%, highlighted
rows in Table 1) giving a total of 14 pools. Further, since these pools were used for genetic
analyses in duplicates, we had a total of 28 study pools. The frequency of the 28 constructed
whole blood pools is shown in Table 1. From a total of 665,608 variants included in the
GSA platform, we included a total of 608,550 variants after excluding them based on sex
chromosomes, mitochondria and those with a minor allele frequency (MAF) < 1%. The
inclusion criteria for the variants and their distribution across the chromosomes are shown
in Figure 1.

Table 1. Description of whole blood pools.

Pool Id T2D CO HTN DL n %
1 No No No No 190 13.55
2 No No No Yes 49 3.50
3 No No Yes No 65 4.64
4 No No Yes Yes 30 2.14
5 No Yes No No 230 16.41
6 No Yes No Yes 90 6.42
7 No Yes Yes No 224 15.98
8 No Yes Yes Yes 106 7.56
9 Yes No No No 22 1.57

Yes No No Yes 7 0.50
10 Yes No Yes No 19 1.36

Yes No Yes Yes 11 0.78
11 Yes Yes No No 38 2.71
12 Yes Yes No Yes 34 2.43
13 Yes Yes Yes No 179 12.77
14 Yes Yes Yes Yes 108 7.70

T2D, type 2 diabetes; CO, central obesity; HTN, hypertension; DL, dyslipidemia.

3.2. Pooled Blood and Genotyping Quality Control

The average GenTrain score (a measure of the single nucleotide polymorphism (SNP)
calling quality reported by Illumina arrays) across the included variants was 0.8312
(95% confidence interval 0.8309–0.8314). The average estimate of the pooling error was
−0.0067 (95% confidence interval was −0.0295–0.0162). Thus, both the genotyping and
pooling error estimates were in the acceptable range.

3.3. Pooled GWAS Results—Variants

The Manhattan plot (Figure 2A) shows the results of our pooled GWAS study. From the
total variants included in this study, 140 were found to be significantly associated with the
risk of T2D at the genome level (p < 8.2163 × 10−8). The detailed identification and annota-
tion of the significantly associated variants is provided in Supplementary Tables S1 and S2.
Briefly, significant variants were found on all chromosomes, but the majority were located
on autosomes 3 and 7 (n = 13 each), 2 (n = 11) and 1 (n = 10). No strand preference was
observed (69 and 71 variants on the + and—strand, respectively). The SNP calling quality of
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the significantly associated variants was comparable to that of the whole genome (average
GenTrain score 0.8264). The average MAF was 25.42% and ranged between 1.01% to 49.86%.
A total of 79 variants (56.43%) were within genes with known biological functions. The
remaining 61 variants were located within an average of 73,632 bp (95% confidence interval
49,669–97,596 bp) of a gene with known biological function. The Q-Q plot (Figure 2B)
showed that there was no systematic inflation (λ = 0.9517) at the level of the genome—
indeed the Q-Q plot remained slightly below the line of expectation for all the variants
except those that were significantly associated with T2D.

The top five most significantly associated variants are highlighted in Figure 2A,C.
These were: rs1001179 (T→C polymorphism, P = 9.06 × 10−25), rs480948 (A→G polymor-
phism, P = 2.36 × 10−24), rs360745 (T→C polymorphism, P = 2.98 × 10−24)), rs7711236
(T→G polymorphism, P = 3.87 × 10−24) and rs73219073 (T→C polymorphism,
P = 4.62 × 10−24). These variants were located on chromosomes 11, 11, 3, 5 and 21,
respectively. The top first, second, third and fifth variants were related to the catalase
(CAT), mastermind like transcriptional coactivator 2 (MAML2), IQ motif and Sec7 domain
ArfGEF 1 (IQSEC1) and PR/SET domain 15 (PRDM15) genes, respectively. Violin plots
showing the distribution of these variants in study pools with regard to the presence or
absence of T2D are shown in Figure 2C.
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3.4. Pooled GWAS Results—Genes

The significantly associated variants (n = 140) mapped to a total of 131 nearing or over-
lapping genes (Figure 3) of which 29 genes represent uncharacterized genes with no official
names. We interrogated the relevance of the remaining 102 genes in the context of T2D
by searching whether these genes are mentioned in the T2DKP (n = 4344 diabetes-related
genes), DisGeNET (n = 2359 diabetes-related genes) or Harmonizome (n = 3381 diabetes-
related genes) databases. We observed that nine of the significantly associated genes
(ADCY5, MIP, EBF2, MITF, SLC30A8, NCAM1, HDAC9, CSF1 and DNASE1) were found
in both T2DKP and in DisGeNET; 13 genes (IQSEC1, LHX2, SOX7, HSD17B12, PKNOX2,
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IGSF21, DNAH1, RPTOR, SAXO1, MAGI2, HNRNPAB, B4GALNT4 and ZNF385D) were
found in T2DKP only while eight genes (CAT, ERG, CORO2B, ALMS1, TNFRSF11A, RYR2,
KAZN and DPYS) were found in DisGeNET only. Further, the Harmonizome database iden-
tified another 22 genes (ARHGAP42, CA10, CACNA2D3, CGNL1, CLIC5, DLGAP1, FAT3,
FRMD4A, GPR6, HECW1, IQCJ-SCHIP1, MAML2, MBOAT1, NCALD, NRP2, PBRM1,
PTPRM, SLC24A3, SORCS2, SPOCK1, SYNDIG1 and TMEM132B) as diabetes-related from
those found to be significant in this study. Thus, our study identified a total of 50 genes that
were not included in T2DKP, DisGeNET or Harmonizome databases as diabetes related.
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Figure 2. Results of the whole blood pooled genome-wide association study. (A) Manhattan plot.
The points and droplines indicate the log-transformed, adjusted and statistically significant p-values.
The five topmost significant associations are numbered as 1 through 5 and the corresponding SNP
markers are shown at the top of the plot. (B) QQ plot. The plot shows the relationship between
observed and expected p-value distribution (with 95% confidence bands). The genomic inflation
factor (λ) is shown at the top of the plot. (C) Violin plots for the association of the top five significant
SNP markers.
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Figure 3. Characterization of the genes associated with T2D. T2DKP, Type 2 Diabetes Knowledge
Portal; Dis-GeNET, the Disease–Gene Network database; ORF, open reading frame; LINC, long
intergenic non-coding element; PG, pseudogene.

The detailed literature search revealed that 18 of these 50 genes have been associated
with T2D previously even if these genes are not included in the T2DKP, DisGeNET and Har-
monizome datasets. Published evidence implicated these 18 genes directly through popula-
tion studies (GBP6, GSTO1, HHIPL1, INTS10, RGS16 and RNU6-679P), indirectly through
association with other metabolic conditions (CCDC69, DNAH2, GALNT17, HERC5, KIF5C,
MARCH2 and PRDM14) or through association with complications of T2D (CASC15,
CCDC107, MIR147A, PFKFB3 and RNF166). Detailed annotation of the published liter-
ature in this regard is provided in Supplementary Table S3) [23–41]. From the remain-
ing genes identified to be significantly associated with T2D in this study, there were
two open reading frames, three long intergenic non-coding elements and a pseudogene.
Thus, we identified a set of 22 genes as novel associations with T2D in the Sindhi pop-
ulation studied (Figure 3). These genes were: ARMH4, CDADC1, CYP2T3P, DRAIC,
GNPTG, GUSBP6, HSPA8P13, MYOZ2, NDUFB9P2, PLEKHG1, PRDM15, RN7SKP144,
RN7SKP203, RN7SKP250, RNF121, RNU4ATAC7P, RNVU1-6, RPL34P19, SIT1, TMTC1,
TXNL1P1 and ZNF765.

3.5. Functional Relevance of the Significantly Associated Genes

Gene functional network analyses (Figure 4) showed that seven distinct functional
blocks could be identified from the significantly associated genes. These blocks repre-
sented genes associated with the neuronal system functioning (CACNA2D3, CHRNA7,
NCALD, ADCY5, RYR2, SLC24A3, SLC 30A8 and MIP); genes associated with Notch
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signaling (MAML2 and HDAC9); one gene each representing the diabetes-breast cancer
nexus (BRCA2); vitamin C metabolism (GSTO1); mTOR signaling (RPTOR); pyrimidine
catabolism (DPYS) and endothelial function (NRP2).
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4. Discussion

Type 2 diabetes is a complex metabolic disease with a wide web of causation. It is now
well known that T2D has a strong genetic basis, but the list of genes implicated in the web
of T2D causation is not fully established. This is partly because there is a variation in the
strength and specificity of the association (especially in the context of GWAS) of genomic
variants across world populations. For example, most of the GWAS studies published
relating to T2D have been conducted in the population of European and Asian ancestry
with very few studies in African populations. A recent meta-analysis by Chen et al. [42]
highlights this point. In this context, it is noteworthy that there are very few GWAS studies
on T2D based on Indian populations. Tabassum et al. [43] published a GWAS largely based
on the Indo–European and Dravidian population with the strongest association signal
around the TMEM163 gene. In the same year, Saxena et al. [44] published a study on the
Punjabi Sikh population with a novel signal at the SGCG gene. Recently, a study [45]
published on the genetic basis of T2D in three ethnically endogamous Indian populations
based in Tamil Nadu, Rajasthan and Andhra Pradesh states (the INDIGENIUS Consortium)
also demonstrated substantial population-specificity in the genetic basis of T2D within
Indian populations. It is therefore a need to conduct T2D GWAS studies in ethnically
coherent subgroups within India. Our study represents an attempt in that direction with a
focus on the Indian urban Sindhi ethnicity.
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In this pooled whole blood GWAS study, we observed that after adjusting for co-
morbidities, genetic relatedness, pooling variation and batch effects, a total of 102 well-
characterized genes were associated with T2D in the ethnically endogamous Sindhi popu-
lation. Of these 102 genes, 70 genes had evidence of association consistent with previously
published studies and there were 22 novel genes significantly associated with T2D that
may indicate a Sindhi population-specificity. The functional relevance and generalization
of these associations needs to be investigated in future studies. On the other hand, the
functional relevance of the 70 well-characterized genes (shown in Figure 4) extracted some
interesting functional blocks. First, the genes associated with the neuronal system were con-
sistent with the fact the brain signaling system is commonly involved before and during the
pathogenesis of T2D [46–48]. Notable among these are the ADCY5, SLC30A8 and SLC24A3
genes that are involved in neurohormonal transport and solute (especially sodium, cal-
cium and zinc) transport. In addition, the gene coding type 2 ryanodine receptor (RYR2)
regulates calcium release in the endoplasmic reticulum of the pancreatic beta cells and is
thus known to be involved in insulin secretion and glycemic homeostasis [49]. Second, the
association of the BRCA2 with T2D raises interesting possibilities in this population since
simple dietary measures have been shown to significantly improve glucose metabolism
in BRCA mutation carriers [50]. Third, the association of the RPTOR gene with T2D is
also interesting. This gene partakes in the mTORC1/Raptor signaling pathway and is
known to regulate beta-cell maturation and insulin synthesis [51]. Fourth, the role of Notch
signaling is essential to beta-call maturation during the embryonic stage and during adult
life [52,53]. We found two genes (MAML2 and HDAC9) that are strategically placed in
the Notch signaling pathway and were associated with T2D in this study. Lastly, we also
found association of genes implying vitamin C metabolism, pyrimidine metabolism and
endothelial function regulation all of which make interesting targets for investigation in
future studies.

It is also instructive to consider the potential mechanistic contribution of the top five
most significantly associated variants (SAV, shown in Figure 2C). The topmost significantly
associated variant (rs1001179) maps to the regulatory moiety of the CAT gene that codes
for the catalase protein. This variant influences the transcription factor binding and thereby
regulates catalase expression [54]. Concordantly, it has been demonstrated that lower
circulating concentration of catalase is significantly associated with the risk of T2D [54,55].
The second most SAV (rs480948) mapped on to the MAML2 gene for which substantial
evidence exists supporting its participation in the Notch signaling pathway as described
above. Musicant et al. [56] have demonstrated that genomic rearrangements involving
the MAML2 gene are associated with an inhibitory influence on the PPARγ and IGF-
1 expression. Similarly, the fifth most SAV (rs73219073 related to the PRDM15 gene)
is also critically placed in the genetics of T2D. This gene has been shown to partake
in the regulation of PI3K/KRT/mTOR pathway and during the embryonic pancreatic
development [57]. Thus, for three of the five SAV, there exists substantial published
evidence for potential involvement in the pathophysiology and genetics of T2D. To our
knowledge, such supporting evidence is not available for the remaining two SAVs (rs360745
and rs7711236).

There are strengths and weakness in our study. Among strengths, first this is a
pooled GWAS that identified most of the known gene–diabetes associations with a few
novel associations. The fact that ~70% of the associations observed in this GWAS have
been previously reported by other scientific groups in other populations lends an indirect
credence to the observations. These observations also have a high plausibility considering
the strong biological rationale that supports the association studies. Second, due to the
whole pooling blood approach used in the study, we needed 28 blood pools compared to
the sample size of 1402 individuals—a genotyping cost reduction by 98% with acceptable
pooling error. McGregor et al. [19] have previously shown that this approach is effective in
picking up association signals accurately. Arguably, pool construction error may be less
important than genotyping error due to the arrays [58]. In resource-limited settings, such
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an approach can greatly facilitate the first genetic screens for many other conditions. Future
studies can then specifically address the candidate genes identified during this screening.
Third, our study sample used a family-based approach. While most of the significantly
associated variants had MAF > 10%, the family-based approach implicitly places confidence
in the observed associations of variants with lower MAFs.

Conversely, our study has some limitations. First, the pooled GWAS approach is both a
strength and a weakness. Presumably, a regular GWAS on all individuals (n = 1402) would
have led to similar inferences since the estimated pooling error was low and acceptable.
However, in the absence a full GWAS study, it is not possible to comment about the
robustness of the observed associations. Second, due to the ethnically endogamous and
genetically related nature of the study population, it is practically very challenging to
design another such cohort for validation purposes. As a result, generalization of the
observed associations is neither possible nor desired. We only aimed to find the association
signals in the light of those reported from other populations within and outside India.
Third, biological explanation for the functional role of the genes is currently not available
and cannot be inferred from this study. For an efficient resource utilization, future studies
need to specifically investigate the functional role of the genes through transcriptomic
studies. We do not have gene expression data on the candidate genes of interest identified
by our study, but future studies need to conduct gene expression analyses. We therefore
compared the associations observed in this study with those reported in well-established
repositories and in other published studies.

5. Conclusions

Without over-interpretation of the data, we conclude that our pooled whole blood
GWAS in families of T2D patients uncovered interesting candidate genes for future in-
vestigation. While 70% of the observed associations have been previously identified and
investigated by other research groups in different populations, we also report 22 novel
gene-T2D associations that need to be interrogated more fully in future studies. To that
end, our study also points towards the possibility of population-specificity of the observed
associations in the urban Sindhi population in India studied here.
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