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Deletions that fuse two adjacent topologically associating domains (TADs) can cause severe developmental
disorders. We provide a formal method to quantify deletions based on their potential disruption of the
three-dimensional genome structure, denoted as the TAD fusion score. Furthermore, we show that deletions that
cause TAD fusion are rare and under negative selection in the general population. Finally, we show that our method
correctly gives higher scores to deletions reported to cause various disorders, including developmental disorders and
cancer, in comparison to the deletions reported in the 1000 Genomes Project. The TAD fusion score tool is publicly
available at https://github.com/HormozdiariLab/TAD-fusion-score.

Introduction

Eukaryotic genomes consist of multiple chromosomes,
each chromosome is a linear sequence. Genes and other
regulatory elements are organized and positioned in this
linear sequence. However, in reality, chromosomes are
folded into a complex three-dimensional (3D) structure.
This 3D structure brings distal genomic elements into
direct contact to make them interact with each other.
The interaction between functional elements such as
enhancers and promoters plays an important role in con-
trolling biological processes such as transcription, replica-
tion, and DNA damage repair. [1, 2].

The first in-depth studies on the 3D structure of chro-
mosomes were obtained using microscopy techniques [3].
However, these approaches tend not to be able to resolve
the physical interactions and the 3D structure in high-
resolution and high-throughput fashion [4, 5]. With the
advent of various biomolecular chromosome conforma-
tion capture (3C) techniques in the past few years, our
understanding of the 3D genome structure and its con-
tribution to various biological processes has been revolu-
tionized [4-7].
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Recently, an extension of the 3C technique has been
developed for analyzing the genome-wide interaction of
all chromosomes in high-throughput and high-resolution
fashion denoted as Hi-C [8-11]. Hi-C technique that
is based on proximity ligation and pair-end sequencing
allows researchers to capture the 3D structure of a chro-
mosome at a kilobase pair (kbp) scale. This technique
produces a genome-wide sequencing library to construct
a contact frequency matrix that provides a proxy for mea-
suring the three-dimensional distances among all possible
locus pairs in the genome [12, 13].

One of the most novel discoveries using Hi-C data is
the partition of the genome into hundreds of kilobase pair
segments which interactions are highly enriched inside
each segment and are significantly depleted between adja-
cent segments. These segments are denoted as topolog-
ically associating domains (TADs) and can be seen as
continuous square domains on the diagonal of the Hi-
C contact matrix [2]. It is shown that TAD boundaries
are significantly enriched with insulator proteins such as
CTCF in mammalian cells [1, 2, 14, 15]. These proteins are
shown to be able to block interactions between different
regulatory elements and are the main reason why there is
significant depletion of interactions between two adjacent
TADs. TADs are hypothesized to be conserved between
different cell types and across close species. However, it
is not trivial to quantify this mainly due to difficulties

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0

K BMC

International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver

(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-019-1666-7&domain=pdf
http://orcid.org/0000-0003-2703-9274
https://github.com/HormozdiariLab/TAD-fusion-score
mailto: fhormozd@ucdavis.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Huynh and Hormozdiari Genome Biology (2019) 20:60

of accurate TAD discovery, existence of sub-TADs and
nested TADs [16-21].

In a recent experiment, Dali and Blanchette [19] man-
ually annotated TAD structures in a randomly selected
segments of genome and compared against TAD predic-
tion using various computational tools. They reported a
significant discordance between various prediction algo-
rithms. Furthermore, it was observed that tools generally
had low sensitivity, often picking up less than 10% of man-
ually annotated TAD structures. In fact, almost 25% of
the manually annotated boundaries never got detected by
any of the tools [19]. In other studies [22, 23], a simi-
lar disagreement between computational tools for TAD
prediction was observed. Existence of sub-TADs, nested
TADs [18-20, 24], and limiting assumptions made by
different computational methods are some of the main
reasons for these discrepancies. It was also argued that
parameter selection, normalization, and matrix correction
can have a significant impact on the final result of these
tools [23]. Although the number and the size of TADs vary
significantly among different tools, this result is still more
comparable than the one from determining specific loops
by different tools [17, 23].

In a seminal paper by Lupidnez et al. [25], the
authors showed that structural variations (SVs) that
disrupted TADs (by deleting TAD boundaries) can
result in novel enhancer-promoter interactions which
in return can cause severe developmental disorders
[26, 27]. More specifically, it was shown that struc-
tural variations that disrupted the TAD boundary of
WNT6/IHH/EPHA4/PAX3 locus fused two TADs which
caused malformation syndromes [25]. Similar findings
have shown that structural variations (SVs) that cause
TAD organization disruption and fusion of TADs at dif-
ferent loci can cause various developmental disorders
[25, 28-34]. A recent study [35] also reported that short
tandem repeats related to diseases also co-localized at
TAD boundaries. In addition to the developmental disor-
der, recent findings also reported similar TAD disruptions
in cancer cells [36—39] as an effective mechanism for the
activation of oncogenes. For example, it was shown that
deletion at the TAD boundary resulted in an activation of
oncogene TALI [36]. In another example, a tandem dupli-
cation at the TAD boundary also resulted in activating a
gene locus relevant to cancer IGF2 [40].

These studies have shown the importance of being
able to study the impact of structural variations on the
three-dimensional genome organization. Specifically, if a
deletion results in the disruption of two or more TADs
by fusing them and creating novel genomic interactions
(Fig. 1). However, no method exists for scoring and rank-
ing deletions by predicting explicitly their effect on the
3D genome structure. For example, Li et al. [41] intro-
duced the Structure Influence score but their method did
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Fig. 1 Anillustration of the TAD fusion where a deletion can affect
the genome structure. The original genome (upper) has two TADs
separating by a TAD boundary. Any locus of one TAD can interact
with other loci in the same TAD (e.g., the enhancer and gene B of
TAD;). But a locus cannot interact with any other locus of the other
TAD (e.g., gene A of TAD; and the enhancer of TAD>). In the mutant
genome (lower), two original TADs are fused into one TAD since the
TAD boundary is removed by the deletion. Thus, any two loci in the
fusion TAD can interact although they do not interact in the original
genome (e.g., the enhancer and gene A)

not show specifically how chromatin interaction might be
changed due to a deletion. In this paper, we provide a
formal method to scoring deletions based on predicting
their effect on the three-dimensional genome structure,
denoted as TAD fusion score. We validate our score with
deletions that were previously tested (e.g., Sox9-Kcnj2,
HoxD, and Firre deletions). Furthermore, we show that
deletions that cause a TAD fusion are rare and are nega-
tively selected against in a general population. Finally, we
show that our method correctly gives significantly higher
scores to deletions that cause various disorders (develop-
mental disorders and cancer) in comparison to deletions
reported in the 1000 genomes project.

Results

Methods’ overview

To study deletions and their contribution to disease and
evolution, we define a score for any deletion based on its
level of modifying the 3D genome structure and potential
of fusing two adjacent TADs. We call that score as the TAD
fusion score and develop a novel computational method
to calculate it in the “Methods” section. In this paper, we
present the method and the analysis result of the dele-
tion, but similar ideas can be extended to consider other
SVs such as inversions or translocations (Additional file 1:
Figure S1).
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Formally, we define the TAD fusion score as the expected
total number of changes in pairwise genomic interactions
as a result of a deletion. Thus, the input of our compu-
tational method consists of the Hi-C matrix of a genome
with a reference allele (i.e., without the deletion) and the
coordinates of a deletion of interest. The main output of
the method is a score representing the expected number
of changes in the pairwise genomic interactions as a result
of the deletion.

We propose a two-step framework for calculating the
TAD fusion score: (i) predicting a new Hi-C contact
matrix G of the mutated genome (i.e., with the deletion),
given as input the Hi-C contact matrix H of a genome
without the deletion and the deletion coordinates; (ii)
comparing the predicted Hi-C contact matrix G with the
modeled Hi-C contact matrix H' (as the by-product of
step (i), see the “Methods” section) to estimate the num-
ber of changes in pairwise genomic interactions as a result
of the deletion.

Data

For TAD fusion score analysis, we used 5 kbp resolution
Hi-C data of the human cell GM12878 from in situ exper-
iments [42]. We chose the 5 kbp resolution since the TAD
structure conservation (with other cell lines) was validated
at that resolution. For deletions, we used the reported
deletions in the 1000 genomes project (1KG) [43], the
fixed deletions in great ape lineage [44], the deletions
reported in tumor samples from The Cancer Genome
Atlas (TCGA https://cancergenome.nih.gov/) project and
a small set of deletions reported and validated to cause
developmental diseases by disrupting the 3D genome
structure [25, 28—30] (Additional file 1: Table S1).

For baseline methods, we predicted the TAD fusion by
using the TAD boundaries predicted by several represen-
tative TAD callers [42, 45, 46] and the insulation score
from [47]. The setting of these methods is presented in
the supplementary information (Additional file 1: Table
S2). For validating the overlap of the predicted insu-
lation with reported CTCF binding sites, we used the
CTCF peak data from ENCODE [48]. All data (Hi-C,
1KG deletions, deletions of GM12878, CTCF binding
sites) were aligned with the reference human genome
b37 (hgl9). Note that 82 deletions reported in sample
GM12878 were excluded from the 1KG deletion set as
they were also in the reference Hi-C sample. Since we
used Hi-C data at the 5 kbp resolution, only deletions
that were longer than 10 kbp were considered to ensure
each deletion removed completely at least one 5 kbp-bin.
There was a total of 7383 such deletions reported in the
1000 genomes project [43] satisfying the above criteria.
The full list of datasets used for this study was summa-
rized in the supplementary information (Additional file 1:
Table S3).
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Evaluating the model and the prediction

We first evaluated the capability of our proposed model
(using bin pairs with distances at most 2 Mbp for train-
ing) in producing the approximate Hi-C data matrix using
the Hi-C datasets (of chromosome 1) of seven different
cell lines from [49] as input data (see Additional file 1:
Table S4). We compared raw Hi-C matrices (denoted as
Raw) and the Hi-C matrices produced using our proposed
method (denoted as Model). The stratum-adjusted corre-
lation coefficient (SCC) of the HiCRep package [50] was
used to estimate the similarity between any pair of Hi-
C matrices (i.e., Raw versus Model). We observed that
the SCC score between a raw Hi-C matrix and our mod-
eled Hi-C matrix was very high for all the seven matching
raw versus model pairs (ranging from 0.948 to 0.976, see
Additional file 1: Table S4). More importantly, our mod-
eled Hi-C matrix of each cell line was closest (highest SSC
score) to the raw Hi-C matrix of the same cell line (the
bold values on the diagonal in Additional file 1: Table S4).
Conversely, the raw Hi-C matrix was also the closest one
to the modeled Hi-C matrix of the same cell line. This
indicated that our method was capable of accurately cap-
turing the subtle difference between cell lines from their
Hi-C data matrices. Furthermore, we also examined fur-
ther two pairs of closely related cell lines H1 vs ME and
MS vs IMR90 (based on results and data from [51] which
includes 40 kbp resolution Hi-C data). As depicted in
Fig. 2a, our estimated Hi-C matrix (model) was the closest
one to the raw Hi-C matrix of the same cell type based on
the SCC score. Conversely, the raw Hi-C matrix was also
the closest one to the estimated Hi-C matrix (our model)
of the same cell type. We also observed that our model
reduced the difference between two cell lines in compari-
son to the raw Hi-C data (i.e., two estimated matrices were
closer to each other than two raw ones were). This was
expected since our approximation formula only took into
account the length and the insulation while other details
such as the loop of some specific loci (i.e., “peak” as in
[42]) were not utilized.

Second, we also evaluated if the bins that had large insu-
lation predicted by our method were enriched with CTCEF,
as it was widely reported that the TAD boundaries were
enriched with CTCF binding sites [2]. We compared our
predicted insulation at each bin (i.e., parameter r;, using
bin pairs with distances at most 400 kbp for training, see
the “Methods” section) with the CTCF peak at that bin
for three different cell lines H1, IMR90, and GM12878
(where their CTCF data was available from ENCODE
[48]). As expected, we did observe a significant enrich-
ment of CTCF (by the average number of peaks) at bins
predicted to have a higher insulation (parameter r;) by
our proposed model (Fig. 2b). Furthermore, this observed
enrichment held for all three cell lines and Hi-C matrices
tested.
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Fig. 2 Validation of our model. a Comparison between our modeled Hi-C matrices and raw Hi-C matrices between closely related cell types; the
numbers on edges represent the SCC score (from HiCRep [50]). b Enrichment of CTCF at bins that have a high insulation predicted by our model
from Hi-C datasets [49]. In both a and b, Hi-C data is of chromosome 1

Third, we also compared the predicted insulation at
each bin (i.e., parameter r;, using bin pairs with distances
at most 400 kbp for training as above) for seven differ-
ent cell lines from [51] (i.e., H1, ME, TB, NP, MS, IMR90
and GM12878). We built a pairwise similarity matrix for
these seven cell lines using the insulation at each bin
(Additional file 1: Figure S2). The hierarchical clustering
tree built from this similarity matrix was comparable to
the one built using A/B compartments reported in [51]
using the same set of cell lines (with one minor exception
of swap in the order of TB and NP). Furthermore, the hier-
archical clustering produced by the similarity matrix was
in a complete concordance with the clustering reported
in [49]. Other important features were similar to previous
studies [49, 51, 52] such as (H1, ME) and (MS, IMR90)
were grouped as pairs while GM12878 was separated as
an outbranch in the tree. This experiment indicated that
the insulation calculated using our method was capable
of capturing the subtle difference between cell types and
correctly grouped more closely related cell types together
(e.g., H1 and ME).

Finally, we investigated the performance of our pro-
posed approach for predicting Hi-C contact frequencies
after deletions against the experimental Hi-C data for the
same set of deletions. We used deletions at Sox9-Kcnj2,

HoxD, and Firre regions where Hi-C data existed for this
comparison [34, 53, 54]. We compared the predicted Hi-
C data and the experimentally measured Hi-C data (see
Additional file 1: Figures S3-54). Since these interactions
were at variable distances, again, we used the stratum-
adjusted correlation coefficient (SCC) from HiCRep pack-
age [50] to evaluate the similarity instead of the regular
Pearson correlation coefficient. For the three deletions (at
So0x9-Kcnj2, HoxD and Firre), our predicted Hi-C data
was quite similar to the experimental Hi-C data of these
deletions with an average SCC of 0.82. Interestingly, in
the case of the deletion at the Sox9-Kcnj2 boundary, we
observed that there was a very small TAD (or sub-TAD,
on the downstream of the deletion) that was fused to a
large TAD on the upstream of the deletion (as can be
seen using both our predicted Hi-C matrix and the real
experimental Hi-C matrix in Additional file 1: Figure S3).
This fusion might cause the increase of Kcnj2 expression
reported in [34].

Evaluating the TAD fusion score

As demonstrated, our proposed model is accurate in
predicting the Hi-C changes due to a deletion (Addi-
tional file 1: Figures S3-S4). We also compared our pro-
posed TAD fusion score in quantifying the contribution
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of a deletion in altering the 3D genome structure versus
the prediction resulted from utilizing the state-of-the-art
TAD and insulation callers. We applied our TAD fusion
scoring method (see the “Methods” section) for evaluat-
ing reported deletions in the 1000 genomes project (1KG)
using the Hi-C dataset of GM12878 at 5 kbp resolution
[42]. We compared our TAD fusion score versus two dif-
ferent general approaches (i) TAD prediction methods
(Arrowhead [42], Insulation Score [46], and CaTCH [45])
and (ii) an insulation score calculated per bin using LRI
score [47].

The first comparison was against different methods
for TAD prediction [42, 45, 46]. We observed that the
predicted TAD boundaries varied significantly between
different TAD callers and there was only a small frac-
tion of boundaries predicted by all the tools (Additional
file 1: Figure S5). Interestingly, we observed that the aver-
age TAD fusion score calculated by our approach was
higher for deletions that were predicted to remove a TAD
boundary based on the majority of the tested TAD callers
(Additional file 1: Figure S5).

The second comparison was against the approach that
used the maximum LRI score (i.e.,, an insulation score
predicted by [47]) of deleted bins to rank or score each
deletion. We did observe a significant yet moderate cor-
relation between the TAD fusion score assigned to each
deletion and the maximum LRI score assigned to any bin
inside that deletion (r = 0.43, p < le — 10, for chromo-
some 1). Further investigation has revealed that some of
the discordance between the TAD fusion score of a dele-
tion and the maximum insulation score (LRI) inside this
deletion came from the cases where there were more than
one strong insulators near the TAD boundary. In these
cases, some of insulators were not deleted as a result of
the deletion (see Additional file 1: Figure S6, visualized
with Juciebox [55]). Thus, the deletion of a bin with a high
insulation score might not result in a TAD fusion in these
cases. Our method overcomes this limitation by taking
into account both the deleted insulators and the remain-
ing (i.e., not deleted) insulators instead of considering only
deleted ones.

TAD fusion is under negative selection

In few recent studies, it was shown that deletions that dis-
rupted the genome structure and caused a TAD fusion
could result in various developmental disorders. Thus, it
was hypothesized that TAD fusion events should be neg-
atively selected against during evolution [56, 57]. In a
recent comparative study on the gibbon genome against
the human genome it was shown that structural varia-
tions tended to avoid disrupting the TAD structure [56].
It was suggested that the increased selective pressure
against SVs that disrupted TADs was the main cause
[56]. Furthermore, in another recent study, it was shown

Page 50f 13

that significantly lower percentage of fixed deletions in
great ape [44] removed a TAD boundary from what was
expected by chance [57]. We also tested this hypothe-
sis using our method for TAD fusion scoring and rank-
ing. We compared the TAD fusion scores calculated for
non-disease deletions observed in comparison to a null
model where deletions of the same length were randomly
assigned in the genome. We used two different deletion
sets for this experiment: (1) the reported fixed deletions
in great ape lineages [44] and (2) deletions reported in
the 1000 genomes project [43]. We randomly permuted
the deletions from both sets to ensure the same number
and length of deletions per chromosome and calculated
the TAD fusion score per permuted deletion for each
set and repeated this permutation procedure for 1000
times. We then compared the number of deletions in great
ape lineages and deletions in 1000 genomes project with
TAD fusion score above various cutoffs (Fig. 3a and b)
against random permutation sets (i.e., the null model).
We observed the number of deletions with a high TAD
fusion score was significantly less in the great ape lineage
set and the 1000 genomes project set in comparison to
the set of randomly permuted deletions (for all the tested
cutoffs, we got a significant p value < le — 15, Fig. 3a
and b). The combination of the great ape deletions and
the 1000 genomes deletions supported the hypothesis that
deletions that caused TAD fusion were selected against
in the evolution. Finally, we investigated the correlation
between the allele count of reported deletions in the 1000
genomes project against the calculated TAD fusion score.
We observed that the allele counts were inversely corre-
lated (p = —0.11, p < 1le—15) with the TAD fusion scores
(Fig. 3c). Taking together, these data and analysis sup-
ported the hypothesis that deletions with a higher TAD
fusion score were under a stronger selection.

Contribution of TAD fusion to diseases

To study the contribution of TAD fusion to human dis-
eases, we utilized a list of eight deletions that were vali-
dated to cause various disorders as a result of the genome
structure disruption [25, 28—-30] (Additional file 1: Table
S1). We calculated the TAD fusion score of these eight
deletions and compared against the TAD fusion score of
reported deletions in the 1000 genomes project. The result
showed that the TAD fusion score of these disease dele-
tions was significantly higher than the one of almost all
1KG deletions (Fig. 4a). Note that, there was an expected
correlation between TAD fusion score and the length of
the deletion since (i) longer deletions would result in two
loci which were much farther apart to get adjacent and
cause a 3D structure modification and (ii), more impor-
tantly, a longer deletion had a higher chance of deleting
a TAD boundary. Thus, we tried to further investigate
the TAD fusion score of these disease deletions with 1KG
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deletions of the same length range. However, a direct com-
parison of disease deletions with 1KG deletions of the
same length was not feasible due to a significant differ-
ence between the length of disease deletions versus the
length of 1KG deletions. However, for four of these dis-
ease deletions, we were able to infer short deletions which
excluded regions which overlapped other deletions known
to not cause the disease. For example, Lupidiiez et al. [25]
reported a deletion DelB (chr2:221278232-223014332,
hg19) that caused the limb malformation disease. This
deletion was over 1.3Mb long, and they also confirmed
an equivalent deletion in mice (chr1:76388978-78060839,
mm9) that caused this disease. However, they also vali-
dated a control deletion at chr1:76388978-77858974 and
they confirmed that mice carrying this deletion did not
show any abnormality in limb development [25]. There-
fore, we inferred that the smaller deletion chr1:77858974—
78060839 might be the cause of the limb malformation
(the remaining part of the disease deletion after exclud-
ing the deletion which did not cause the disease). We
lifted over this mm9 coordinates to get the hgl9 coordi-
nates of chr2:222800125-223011646. This inferred dele-
tion was only 212 kbp, and it can be compared with some
1KG deletions at the same length range (see Fig. 4b).
We inferred four such deletions (see Additional file 1:

Table S5). We compared these deletions with 1KG dele-
tions at the same length range. We observed a significant
increase of the TAD fusion score of inferred disease dele-
tions against the TAD fusion score of 1KG deletions of
the same length range (Fig. 4b). This supported the claim
that our method assigned higher scores to deletions which
disrupted the genome structure and caused the TAD
fusion.

We also compared the TAD fusion score of fixed dele-
tions in great ape lineages [44], 1KG deletions, and TCGA
(cancer patients) deletions at the same length ranges. We
limited the deletions from TCGA data to an upper bound
of 500 kbp to avoid the bias of very long deletions. A
recent study reported the negative selection of deletions
of TAD boundaries in a pan-cancer analysis [52]. Fur-
thermore, they showed that not only very strong TAD
boundaries were protected from the deletion, but they
tended to be co-duplicated with super enhancers [52]. In
this study, we explored further the TAD fusion score of
deletions reported in tumor cells from TCGA (The Can-
cer Genome Atlas) by comparing it against the TAD fusion
score of 1KG deletions of similar length ranges (Fig. 4c).
We observed that for most of deletion length ranges, the
TCGA deletions had a significantly higher TAD fusion
score than 1KG deletions (Fig. 4c). Interestingly, the
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average TAD fusion score was lowest for the fixed dele-
tions in great ape lineages, followed by 1KG deletions and
was highest for the TCGA (cancer) deletions (Fig. 4c). On
the one hand, this indicated that the oldest set of deletions
(i.e., the fixed deletion in great ape lineages) had gotten the
lowest TAD fusion score. On the other hand, the deletions
which almost had not been evolutionarily selected against
(the somatic deletion in TCGA) had gotten the highest
TAD fusion score.

Discussion

Chromosome structure folding in the three-dimensional
space plays an important role in regulating gene expres-
sion. Hi-C data provides an experimental evidence that
the chromosome is organized into modular hierarchical
domains such as compartments, TADs, and sub-TADs.
Motivated by few case studies of the limb development
and the developmental disability, it is hypothesized that
deletions (and other SVs) can cause 3D chromosome
structure disruption and contribute to the etiology of

these disorders. In most cases, these deletions contribute
to the disorder by fusing two TADs. Thus, these types
of deletions should be negatively selected for and they
should be rare in normal samples. Recent studies [56, 57]
also reported this negative selection but they used the
predicted TAD boundary that varied by different heuris-
tics of different computational methods [17, 19]. In this
study, we have developed a novel computational method
for assigning TAD fusion score to any input deletion based
on its potential contribution to fusing TADs. As part of
this method, we solve two related problems: (i) The first
problem is how we can predict the changes to the Hi-C
matrix due to a deletion in the genome, (ii) and the second
problem is how we can compare two Hi-C matrices to find
the significant difference between them.

For the first problem of predicting the changes in the Hi-
C matrix due to a deletion, a more accurate model is the
key to improve the prediction. Recent work [58] proposed
a polymer model to predict the Hi-C data change due to
SVs, but it does not take into account the loop extrusion
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mechanism that is supported directly by recently experi-
mental evidence [59]. In addition, the prediction in [58]
is based on an intensive simulation that is not applicable
for analyzing a large number of deletions as we did for
the 1KG and its permutation dataset. Our succinct model
presented here agrees well with the experimental data by
taking into account the power law and the insulator that
are based on the random diffusion mechanism [60] and
the loop extrusion mechanism [61, 62] respectively. It is
widely accepted that CTCF plays an important role in
forming the TAD structure [63-65]. However, only 15%
CTCEF sites are at the TAD boundary while 85% CTCF
sites are inside the TAD [63]. We still have not under-
stood the underlying mechanism to distinguish the role
of each site (based solely on the binding strength from
ChIP-seq data) in forming the 3D chromosome struc-
ture. Therefore, our current method does not use the
CTCEF binding data to fit the model, but we can extend
the method to utilize that data with our further under-
standing of the CTCF role in the future. A recent study
[66] proposed a trick to approximate the physical dis-
tance from the shortest path method. It is also interesting
to evaluate if this trick is applicable to improve the pre-
diction. In our algorithm, we assume that the deletion
only changes the interactions that cross the deletion (i.e.,
between two bins, one is in the upstream and one is
in the downstream of the deletion). However, this con-
straint may not always hold and the model should be
extended to consider also the changes between bins at
one side of the deletion. Furthermore, the model could
also take into account other biological features such as
histone modification marks, DNA methylation, or DNA
accessibility [45, 67].

For the second problem, we can evaluate the change
of only enhancer-promoter interactions rather than the
interaction between all bins. In addition, the comparison
on the contact frequency should also be normalized for
each specific gene or region to achieve a better result.
It is important to note that although the TAD bound-
aries are believed to be conserved in most cell types, there
still might be important differences in the genome struc-
ture between different cell types or different development
stages. This difference should be reflected in the Hi-C
matrix of that cell type. Furthermore, while one deletion
might not cause a significant genome structure disruption
in one cell type, it might do so in another cell type. Thus,
as more high-quality Hi-C data of different cell types are
produced, the deletions should be tested and scored using
each of the Hi-C matrices. By that, we can maximize the
possibility of finding deletions which might cause TAD
fusion in a specific cell type or a specific development
stage.

Further experiments are still needed to validate our
predicted results. For example, we can make a deletion
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in the genome (e.g., with CRISPR) and generate the
new Hi-C data and also measure the gene expression
change. The gene expression may not change constantly
since the regulation depends not only on the genomic
interactions but also on other factors (e.g., the presence
or the absence of transcription factors); thus, we may
need to measure the gene expression at different cell
states for the validation. However, this obstacle could
be overcome since more data are contributed by the
community [53, 54].

In addition, due to the complexity of the original opti-
mization problem, we have applied the approximation
for some steps, any improvement on this approximation
to make it closer to the original one may improve the
result. Since the LP solver still has a large complexity, any
improvement on reducing the problem size is necessary.
The number of variables can be reduced by simplifying the
objective function such as removing less significant loca-
tion pairs while adding larger weights for important ones.
Other metrics rather than L1 in the objective function
may also need to be evaluated. Further, the model is fitted
in the log scale, and thus, zero entries should be normal-
ized; this problem is similar to the problem of normalizing
drop-out data in processing the single-cell gene expres-
sion data. In this study, all deletions that are shorter than
10 kbps are skipped due to the resolution 5 kbps of the
Hi-C data. But this limitation can be overcome as more
high-resolution Hi-C data will be contributed by the com-
munity [68] and the computational tool such as [69] can
also help us predict the high-resolution data.

There are several applications of the proposed method
for TAD fusion discovery, it will provide biologists a way
to rank and pick deletions that potentially cause a signif-
icant disruption on the genome structure. Furthermore,
TAD fusion discovery will also provide a novel mechanis-
tic explanation of how a group of non-coding deletions
(and SVs in general) is contributing to developmental dis-
orders or cancer. Finally, the approach presented here for
deletions can be extended to consider other types of struc-
tural variants, such as inversions and translocations (see
Additional file 1: Figure S1).

Methods

Our goal is to develop a computational method to pro-
vide a score to a deletion mutation based on its level
of modifying the 3D genomic structure and potential of
causing a TAD fusion. We are assuming the input to
the method consists of the Hi-C matrix of the genome
with reference allele (i.e., without deletion) and the coor-
dinates of the deletion, and the output is a score rep-
resenting the number of new genomic interactions made
(i.e., TAD fusion score) as a result of the deletion. For
this paper, deletions are assuming only homozygous and
non-overlapping.
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Definitions and notations:

e Chromosome location bin: Achieving single base-pair
resolution is impossible due to the limited sequenc-
ing coverage that produces the Hi-C data. Thus, it
is common in practice to partition the genome of a
chromosome into non-overlapping segments (bins)
of the same length (e.g., 5 kb) to summarize the
data. For a chromosome, we assume that we have n
bins which are numbered across the chromosome as
1,2,3,...,n.

e Hi-C contact frequency map/matrix: Let H € R™"
be a symmetric matrix constructed from Hi-C data
where H;; is the average contact frequency between
i bin and j bin (i.e., H;; is large if i and j are close in
3D space, otherwise, H;; is small if they are not close
in 3D space). Note that, if two bins i and j are inter-
acting with each other, then they have to be very close
in 3D space.

e Deletion structural variation: We denote A, as the
deletion from the x bin to the y* bin of a chromo-
some. We round the coordinates down to calculate
the location bin of a deletion.

e Genomic interaction: Two bins i and j are consid-
ered interacting if they create a physical interaction
in three-dimensional space. Some of the well-known
examples of such interactions are the enhancer-
promoter interactions.

TAD fusion prediction problem: Given a Hi-C contact
frequency matrix of a chromosome and the coordinates
of a deletion, we predict if this deletion results in a TAD
fusion and assign a TAD fusion score to that deletion. We
define a TAD fusion based on new genomic interactions
created between different bins as a result of the deletion.
By that, the TAD fusion score is defined as the expected
number of additional genomic interactions created as a
result of the deletion.

We propose a two-step framework for calculating the
TAD fusion score of a homozygous deletion: (i) predicting
a new Hi-C contact matrix G of the mutated chromosome
(i.e., with the deletion) given the Hi-C contact matrix H of
the genome without the deletion and the deletion coordi-
nates as the inputs and (ii) comparing this predicted/new
Hi-C contact matrix G with the modeled Hi-C contact
matrix (estimated from H in step (i) to estimate the num-
ber of new interactions created as a result of that deletion.
In the next two subsections, we introduce the algorithms
we have developed as part of this framework to solve each
of these two subproblems.

Predicting contact frequency matrix resulting from a deletion
In this subsection, we provide a combinatorial algorithm
for predicting the contact frequency matrix G of a genome
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with a homozygous deletion A, given the Hi-C contact
frequency matrix H of the genome without the deletion as
the input. We assume that the contact frequency between
any two bins i,j will not be changed as a result of the
deletion if both bins i and j are in the upstream or the
downstream of the deletion (i.e., G;; = H;;if 1 <i,j < «x
ory < i,j < n). Our goal is to predict the contact
frequency G;; between any bin i in the upstream of the
deletion and any bin j in the downstream of the deletion
(ie,1<i<wxandy<j<n).

Modeling the contact frequency

For any two bins i and j, let H l’] be their contact frequency
that we estimate from our model. First, it has been shown
that power-law scaling based on the genomic distance
best captures the contact frequencies observed in Hi-C
experiments [8, 66, 70]. We denote the power-law scaling
factor by parameter 8 and model the Hi-C contact map as
H;J» o |i — j|P [8, 70]. Second, it is shown that contact fre-
quency between two bins is also affected by the genomic
properties of these two bins (e.g., GC content, mappabil-
ity). Therefore, in predicting the Hi-C contact frequencies
using the genomic distance, we also introduce a param-
eter o; (in the log-scale) for each bin i to capture the
genomic properties/biases of this bin. Thus, the model can
be extended to H;; o e@it)/2|;i _j|B [70,71]. Finally, it is
shown that the contact frequency between two bins i and j
drops rapidly if there is a TAD boundary/insulator (e.g., a
binding site of CTCF proteins) [2, 12] between these bins.
Therefore, we introduce a variable r for each bin & to rep-
resent potential existence of a separator/insulator at that
bin. The reduction of contacts between any two bins due
to a separator/insulator at bin k is modeled by an expo-
nential functions of r; as in [72]. Thus, the Hi-C contact
frequency is finally modeled as follows

eldite)/2|; _j|ﬁ
VT e e @
Parameter optimization
Note that all variables («;, 8,r;) will be estimated by
utilizing solely the input Hi-C matrix H. For that, we
need to minimize the difference between H;; and Hlf,j.
However, as the contact frequencies between different
bins can be orders of magnitude, instead of minimizing
the absolute differences, we try to make their ratio as close
to 1 as possible (i.e., Hi,j/Hlf,j — 1). We can achieve this by
minimizing the absolute log value of that ratio as shown
below:

H, .
log l/']
Hi,j

elitleliv2 | eli

el@ite)/2); _ ;1P
log(H;) — log (}

2)
o +

L —Blogli—jl+ ) n

i<k<j

log(H; ;) —
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Thus, we can estimate all parameters by solving the
optimization problem below:

Minimize Y-, [log(Hip) — “5% — Blogli —jl + ¥ ie; rk’
a,B,r

such that
>0

B <0

®3)

Solving the optimization problem We introduce slack
variables z; to turn the optimization problem 3 into a
linear programming (LP) problem as shown below:

Ml;l,lﬁI?lZe Zlgi;f:jgn Zj

such that

i+aj . N

zj = + log(H,-,,-)fa Za’ 7ﬁlog\zf}|+zi<k§jrk
i+aj . N

zj = — (log(H;)— 252 — Blogli —jl + 3 i k< Tk

re = 0

zj 2 0

B =<0

(4)

Prediction of the contact frequencies

We assume that the deletion does not change any param-
eter value of «, B, r; it only reduces the genomic distance
and remove some insulators. Thus, the contact frequency
will be estimated explicitly as:

e@ite/2j —j — (y —x + 1)|P s
5 (5)

W elitl , elx-lelvtl || e

Estimating the TAD fusion score of a deletion mutation

We denote the TAD fusion score of a deletion Ay as Sa,,
and define it as the difference between the expected num-
ber of genomic interactions between bins in the genome
with and without the deletion.

Saxy = E(Cg) — E(Cp)
= Z Z wij(p(cij = 1|1G) — p(cij = 1|1H"))

ie[1,x—1] jely+1,n]

Yoo wy (P (Ci,j =1

G,‘,/‘
elaita))/2
ie[lx—1] jely+1,n]

4
ey =]t (7)
P\ cij= elaita)/2

4
SO w SIS WY (T
Y eleite))/2 eleite))/2

ie[lx—1] je[y+1,n]
(8)

where random variables Cg and Cy represent the number
of interactions between different bins assuming the Hi-C

(6)
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contact matrices for the two genomes H and G respec-
tively. The random variable ¢;; is an indicator variable
representing existence of the interaction between bins i
and j (i.e, ¢;; = 1 indicates an interaction between bins
iand j and ¢;; = 0 indicates the lack of such interaction
in 3D space). We also added the weight w;; for impor-
tant interactions (e.g., between enhancers and promoters),
but in all analyses, we simply set w; = 1. Here, we use
the normalized value (ie., G;; /e@t%)/2) rather than the
raw value G;; to eliminate the bias so that we can com-
pare the TAD fusion score between different datasets. We
assume that the genomic interaction probability of a pair
of bins only depends on their normalized contact fre-
quency. Therefore, we can use a function f to convert
this normalized contact frequency to the genomic inter-
action probability for both G and H'. Here we simply set
f as a step function with a threshold § (i.e., f(x) = 1 if
x > 8, otherwise f(x) = 0). To determine this threshold
value, we used the HICCUP loop set [42]. We assumed
that two anchors of a loop have a genomic interaction.
Then, we calculated the normalized contact frequency
of these interacted locus pair and set § as the minimum
value. By that, we assumed that any pair of loci in which
the normalized contact frequency is greater or equal to
that minimum value will interact; otherwise, this pair is
considered non-interact. Notice that, in above formula
(Egs. 6, 7, and 8), we use the fitted value Hz{,j since the raw
value H;; may contain noise. By that, we can guarantee
that the score S, is always positive since G;; is always
less or equal to Hz{,,‘ (see Egs. 1 and 5).

Implementation

The linear programming problem (Eq. 4) has O(n?) vari-
ables where # is the number of bins of a chromosome.
Assuming for one human chromosome we have over
40,000 bins (e.g., chromosome 1 with bin length 5 kbp),
this results in over 10° variables. This large size prob-
lem is not efficiently solvable with our current LP solvers
(e.g., CPLEX). Thus, we employed a strategy to reduce the
running time in practice by making some compromises
as follows: (i) in regard to estimating the parameters, we
partitioned each chromosome into smaller overlapping
segments (600 bin segments with 50 bin overlaps) and
estimated the parameters for each segment; (ii) in the
objective function of the LP problem (Eq. 4), we only
considered the summation of bin pairs that the genomic
distance was at most 50 bins apart (i.e., 2Mbp for Hi-C
dataset [49], to evaluate the modeled Hi-C data with long-
range interactions), 10 bins apart (i.e., 400 kbp for Hi-C
dataset [49], to analyze the insulation at each bin), and
100 bins apart (i.e., 500 kbp for GM12878 Hi-C data [42],
to analyze the deletions); (iii) the parameter § is limited
to be in the range of the reported values in the litera-
ture (—2 < B < —1) [8, 73]; and (iv) for estimating
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the TAD fusion score of deletions (great ape lineages,
1KG, TCGA, diseases), we only consider the interaction
change between the 500 kbp region upstream and the
500 kbp downstream of the deletion. We have performed
an extensive simulation to evaluate the robustness of our
method under different ranges of input parameters (see
Additional file 1: Figure S7). Note that although larger val-
ues of these parameters provide a slightly more accurate
result, these parameter settings make the running time of
the method increase significantly. Thus, we are compro-
mising the accuracy and efficiency in our parameter value
selection. Our program was run in 48 h (on a cluster with
32 CPUs and 80 GB memory) to fit the model for all 23
chromosomes of GM12878, which was done only once.
After all parameter values were estimated, calculating the
TAD fusion score for any deletion was less than 1 s per
one deletion.
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