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Abstract
Rationale The M2-like tumor-associated macrophages (TAMs) are independent prognostic factors in melanoma.

Methods We performed weighted gene co-expression network analysis (WGCNA) to identify the module most 
correlated with M2-like TAMs. The Cancer Genome Atlas (TCGA) patients were classified into two clusters that differed 
based on prognosis and biological function, with consensus clustering. A prognostic model was established based on 
the differentially expressed genes (DEGs) of the two clusters. We investigated the difference in immune cell infiltration 
and immune response-related gene expression between the high and low risk score groups.

Results The risk score was defined as an independent prognostic value in melanoma. VARS1 was a hub gene in the 
M2-like macrophage-associated WGCNA module that the DepMap portal demonstrated was necessary for melanoma 
growth. Overexpressing VARS1 in vitro increased melanoma cell migration and invasion, while downregulating 
VARS1 had the opposite result. VARS1 overexpression promoted M2 macrophage polarization and increased TGF-β1 
concentrations in tumor cell supernatant in vitro. VARS1 expression was inversely correlated with immune-related 
signaling pathways and the expression of several immune checkpoint genes. In addition, the VARS1 expression level 
helped predict the response to anti-PD-1 immunotherapy. Pan-cancer analysis demonstrated that VARS1 expression 
negatively correlated with CD8 T cell infiltration and the immune response-related pathways in most cancers.

Conclusion We established an M2-like TAM-related prognostic model for melanoma and explored the role of VARS1 
in melanoma progression, M2 macrophage polarization, and the development of immunotherapy resistance.
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Introduction
Melanoma is a highly aggressive skin cancer with early 
metastases and have the highest mortality rate in skin 
cancer [43]. Its incidence has increased in recent years 
and it has become one of the fastest growing tumors. 
Diagnosis rates are also increasing among young peo-
ple [44]. Despite the recent advances in neoadjuvant 
immunotherapy, chemotherapy, and targeted therapy 
improving patient prognosis, many patients only achieve 
temporary remission and eventually develop therapy 
resistance. Therefore, the mortality rates continue to be 
unacceptably high [2, 24].

Bone marrow-derived cells penetrate the tumor and 
differentiate into macrophages termed tumor-associated 
macrophages (TAMs), which are the main component 
of tumor-infiltrating leukocytes [49]. Most TAMs not 
only lose the ability to combat tumor progression but 
also support tumor cell growth and metastasis [3, 40]. 
TAMs help to build an immune dysfunctional micro-
environment in tumors by secreting many immunosup-
pressive cytokines [5, 26]. Furthermore, as a major source 
of PD-L1, TAMs inhibit cytotoxic T cell infiltration and 
function, which drives undesirable resistance to neoad-
juvant immunotherapy [33]. In tumors, TAMs predomi-
nantly polarize into the pro-tumoral M2 phenotype [32, 
48] and a high M2/M1 ratio is an independent prognostic 
factor in many cancers, especially melanoma [12, 34, 48]. 
Therefore, it is necessary to describe molecular charac-
teristics combining patients’ M2-like TAMs infiltration 
and to determine the key regulatory factors of M2-like 
TAM polarization.

To provide new insights into the molecular features 
of M2-like TAM infiltration in patients with melanoma, 
we identified two distinct clusters (Cluster 1 and Cluster 
2) based on the gene module most positively correlated 
with M2-like TAM infiltration in The Cancer Genome 
Atlas skin cutaneous melanoma (TCGA-SKCM) dataset. 
Then, we investigated the differences in prognosis, multi-
omics, and functional enrichment between the two clus-
ters. Next, we constructed a prognostic model according 
to the differentially expressed genes (DEGs) of the two 
clusters and compared the prognosis, immune cell infil-
tration, immune-related gene profile, and immunother-
apy response in the high- and low-risk groups.

Subsequently, VARS1 was characterized as the hub 
gene of the module most associated with M2-like TAM 
infiltration, which suggested that VARS1 is linked to 
TAM polarization and could be defined as a new poten-
tial target in melanoma progression. VARS1 is a member 
of the aminoacyl-tRNA synthetases (ARSs) and its pri-
mary function is to link valines to their corresponding 
tRNAs in protein synthesis [28]. VARS1 mainly plays an 
important role in progressive brain disease [14]. Wal-
brecq et al. proved that hypoxia induced VARS1-bearing 

extracellular vesicle secretion by melanoma, which corre-
lated with worse melanoma outcomes [60]. Nevertheless, 
the role of VARS1 in melanoma remains unclear.

Our study demonstrates that VARS1 expression was 
negatively correlated with the immune-related signaling 
pathways and the infiltration of antitumor cells such as 
CD8 T cells but was positively correlated with the accu-
mulation of M2-like TAMs. VARS1 overexpression pro-
moted M2-like macrophage polarization and melanoma 
cell migration and invasion in vitro, while knockdown of 
VARS1 decreased melanoma cell migration and invasion. 
VARS1 was inversely correlated with several immune 
checkpoint genes and could be a predictive biomarker of 
anti-PD-1 immunotherapy response. Furthermore, pan-
cancer analysis revealed that VARS1 correlated negatively 
with CD8 T cell infiltration in most cancers and demon-
strated unfavorable prognostic value in several cancers.

Materials and methods
Dataset source and preprocessing
The analyses involved patients from four SKCM cohorts 
(GSE65904, GSE98394, GSE78220, GSE91061) and 
TCGA-SKCM. Patients without survival information 
and RNA sequencing (RNA-seq) data were excluded 
from the analysis. For the Gene Expression Omnibus 
(GEO) dataset, related clinical data and transcriptome 
expression data were downloaded using the R GEOquery 
package [8] and the related GEO datasets were merged 
using the ComBat algorithm [31]. Transcriptome FPKM 
(fragments per kilobase transcript per million frag-
ments) value and clinical data were downloaded from 
the Genomic Data Commons (GDC, https://portal.gdc.
cancer.gov/) using the R TCGAbiolinks package [7]. The 
FPKM values were transformed to TPM (transcripts per 
million) values for subsequent analyses.

Weighted gene co-expression network analysis (WGCNA)
We constructed mRNA co-expression networks in 
TCGA-SKCM dataset using the R WGCNA package [29]. 
First, the Pearson correlation coefficient between each 
pair of genes was calculated to obtain a similarity matrix. 
WGCNA converted the similarity matrix to an adjacency 
matrix using a power function. Among all soft thresholds 
(β) with R2 > 0.9, we chose the automatic value β (β = 5) 
returned by the WGCNA pickSoftThreshold function. 
As recommended by the WGCNA guidelines, 0.25 was 
chosen as the network merge height. We used default set-
tings for other WGCNA parameters.

M2-like TAM infiltration-related cluster acquisition
We selected the module associated with the infiltration 
of M2-like TAMs and CD8 T cells and the genes in this 
module underwent univariate Cox regression analysis. 
Then, the 125 genes associated with survival in univariate 
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analysis (p < 0.05) were entered into the R Consensus-
ClusterPlus package [62] to perform consensus cluster-
ing for TCGA-SKCM patients. The optimal K value was 
identified as 2 based on the result of the cluster consen-
sus value and cumulative distribution function.

Development of the M2-like TAM-related prognostic model
The DEGs of two clusters with a false discovery rate 
(FDR) < 0.05 were identified by the R DESeq2 pack-
age [36]. Then, the 10,269 DEGs underwent univariate 
Cox analysis in TCGA dataset and yielded 3390 pro-
gression-associated genes (p < 0.05). Further reduction 
of candidate genes using lasso (least absolute shrinkage 
and selection operator) logistic regression with 10-fold 
cross-validation was performed via the R glmnet pack-
age [13]. Then, the genes were filtered further using 
a multivariate proportional hazard regression model 
(using both stepwise regression). The risk score was cal-
culated as follows: 0.323×ATP13A5 + 0.465×C1orf105 
+ 0.195×TM6SF2 + 0.151×HEYL + 0.146×PTK6 + 
0.065×KIT + 0.049×ENTHD1–0.209×SLC18A1–
0.201×ZMAT1–0.158×CD14. The TCGA and validation 
cohort risk scores used the same model score threshold. 
Patients were stratified into low- and high-risk groups 
based on the median risk score cut-off and the differ-
ences in overall survival (OS) were compared using the 
R survival package [56]. The area under the curve (AUC) 
was calculated with the R timeROC package [35] to eval-
uate the accuracy of the prognostic model.

Functional enrichment analysis and estimation of immune 
cell infiltration
Gene set variation analysis (GSVA) and gene set enrich-
ment analysis (GSEA) were performed with the gsva [20] 
and clusterProfiler [65] packages in R, respectively. The 
gene sets for GSVA and GSEA were downloaded from 
the Molecular Signatures Database (MSigDB) v7.4 data-
base. Immune cell infiltration was quantified using the 
CIBERSORT algorithm [47] based on the TPM value of 
TCGA-SKCM patients.

Analysis of genomic alterations
Somatic mutations and somatic copy number alterations 
(CNAs) were downloaded from GDC using the R TCGA-
biolinks package. The somatic mutations and CNAs (GIS-
TIC output) data were visualized using the R maftools 
package [41]. The significant CNA amplifications and 
deletions were identified by GISTIC 2.0 [42]. The meth-
ylation data of TCGA patients were downloaded from 
the GDC portal. Differentially methylated CpGs between 
Cluster 1 and Cluster 2 were examined with the t-test. 
CpGs in chromosomes X and Y were excluded from the 
analysis. CpGs with FDR < 0.05 were characterized as dif-
ferentially methylated CpGs.

Protein–protein interaction (PPI) network construction and 
hub gene identification
The STRING database (v.11.5) was used to establish PPIs 
between genes in the WGCNA module with a confidence 
level of 0.4, and the interaction network was visualized 
using Cytoscape. The hub genes of the WGCNA module 
were screened with the Closeness, Stress, and Radiality 
algorithms of the cytoHubba plugin [6] in Cytoscape.

Cell culture and transfection
We used SK-MEL-28 (ATCC, Cellcook Biotechnology, 
Guangzhou, China), A375 (ATCC, Cellcook Biotech-
nology, Guangzhou, China), and THP1 cells (ATCC, 
Cellcook Biotechnology, Guangzhou, China) for in vitro 
experiments. A375 and SK-MEL-28 cells were main-
tained in Dulbecco’s modified Eagle’s medium (DMEM) 
supplemented with 10% fetal bovine serum (FBS) and 
1% penicillin-streptomycin (all from Gibco, Carlsbad, 
CA, USA). The THP1 cells were cultured in RPMI 1640 
medium containing 10% FBS, 1% penicillin-streptomy-
cin, 2 mM glutamine, 10 mM HEPES, and 1× non-essen-
tial amino acids (all from Gibco).

The VARS1 overexpression (pCR4-TOPO-VARS1) and 
control vector plasmids were purchased from Miaol-
ing Company (Miaoling, Wuhan, China) and the small 
interfering RNAs (siRNAs) targeting VARS1 and the 
siRNA control were purchased from RiboBio (Guang-
zhou, China). The sequences of the VARS1-targeting siR-
NAs were as follows: GGAAACGCTCCCTGTCACAAA 
(VARS1 siRNA1) and GCCGGATCTGGAATAATGTGA 
(VARS1 siRNA2). For transient transfection, A375 and 
SK-MEL-28 cells were transfected with overexpres-
sion plasmid or siRNAs, respectively, using transfection 
reagents (Lipofectamine 3000, Invitrogen, CA, USA) for 
48 h, followed by further functional assays.

Quantitative real-time PCR (qRT-PCR) and western blotting
Total RNA extraction and qRT-PCR were conducted as 
previously described [64]. The qRT-PCR forward and 
reverse primer sequences were as follows: (1) β-actin, 
CTCGCCTTTGCCGATCC and TTCTCCATGTC-
GTCCCAGTT; and (2) VARS1, CCGTGCTAGGAGA-
AGTGGTT and TCTCTGGTTTTGGTTTCTTCTCCC, 
respectively. The western blotting was performed as 
previously described (36) with primary antibodies 
against VARS1 (WH0007407M1, Sigma, Germany) and 
α-tubulin (A11126, Invitrogen, CA, USA).

Transwell migration and invasion assays
The migration and invasion assays were performed as 
previously described [64]. After cleaning the cells on 
the top of the insert, cells growing through the porous 
membrane were photographed with an inverted light 
microscope (×100). The relative numbers of migrating 
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and invasive cells were calculated using ImageJ (ImageJ 
National Institutes of Health, USA).

Flow cytometry
THP1 cells were treated with 320 nM phorbol-12-my-
ristate-13-acetate (PMA) for 6  h and differentiated into 
macrophages, then maintained in the medium with PMA 
for 16 h to generate M0 cells as described before [17, 37, 
52, 63]. To analyze the influence of VARS1 on macro-
phage polarization, we collected the culture supernatants 
of VARS1-overexpressing A375 cells at 24 h. For the CM 
collection method, we first seeded equal numbers (1 mil-
lion cells) of VARS1-overexpressed and control cells 
separately in 100 mm tissue culture dishes with complete 
medium. When cells have grown to 70–80% confluency, 
replace the medium with fresh serum-free medium. 
After 24 h of cell culture, CM was collected and passed 
through a 0.22 μm filter (Millipore). Then we added the 
supernatant to THP-1 cell culture medium and continue 
to culture M0 THP1 cells. After 4 days, the THP1 cells 
were harvested and stained with CD86 (#374,202, BioLe-
gend) and CD206 (#321,102, BioLegend). After 45-min 
incubation on ice, the cells were washed three times with 
phosphate-buffered saline (PBS) buffer and resuspended 
in fluorescence-activated cell sorting (FACS) buffer (2% 
FBS in PBS buffer) for flow cytometric analysis.

Analysis of the immunotherapy response
We integrated two datasets of patients with melanoma 
treated with anti-PD-1 (GSE78220 and GSE91061). Fur-
ther analyses were performed only on treatment-naïve 
patients. Then, the immunotherapy response was pre-
dicted using the SubMap online tool [30].

Statistical analysis
Survival differences between groups were assessed using 
Kaplan-Meier curves and log-rank tests. Prognostic fac-
tors were determined with univariate and multivariate 
Cox regression analyses. Correlation coefficients were 
calculated by Pearson and Spearman correlation analy-
ses. Normal and non-normal variables were compared 
using the unpaired Student t-test and the Mann-Whit-
ney U test, respectively. One-way analysis of variance 
and the Kruskal-Wallis test were used as parametric and 
nonparametric methods, respectively, for comparing > 2 
groups. Genes with differential mutations and differential 
copy number losses and gains were examined with chi-
square and Fisher’s exact texts. The statistical analysis 
was performed using R software and values represent the 
mean ± standard deviation. P < 0.05 was considered sta-
tistically significant.

Results
Identification of M2-like TAM-related cluster
First, we used the CIBERSORT algorithm to assess the 
fraction of immune cell infiltration in patients. In TCGA 
and GSE98394 datasets, patients with a higher propor-
tion of M2 macrophage infiltration had worse prog-
nosis (Fig.  1  A and Figure S1A). Considering that more 
M2 macrophages appeared to be associated with poorer 
prognosis and CD8 T cell infiltration, we performed 
WGCNA to detect the module related to CD8 T cell and 
M2 macrophage infiltration (Figure S1D). We select the 
soft threshold power β = 5 (scale-free R2 = 0.90) to con-
struct a scale-free network (Figures S1B, S1C).

The heatmap demonstrates that the yellow module was 
negatively and positively correlated with the infiltration 
of CD8 + T cells and M2 macrophages, respectively, in 
TCGA-SKCM (Fig. 1B). We used the genes in the yellow 
module and survival data in TCGA-SKCM dataset to per-
form univariate Cox regression analysis, and 125 genes 
were associated with OS in TCGA-SKCM. We used the 
R ConsensusClusterPlus package for consistent cluster-
ing in TCGA-SKCM dataset based on the 125 prognostic 
genes and identified two clusters: Cluster 1 (319 cases) 
and Cluster 2 (148 cases) (Fig. 1 C and Figure S1E, S1F). 
Principal component analysis also suggested that these 
two populations were distinct groups (Figure S1G). Clus-
ter 1 had worse OS outcomes than Cluster 2 (log-rank p 
= 0.0071, Fig. 1D).

Functional and multi-omics analyses
To demonstrate signaling pathway activation in each 
cluster, we calculated the GSVA enrichment scores using 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
signaling pathway gene sets in MSigDB v7.4. Figure 2 A 
depicts the top 20 enriched pathways in each cluster. 
In comparison with Cluster 2, Cluster 1 was character-
ized by the lack of immune-related pathways, such as 
T cell receptor signaling pathways. A previous study 
divided TCGA-SKCM tumors into three subtypes [1]: 
(1) immune, (2) keratin, and (3) MITF-low. We found 
that Cluster 1 contained a higher proportion of the ker-
atin subtype (57% vs. 13%) and a lower proportion of 
the immune subtype (34.7% vs. 56.2%) than Cluster 2 
(Fig. 2B).

GSEA indicated that the M2 macrophage pathway 
was enriched in Cluster 1 (Fig. 2 C). Examination of the 
differential expression of immune checkpoint genes 
revealed that Cluster 2 demonstrated higher immune 
checkpoint-related gene expression compared with Clus-
ter 1 (Fig. 2D). To investigate mutations in each cluster, 
we highlighted the top 20 significantly mutated genes 
(SMGs) in the two clusters with a waterfall plot (Fig. 3 A, 
3B). The two clusters shared most of the SMGs. How-
ever, Cluster 1 contained unique SMGs, including XIRP2 
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(31%), FAT4 (31%), USH2A (30%), and ANK3 (29%) while 
Cluster 2 contained unique SMGs that included FLG 
(40%), APOB (40%), and CSMD2 (37%).

A recent prospective study found that higher tumor 
mutation burden (TMB) is associated with better immu-
notherapy response [4]. Cluster 2 samples demonstrated 
higher TMB severity than Cluster 1 samples (Figure 
S2A). We used GISTIC 2.0 to analyze the somatic copy 
number variation (SCNV) and summarized the ampli-
fied and deleted areas of Cluster 1 and Cluster 2. Cluster 
1 contained a total of 56 focal deletion peaks and 69 focal 
amplification peaks, while Cluster 2 contained 37 focal 
deletion peaks and 28 focal amplification peaks (Fig. 4 A, 
4B). Examination of the frequency of immune checkpoint 
gene amplification or deletion in each subtype revealed 
that Cluster 2 contained more amplification of immune 
checkpoint (VTCN1, TNFRSF family) and effector T 
cell function genes (GZMK, GZMA, IFNG) while Clus-
ter 1 had more deletions (VTCN1, ADORA2A, TJP1, 
IDO1, HAVCR2) (Fig. 4 A, 4B). We used the R ChAMP 
package [57] with FDR < 0.05 to analyze the methyla-
tion differences in the two clusters and obtained 28,870 

differentially methylated probes (DMPs) between Clus-
ter 1 and Cluster 2. Interestingly, CD8A and HAVCR2 of 
Cluster 1 had increased methylation levels than that in 
Cluster 2 (Fig. 4 C).

Construction of the M2 macrophage cluster-related 
prognostic model
We explored the DEGs between the two clusters to con-
struct a prognostic model (Fig. 5 A). First, we performed 
univariate Cox analysis on the DEGs and obtained 
3390 genes with prognostic significance. Then, we per-
formed lasso regression and multivariate Cox analy-
sis based on the 3390 genes to construct a prognostic 
model in TCGA-SKCM dataset (Figure S2B, S2C). The 
risk score was calculated as follows: 0.323×ATP13A5 
+ 0.465×C1orf105 + 0.195×TM6SF2 + 0.151×HEYL 
+ 0.146×PTK6 + 0.065×KIT + 0.049×ENTHD1–
0.209×SLC18A1–0.201×ZMAT1–0.158×CD14. Then, 
TCGA-SKCM patients were divided into high- and 
low-risk groups based on their risk scores. Patients with 
higher risk scores had worse OS prognosis, and Cluster 1 
patients had higher risk scores (Fig. 5B C).

Fig. 1 Identification of M2-like TAMs related cluster. (A) Kaplan–Meier analysis showing the correlations between M2-like TAMs infiltration and overall 
survival (OS) in TCGA SKCM cohorts. Patients were grouped into “high” or “low” groups based on the median CIBERSORT-based M2 macrophages score. (B) 
Weighted correlation network analysis (WGCNA) identifies M2-like TAMs and CD8 T cells infiltration correlated modules. (C) Consensus clustering showed 
that 2 clusters were most stable. (D) Kaplan-Meier survival analysis was performed to analyze the difference in overall survival (OS) of the two clusters
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Time-dependent AUC and the AUCs at 1 (0.70), 2 
(0.74), 3 (0.72), and 5 (0.74) years suggested that the 
M2 macrophage cluster-related risk score had potential 
value for predicting the OS of patients with melanoma in 
TCGA datasets (Fig.  5D and Figure S2D). To verify the 

prognostic significance of the model, we used the same 
model score threshold to calculate the risk score in a vali-
dation cohort (GSE65904), which yielded a similar result, 
where patients with higher risk scores had worse OS, and 
the risk score had prognostic value (Fig. 5E F and Figure 

Fig. 2 Functional analysis and differential expression analysis of two clusters. (A) The top 20 enriched KEGG pathways for each cluster were explored by 
GSVA analysis. (B) Percentage of patients with different TCGA melanoma subtypes in different clusters. (C) GSEA analysis showing that the correlation of 
clusters with M2 macrophage gene sets. (D) The differences in expression of immune checkpoint-related genes between the two clusters. ‘*’ represents 
p-value ≤ 0.05, ‘**’ represents p-value ≤ 0.01, ‘***’ represents p-value ≤ 0.001, N.S indicates not significant (p > 0.05)
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S2E). The risk score was identified as an independent 
prognostic factor in both TCGA and GSE65904 datasets 
(Table S1).

Differences in immune cell infiltration and immune gene 
expression between high- and low-risk groups
The risk score played an important role in 

Fig. 3 The mutation analysis of two clusters. The waterfall plot showing the top 20 genes with mutation frequency of Cluster 1 (A) and Cluster 2 (B). Each 
column represents an individual patient. The upper histogram is the total tumor mutation burden (TMB), and the numbers on the right are the mutation 
frequencies of each gene. The bar graph on the right is the proportion of each mutation type
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melanoma progression. To assess the influence of the M2 macrophage cluster-related risk score on the tumor 

Fig. 4  Multi-omics analysis of two clusters. GISTIC 2.0 analysis determining the statistically significant amplifications and deletions in Cluster1 (A) and 
Cluster2 (B). Statistically significant gains (red) and losses (blue) of chromosomal locations are shown. The q-value, which characterize statistical signifi-
cance, are shown below the graph. Areas with q-values < 0.25 (green lines) are considered significantly changed. These peak regions were annotated 
with known immune checkpoint related genes. (C) Volcano plots show alterations in DNA methylation that are statistically significant between the two 
clusters. The right side shows different proportions of genomic features
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microenvironment (TME), we compared the immune cell infiltration between the high and low score groups. 

Fig. 5 Construction of the M2 macrophage cluster Related Prognostic Model. (A) Volcano plot showing differential expressed genes in two clusters. (B) 
The differences in risk scores of prognostic models between two clusters. The difference in overall survival between low-risk score and high-risk score 
groups in TCGA melanoma cohort (C) and GSE65904 melanoma cohort (E). Patients were grouped into “high” or “low” groups based on the median risk 
score. Time-dependent areas under the curve (AUC) values in TCGA (D) and GSE65904 (F). (G) The comparison of the immune cells infiltration between 
high-risk and low-risk groups
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Patients with high risk scores had increased M2 macro-
phage infiltration and decreased CD8 T cell infiltration 
compared to patients with low risk scores (Fig. 5G). We 
also explored differences in the expression of HLA family 
genes and immune checkpoint markers in the high and 
low risk score groups in TCGA and GEO datasets. The 
high risk score group had significantly increased expres-
sion of the antigen-presentation and immune check-
point-related genes in comparison to the low risk score 
group of TCGA datasets (Fig.  6  A–C). Consistent with 
these results, analysis of GSE65904 sample data yielded 
similar results (Figure S3A–C). Furthermore, we applied 
our M2 macrophage cluster-related model to the merged 
datasets (GSE78220 and GSE91061) with available immu-
notherapy outcomes and examined the risk score of mel-
anoma patients. To further observe the different response 
to immunotherapy in high risk score and low risk score 
groups, we found that patients with high risk score had 
higher proportion of non-responders to immunotherapy 
compared to patients with low risk score (64% vs. 28%). 
(Fig. 6D)

VARS1 as a hub gene of the yellow module and its role in 
melanoma progression and macrophage polarization
We explored the hub genes in the yellow module. We 
used the 275 genes in the yellow module to construct a 
PPI network based on the STRING database results. 
Then, the top hub genes were determined via the Close-
ness, Stress, and Radiality algorithms in the Cytoscape 
cytoHubba plugin (Figure S4). The hub gene essential 
for melanoma cell growth was determined with DepMap 
(https://depmap.org/portal/download/), a CRISPR-based 
database for genome-wide loss-of-function screening. 
Only VARS1 was identified by intersecting the gene sets 
obtained from these four methods (Fig.  7  A). In TCGA 
dataset, high VARS1 expression correlated with shorter 
OS (Fig.  7B). Furthermore, we explored which cell type 
mainly expressed VARS1 in melanoma. The result of sin-
gle-cell RNA-seq of the GSE115978 dataset demonstrated 
that VARS1 was expressed predominantly in tumor cells 
but not in stromal and immune cells (Fig. 7 C). Addition-
ally, high risk score patients had higher VARS1 expres-
sion levels than low risk score patients (Figure S5A).

We also examined whether VARS1 played an impor-
tant role in melanoma progression and constructed 
VARS1-overexpressing and VARS1 knockdown A375 and 
SK-MEL-28 cell lines (Figure S5B). VARS1 overexpres-
sion promoted the migration and invasive ability of the 
cells while VARS1 suppression significantly decreased it 
(Fig. 7D–F). GSEA indicated that high VARS1 levels posi-
tively correlated with the metastasis-related pathway in 
TCGA-SKCM dataset (Fig.  7G). Furthermore, a search 
of the Human Protein Atlas (HPA) database [58, 59] 
showed that VARS1 expression was increased in primary 

melanoma compared to normal skin tissue, and further 
increased in metastatic melanoma (Figure S5D).

VARS1 negatively correlated with immune infiltration and 
induced M2 macrophage polarization
To investigate the VARS1-related pathways, we divided 
TCGA-SKCM dataset patients into two groups based on 
the median VARS1 gene expression. GSVA of the KEGG 
pathways revealed that the immune-related pathways, 
such as the T cell receptor pathway, were enriched in 
patients with low VARS1 expression, while tumor growth 
pathways such as the cell cycle pathway and the mTOR 
pathway were enriched in patients with high VARS1 
expression (Fig. 8 A).

We examined the correlation between VARS1 expres-
sion and the CIBERSORT immune cell infiltration score. 
VARS1 expression positively correlated with intratu-
moral M2 macrophage infiltration and negatively cor-
related with M1 macrophage and CD8 T cell infiltration 
(Fig. 8B C). To elucidate the role of VARS1 in M2 mac-
rophage polarization, THP1 cells were treated with the 
supernatant of A375 cells line overexpressing VARS1 
(VARS1-A375) and A375 vector (vector-A375) cell lines 
and detected the M1 and M2 macrophage markers. Flow 
cytometry revealed a 3-fold increase in the expression of 
the M2 macrophage marker CD206 in THP1 cells treated 
with VARS1-A375 supernatants compared with those 
treated with vector-A375-supernatants, while the expres-
sion of CD86, an M1 macrophage marker, decreased by 
15.2% (Fig.  8D). Taken together, these results indicate 
that VARS1 may play important roles in M2 macrophage 
infiltration and polarization.

High VARS1 expression correlated with low CD8 T cell 
infiltration and predicted the poor clinical benefit of 
immune checkpoint blockade
High VARS1 expression correlated negatively with CD8 
T cell infiltration in TCGA-SKCM dataset (Fig. 9 A). The 
expression of many immune checkpoint genes was nega-
tively associated with VARS1 expression in both TCGA 
and GSE65904 datasets (Fig. 9B and Figure S6A). Previ-
ous studies have shown that TGF-β1 is involved in PD-1 
immunotherapy resistance and M2 macrophage polariza-
tion [11, 66]. Here, the enzyme-linked immunosorbent 
assay demonstrated that the supernatant of VARS1-
overexpressing cells had significantly increased TGF-β1 
concentrations compared to that of vector cells (Figure 
S5C). We performed SubMap analysis to assess the anti-
PD-1 immunotherapy response in high- and low-VARS1 
expression patients with melanoma. The results dem-
onstrated that low VARS1 expression predicted partial 
response (PR) to anti-PD-1 immunotherapy whereas high 
VARS1 expression predicted resistance (SD) to anti-PD-1 
immunotherapy (Fig.  9  C). To explore the suppressive 

https://depmap.org/portal/download/
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role of VARS1 in immune regulation, we used different algorithms to investigate the correlation between VARS1 

Fig. 6 Differences in immune check point related gene and response to anti-PD-1 immunotherapy between high and low risk groups. Boxplots displayed 
the differences in the expression of antigen presentation (A), immune check point genes (B) and several ligand-receptor (C) in TCGA melanoma cohort. 
‘*’ represents p-value ≤ 0.05, ‘**’ represents p-value ≤ 0.01, ‘***’ represents p-value ≤ 0.001, N.S indicates not significant (p > 0.05). (D) The proportion of 
patients with response to anti-PD-1 immunotherapy in different risk group. SD: stable disease; PD: progressive disease; CR: complete response; PR: partial 
response
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gene expression and CD8 T cell infiltration in Pan-TCGA datasets. The heatmap showed that VARS1 gene 

Fig. 7 VARS1 as a Hub Gene and its Role in Melanoma progression. (A) Venn diagram showing the intersection of hub genes of the M2 infiltration-related 
module and genes critical for the growth of melanoma human cell lines in the DepMap database. (B) Overall survival of TCGA melanoma patients with 
high and low VARS1 expression measured by Kaplan–Meier analysis. Patients were grouped into “high” or “low” groups based on the median expression 
of VARS1. (C) Analysis of VARS1 expression in various cell types in single-cell sequencing datasets. (D-F) Overexpressing VARS1 promoted migration and 
invasion abilities in SK-MEL-28 cells and A375 cells, while silencing VARS1 suppressed the abilities. ‘*’ represents p-value ≤ 0.05. (G) GSEA analysis showing 
that the correlation of VARS1 expression with metastasis-related gene sets
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expression and CD8 T cell infiltration were inversely cor-
related in most cancers (Fig. 9D).

GSEA indicated that many immune-related path-
ways, such as the T cell-mediated cytotoxicity pathway, 

were enriched in the patients with high VARS1 expres-
sion in 70% of cancer types (Fig.  9E). Finally, we evalu-
ated the association between VARS1 and OS across 33 
cancer types. High VARS1 expression was correlated 

Fig. 8 The role of VARS1 in immune cell infiltration and macrophage polarization. (A) KEGG pathway enrichment scores between high and low VARS1 
expression groups analyzed using GSVA and showing the top 20 differential pathways. Patients were grouped into “high” or “low” groups based on the 
median expression of VARS1. (B) The graph shows the correlation between VARS1 expression and immune cell infiltration based on the output of Ciber-
sort analysis. The correlation coefficients were calculated by the Spearman rank correlation test. (C) The correlation of VARS1 expression and M2-like TAMs 
infiltration. (D) THP-1 cells were treated with supernatant of VARS1-overexpressing A375 cells and then the polarization of THP-1 was analyzed by flow 
cytometry. ‘*’ represents p-value ≤ 0.05
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Fig. 9 High expression of VARS1 correlates with low CD8 T cell infiltration and predict the poor clinical benefit of ICB. (A) The correlation of VARS1 expres-
sion and M2-like TAMs infiltration. (B) Correlation between the expression of VARS1 and several known immune checkpoint genes in the TCGA dataset. 
The correlation coefficients were calculated by the Pearson correlation test. (C) The submap tool analysis showed that VARS1 expression could predict the 
response to anti-PD-1 treatment. The p values obtained were adjusted by the Bonferroni method. (D) Pan-cancer analysis investigating the correlations 
between VARS1 expression and CD8 T cell infiltration across 32 cancer types from the TCGA dataset. The correlation coefficients were calculated by the 
Spearman rank correlation test. (E) Pan-cancer GSEA analysis for immune response related pathway between high- and low-VARS1 tumor tissues. NES, 
normalized enrichment score; FDR, false discovery rate
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with poorer survival in six cancer types (Figure S6B), 
including KICH (hazard ratio [HR] = 2.80), MESO (HR = 
1.74), SKCM (HR = 1.32), SARC (HR = 2.25), LAML (HR 
= 1.69), and CESC (HR = 1.49) and with better survival 
in READ (HR = 0.47). These results suggest that VARS1 
may have predictive value for patient prognosis and PD-1 
immunotherapy efficacy.

Discussion
Melanoma has been recognized as the most aggres-
sive type of skin cancer and is particularly responsive to 
immunotherapy such as immune checkpoint blockade 
with CTLA4 and PD-1 antagonists [38]. Immunotherapy 
can improve patient outcomes obviously, especially for 
patients with stage IV melanoma, but the mortality rates 
would become quite high once patients develop immu-
notherapy resistance [2, 53, 54]. Nevertheless, the goal of 
addressing and predicting immunotherapy response in 
melanoma has been reached. Considering that numerous 
studies have demonstrated the importance of TAMs in 
clinical outcome and immunotherapy resistance in mela-
noma, we applied WGCNA to identify a M2-like TAM 
module in melanoma for the first time and examine the 
reliability of M2-like TAMs as a prognostic marker in 
melanoma and in predicting immunotherapy response.

Recent studies have demonstrated the prognostic 
importance of TAMs in various cancers. The presence of 
TAMs, mainly M2-like TAMs, is not only correlated with 
poor outcome in various tumors, but is also associated 
with the generation of an immunosuppressive TME [16, 
22, 46]. As an important source of inflammatory cyto-
kines and growth factors, M2-like TAMs support angio-
genesis, which results in the promotion of tumor cell 
proliferation and survival [9, 21, 51]. A previous study 
reported that TAM-derived VEGFA enhanced vascular 
permeability, thereby facilitating cancer cell intravasation 
and metastasis [19]. Moreover, M2-like TAMs express 
PD-L1, a major negative regulatory ligand suppressing 
cytotoxic T lymphocyte (CTL) activation in the TME. 
In some cancers, M2-like TAM-derived PD-L1 is more 
effective than cancer cell-derived PD-L1 for suppressing 
CTL function [27, 50]. Recent studies have demonstrated 
that M2-like TAM-derived factors, such as interleukin 
(IL)-6, IL-10, and milk fat globule-epidermal growth fac-
tor VIII (MFG-E8), can suppress naïve T cell prolifera-
tion, promote carboplatin resistance, and enhance tumor 
growth [23, 39, 61]. Furthermore, depleting or down-
regulating M2-TAMs suppressed tumor growth by inac-
tivating CCL2 and/or CCR2 signaling [55]. However, a 
M2-like TAM-related prognostic model in melanoma has 
not been explored.

Based on the importance of M2-like TAMs to clinical 
outcome and the immunosuppressive TME, we inferred 
that a gene module associated with M2-like TAMs in 

melanoma could be applied to establish a prognos-
tic model that could provide predictive value in clinical 
outcome and immunotherapy response in melanoma. 
We first validated that the high score of M2-like macro-
phages is significantly associated with poorer survival in 
TCGA and GSE98394 datasets. To examine the reliability 
of M2-like TAMs as a prognostic marker in melanoma, 
two clusters were grouped by genes in a M2-like TAM-
related module and demonstrated different OS and clini-
cal features.

With poorer OS, Cluster 1 was characterized by 
enrichment of the M2 macrophage pathway and the lack 
of immune response pathways, such as the T cell recep-
tor signaling pathway, complement and coagulation cas-
cades, and leukocyte transendothelial migration. The 
activation of these immune response pathways is associ-
ated with good immunotherapy response and good clini-
cal outcome [10, 15, 18, 54], indicating that the lack of 
immune response pathways was one of the major leading 
causes of the poorer outcome in Cluster 1 as compared 
with Cluster 2. Furthermore, the transcriptomic classi-
fication of melanoma includes the immune, keratin, and 
MITF-low subtypes. Compared with Cluster 2, Cluster 1 
had a lower proportion of immune-subtype melanoma, 
which is associated with overexpression of the immune-
related genes and more favorable post-accession survival. 
Moreover, Cluster 1 also contained a higher propor-
tion of the keratin subtype, which exhibits worse out-
come when compared with the immune and MITF-low 
subtypes.

As an emerging predictive biomarker of cancer 
immunotherapy, elevated TMB can be associated with 
increased clinical benefit from immune checkpoint 
blockade therapies [4]. Interestingly, Cluster 2 had 
higher TMB severity than Cluster (1) Recent studies have 
also shown that checkpoint blockade immunotherapy 
response is correlated with the immune checkpoint gene 
and ligand receptor expression level [45]. Cluster 2 had 
more amplifications of the immune checkpoint and effec-
tor T cell function genes, while Cluster 1 had more dele-
tions of the genes. This indicated that Cluster 1 had more 
decreased benefit from immunotherapy compared to 
Cluster (2) Our results suggest that the identified M2-like 
TAM module is reliable for providing meaningful prog-
nostic value in the clinical outcome and immunotherapy 
response in melanoma.

We further identified a M2 macrophage cluster-related 
prognostic model and generated a prognostic risk score 
based on the DEGs between the M2-like TAM-related 
clusters. In TCGA cohort, Cluster 1 had a significantly 
higher risk score than Cluster 2, and OS was significantly 
decreased in the high risk score group compared to the 
low risk score group. Moreover, a higher risk score was 
associated with a series of tumor immunogenic factors. 
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In our study, the high risk score group demonstrated 
less CD8 + T cell infiltration and more M2 macrophage 
infiltration compared to the low risk score group. Previ-
ous studies have proven that inhibiting antigen presenta-
tion is associated with immune evasion. The antitumor 
immune response is mainly centered on antigen pre-
sentation. Our result demonstrated that the high risk 
score group had significantly suppressed antigen pre-
sentation compared to the low risk score group, indicat-
ing that a higher risk score was associated with lower 
immunotherapy response. Furthermore, our findings 
also demonstrate that compared with the low risk score 
group, the high risk score group had decreased expres-
sion of the immune checkpoint genes and the majority 
of ligand receptors, including CCL5, CXCL9, and IFNG. 
This observation prompted us to examine the prognos-
tic value of this risk score in immunotherapy outcomes: 
there was a higher percentage of SD/progressive disease 
in high-risk patients than in low-risk patients. Hence, the 
risk score based on the M2-like TAM-related prognostic 
model represented an independent prognosticator of OS 
and immunotherapy response in melanoma.

With the aim of identifying a potential biomarker for 
predicting OS and immunotherapy response in mela-
noma, we identified the top hub genes in the specific 
M2-like TAM module via three different algorithms. 
Interestingly, only VARS1 was identified after intersec-
tion between these hub genes and the melanoma cell 
growth-related genes in the DepMap database, indicat-
ing that VARS1 was associated with M2-like TAM polar-
ization and melanoma tumor cell growth. Moreover, 
our results showed that VARS1 was mainly expressed 
by tumor cells and that high VARS1 expression was sig-
nificantly associated with poor OS and the metastasis-
related pathway in TCGA-SKCM dataset. As an ARS 
member, VARS1 plays an important role in protein syn-
thesis. Recent studies have shown that ARSs are involved 
in various physiological and pathological processes, espe-
cially tumorigenesis, and could be potential biomark-
ers and therapeutic targets in cancer treatment [25]. 
However, only one study reported that VARS1-bearing 
extracellular vesicles were associated with worse clinical 
outcome in melanoma [60]. The role of VARS1 in mela-
noma remains unclear, which prompted our exploration 
of the function of VARS1 as a potential prognostic bio-
marker in melanoma.

Our in vitro experiments demonstrated that A375 and 
SK-MEL-28 cell migration and invasive ability was signif-
icantly increased after VARS1 was overexpressed, while 
VARS1 knockdown decreased it. Moreover, high VARS1 
expression was associated with low immune-related sig-
naling pathway enrichment, low immune checkpoint 
expression, and low CD8 T cell infiltration and predicted 
anti-PD-1 immunotherapy resistance, which indicated 

that the upregulation of VARS1 can be associated with 
low immunotherapy response and poor clinical outcome 
in melanoma. Previous studies have also shown that the 
tumor-suppressing effect of the TGF-β1 signaling path-
way has an essential function in poor immunotherapy 
response [11]. Our in vitro experiments demonstrated 
that VARS1 upregulated TGF-β1 expression in tumor 
cells and the M2 macrophage marker CD206. In addi-
tion, our analysis of the Pan-TCGA datasets supported 
the idea that high VARS1 expression was correlated 
with poor CD8 T cell infiltration in most cancers. Taken 
together, our results suggest that, as the hub gene related 
to the M2-like macrophage module, VARS1 exerts an 
immunosuppressive effect on melanoma progression 
and is a potential predictive biomarker of clinical out-
come and immunotherapy response in melanoma, which 
requires further investigation in prospective studies and 
larger populations.

Our study has potential weaknesses. It is a retrospec-
tive study and requires a multi-center cohort study to 
validate the predictive value of this M2-like TAM-related 
prognostic model and VARS1 as a predictive biomarker 
of anti-PD-1 immunotherapy response in melanoma. In 
addition, further animal experiments are necessary for 
exploring the functional role of VARS1 in melanoma, 
which can help provide more robust clues to guide clini-
cal application.

Conclusion
Our studies identified a M2-like TAM-related prognostic 
model for predicting OS and immunotherapy resistance 
in melanoma and explored the potential predictive value 
of VARS1 in melanoma immunotherapy. We hope that 
our research widens the current understanding of the 
role of M2-like TAMs in the biology of melanoma and 
prognosis prediction and that VARS1 can be a novel pre-
dictive biomarker of clinical outcome and immunother-
apy response in melanoma.

Figures and legends.
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