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Development of noninvasive, reliable biomarkers for lung cancer diagnosis has many clinical benefits
knowing that most of lung cancer patients are diagnosed at the late stage. For this purpose, we conducted
proteomic analyses of 231 human urine samples in healthy individuals (n = 33), benign pulmonary
diseases (n = 40), lung cancer (n = 33), bladder cancer (n = 17), cervical cancer (n = 25), colorectal can-
cer (n = 22), esophageal cancer (n = 14), and gastric cancer (n = 47) patients collected from multiple
medical centers. By random forest modeling, we nominated a list of urine proteins that could separate
lung cancers from other cases. With a feature selection algorithm, we selected a panel of five urinary
biomarkers (FTL: Ferritin light chain; MAPK1IP1L: Mitogen-Activated Protein Kinase 1 Interacting Protein
1 Like; FGB: Fibrinogen Beta Chain; RAB33B: RAB33B, Member RAS Oncogene Family; RAB15: RAB15,
Member RAS Oncogene Family) and established a combinatorial model that can correctly classify themajor-
ity of lung cancer cases both in the training set (n = 46) and the test sets (n = 14–47 per set) with an AUC
ranging from 0.8747 to 0.9853. A combination of five urinary biomarkers not only discriminates lung cancer
patients from control groups but also differentiates lung cancer from other common tumors. The biomarker
panel and the predictive model, when validated by more samples in a multi-center setting, may be used as
an auxiliary diagnostic tool along with imaging technology for lung cancer detection.
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1. Introduction

Lung cancer is the second most common cancer among males and
females worldwide and the most common cancer in China (Torre et
al., 2016b, Torre et al., 2016a). It is the leading cause of cancer death in
both men and women in the United States (Torre et al., 2016a). In
2012, there were approximately 1.8 million new cases and 1.6 million
cancer deaths documented, which highlight a global public health con-
cern (Stewart et al., 2014). Non-small cell lung cancer (NSCLC) and
small cell lung cancer (SCLC) are the two main histologic subtypes of
lung cancer with the NSCLC as the most common subtype, accounting
for about 83% of all lung cancers (Miller et al., 2016).
, Tianjin Baodi
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Computed tomography (CT) screening is themain test for lung can-
cer screening but is associated with a high false positive rate (Aberle et
al., 2013). Disease stage significantly affects cancer treatment and
survivorship. The 5-year survival rate is 55% for patients diagnosed at
the early stage and 4% at the advanced stage (Miller et al., 2016). Unfor-
tunately, majority of cases are diagnosed at the advanced stage due to
the lack of symptoms and reliable biomarkers at the early stage
(Miller et al., 2016).

Searching noninvasive biomarkers for clinical diagnosis is a continu-
ous effort but success has been limited (Zhang and Chan, 2005). Current
clinically used tumor markers for lung cancer screening including AFP
(alpha fetoprotein), CA 19-9 (carbohydrate antigen 19-9), CA 125
(carcinoma antigen 125), CA 15-3 (carcinoma antigen 15-3), and CEA
(carcino-embryonic antigen) lack sensitivity and specificity (Li et al.,
2012, Harmsma et al., 2013). Some earlier proteomic studies towards
lung cancer diagnosis based on urine or serum specimens have identified
a fewputative biomarkers, but the specificity against other tumors is poor
or has not been investigated (Zhang et al., 2015, Nolen et al., 2015, Patz et
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. Flow diagram of lung cancer biomarker study. (a) A total of 218 urine specimens were randomly collected from healthy donors or NSCLC patients. After QC filtering and age/sex-
matching, a pair of 23 or 10 case-control urine samples was selected in the training set or test set (test set 1), one for biomarker discovery and the other one for biomarker validation,
respectively. (b) Student's t-test revealed a total of 588 proteins with a p value b.05 in the training set, 144 were up-regulated with at least 2 folds in the cancer group. Finally, 68
proteins were retained by restricting the number of missing values in b30% of lung cancer cases. A random forest model was developed upon the training set with 68 proteins. By
running feature selection algorithm, five biomarkers were selected and incorporated into a predictive model. (c) The biomarker panel and the predictive model were evaluated on 7
independent test sets to determine how well the model can predict lung cancer from healthy individuals and benign lung diseases (test set 1–2) or from other cancers (test set 3–7).
Abbreviations: CTL, healthy controls; LC, lung cancer; BC, bladder cancer; CCA, cervical cancer; CRC, colorectal cancer; EC, esophageal cancer; GC, gastric cancer; NSCLC, non-small-cell
lung cancer; QC, quality control.
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al., 2007, Yildiz et al., 2007). In this study, we employed proteomics
technology implemented with machine learning statistics to search for
sensitive, lung cancer-specific diagnostic biomarkers from patient urines
as a commonly used, noninvasive matrix as an alternative to blood.

2. Materials and Methods

2.1. Patient Specimens

At the biomarker discovery stage, a total of 46 urine specimens in the
training set from healthy controls (CTL, n = 23) and lung cancer
Table 1
Clinical profiles and demographics of healthy controls and lung cancer patients.

Demographics Training set Test set

CTL (n = 23) LC (n = 23) CTL (n = 10)

Age, years 55.61 ± 8.02 65.65 ± 11.2 55.8 ± 3.49
Sex
Male 16 16 7
Female 7 7 3

Clinical stage
1 1
2 4
3 10
4 8

Subtype
ADC 10
SCC 13

ADC, adenocarcinoma; SCC, squamous cell carcinoma; CTL, healthy controls; LC, lung cancer; C
patients (LC, n = 23) were collected at Tianjin Baodi Hospital, Tianjin,
China. Healthy controls were age- (N50 year) and gender-matched
(frequency matching with random sampling) to lung cancer cases
(Fig. 1a). Urine samples were collected from Non-small cell lung cancer
(NSCLC) patients at the time they were diagnosed with lung cancer and
had no anticancer treatment. Urine samples were collected from
healthy donors who had no known lung diseases and had negative
clinical tumor markers (AFP: alpha fetoprotein, CA 19-9: carbohydrate
antigen 19-9, CA 125: carcinoma antigen 125, CA 15-3: carcinoma
antigen 15-3, and CEA: carcino-embryonic antigen). A blood test
monitored the levels of urea nitrogen, creatinine, and uric acid to
Benign lung diseases

LC (n = 10) COPD (n = 17) Pneumonia (n = 23)

65.7 ± 8.96 73.88 ± 10.07 60.39 ± 22

7 13 16
3 4 7

2
1
3
4

2
8

OPD, Chronic Obstructive Pulmonary Disease.



Fig. 2. Prediction performance, variable importance, and variable selection during model
building. (a) Evaluation of prediction errors by cross-validation. (b) The top 15 most
important variables ranked by mean decrease in accuracy estimated from 1′000 forests
on oob (out of bag) samples. (c) Selection of 5 variables in the predictive model based
on the classification error rate on oob samples.
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exclude any cases that may have renal dysfunction. For validation
purposes, an independent case-control test set (10 CTL, 10 LC; Fig. 1a,
test set 1) with same criteria was obtained from the same Hospital. In
addition to healthy donors, urines from benign pulmonary conditions
(pneumonia, n = 23; COPD: Chronic Obstructive Pulmonary Disease,
n = 17) were also sampled in the same Hospital. Clinical details of
healthy controls, benign lung diseases, and lung cancer patients
were summarized in Table 1. To validate if the biomarkers found in
this study is lung cancer-specific, additional urine samples were
collected from patients of bladder cancer (BC, n = 17), cervical cancer
(CCA, n = 25), colorectal cancer (CRC, n = 22), esophageal cancer
(EC, n = 14), or gastric cancer (GC, n = 47) in three hospitals (GC
and CRC: Affiliated Hospital of Academy of Military Medical Sciences,
Beijing, China; CCA: No.1 Affiliated Hospital of Medical School, Xi'an
Jiaotong University, Xi'an, China; BC and EC: Tianjin Baodi Hospital,
Tianjin, China). All participants have provided signed informed consent
and samples were collected with ethics approval from institutional re-
view board of hospitals participating in this study. Our research strictly
followed the standards indicated by the Declaration of Helsinki.

2.2. Urinary Proteome Measurements by LC-MS/MS

Nano LC-MS/MS (liquid chromatography tandem mass spectrome-
try) analysis of human urine samples was conducted as previously
(Supplementary Fig. S1a) (Leng et al., 2017). Briefly, about 10ml ofmid-
stream urine was centrifuged at 200,000g for 70 min. After ultracentri-
fugation, pellet was reduced with DTT to remove the uromodulin (the
most abundant urinary protein) (Pisitkun et al., 2006, Raimondo et al.,
2013). After heating at 65 °C for 30 min, pellet was washed with wash
buffer (10 mM TEA, 100 mM NaCl, pH 7.4) twice and ultra-centrifuged
for 30 min. The pellet was dissolved in SDS buffer (1% SDS, 50 mM
Tris, pH 8.5) and resolved on an SDS-PAGE gel. Gel was cut into six
pieces and then subjected to in-gel trypsin digestion.

Six gel fractionswere combined into 2–3 injections. Tryptic peptides
were resolved on a home-made, capillary column packedwith C18 par-
ticles and analyzed by Thermo Fisher Orbitrap mass spectrometers
coupled with online Easy-nLC 1000 nano-HPLC system (Thermo Fisher
Scientific). LC-MS/MS data were processed in Proteome Discoverer 1.4
software (Thermo Fisher Scientific) and searched against Human Refseq
protein database (Released on 2013/07/04) on Mascot search engine
(Version 2.3, Matrix Science Inc) with appropriate mass tolerances
(precursor ions: 20 ppm; fragment ions: 0.02 or 0.5 Da). Variable
modifications including cysteine carbamidomethylation, methionine
oxidation, and protein N-terminal acetylation were incorporated in
the search. A maximum of one miscleavage of trypsin was allowed. All
peptides below 1% false discovery rate were retained and grouped
into gene products. Each protein to be reported requires a minimum
of one unique and strict peptide (i.e. sequence-specific peptide with a
mascot ion score higher than 20 at the gene level). All keratins were
removed from the list. Protein abundance was measured as iBAQ
(intensity-based absolute quantification) - a label-free quantification
algorithm (Schwanhausser et al., 2011). For batch-to-batch comparison,
iBAQ was converted into iFOT (intensity-based Fraction of Total)
representing a normalized intensity of a protein identified in an LC-
MS/MS run (Liu et al., 2013). For visualization purpose, the number of
iFOT is multiplied by 105. Tryptic digests of 293T cell as QC (quality
control) samples were routinely assessed by LC-MS/MS to guarantee
the instrument reproducibility. Sample metadata were summarized in
Supplementary Table S1. All raw files and search results have been de-
posited in ProteomeXchange via iProX (ww.iprox.org)with the identifi-
cation no.: PXD008846 or IPX0001153000.

2.3. Statistical Analysis and Biomarker Selection

Missing value imputation was performed on all data sets after nor-
malization by using k-nearest neighbors (KNN) algorithm (R package:
impute, Version 1.47.0) (Troyanskaya et al., 2001). Proteins that have
b10% of missing numbers in each class were imputed and substituted
with the mean of its five closest neighbors. All other missing values
were set to be 0.0099. This has resulted in a list of 7408 protein IDs

http://iprox.org


Table 2
Random forest model in predicting lung cancer against controls and other cancers.

CTL vs LC Benign vs LC BC vs LC

Predicted Predicted Predicted
Group CTL LC Group Benign LC Group BC LC

Actual CTL 9 1 Benign 28 12 BC 10 7
LC 1 9 LC 1 32 LC 2 31
Error 0.1 Error 0.178 Error 0.18
Sensitivity 90% Sensitivity 96.97% Sensitivity 93.94%
Specificity 90% Specificity 70% Specificity 58.82%

CCA vs LC CRC vs LC EC vs LC
Predicted Predicted Predicted

Group CCA LC Group CRC LC Group EC LC
Actual CCA 18 7 CRC 12 10 EC 12 2

LC 1 32 LC 1 32 LC 1 32
Error 0.138 Error 0.2 Error 0.064
Sensitivity 96.97% Sensitivity 96.97% Sensitivity 96.97%
Specificity 72% Specificity 54.55% Specificity 85.71%

GC vs LC
Predicted

Group GC LC
Actual GC 38 9

LC 1 32
Error 0.125
Sensitivity 96.97%
Specificity 80.85%

Sensitivity= number of true positives / (number of true positives+ number of false neg-
atives); Specificity = number of true negatives / (number of true negatives + number of
false positives); CTL, healthy controls; LC, lung cancer; BC, bladder cancer; CCA, cervical
cancer; CRC, colorectal cancer; EC, esophageal cancer; GC, gastric cancer. All test sets ex-
cept for the test set 1 (CTL vs LC) compares all lung cancer patients to benign diseases or
other cancers.
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(Supplementary Table S2). Gene ontology analysis was performed by
WebGestalt – a functional enrichment analysis web tool (Wang et al.,
2017). Ward's hierarchical clustering analysis was implemented in the
R statistical software with the “hclust” function using average linkage
as distance metric.

Statistical analysis was performed on the training set to identify po-
tential urine biomarkers for lung cancer. Student's t-test resulted in 588
differentially expressed proteins between healthy controls and lung
cancer patients at p b 0.05 (Fig. 1b). For practical purposes, the candi-
dates were further narrowed down to 68 proteins that were up-regu-
lated by N2-fold in the lung cancer group and were detected in N70%
of times in the lung cancer patients. Random forest, an ensemble, super-
vised machine learning algorithm, implemented with feature selection
method was used to select variables (proteins) and build a classifier (a
predictive model based on a panel of proteins) upon the training set
(Genuer et al., 2010).

To evaluate the prediction accuracy, the predictive model with a
panel of proteins was tested on an independent validation set com-
prised of 10 healthy controls and 10 lung cancer patients withmatching
age and sex. To investigate whether the selected proteins can separate
lung cancer cases from benign lung diseases or other types of tumors,
the model was further tested on other validation sets which contained
lung cancer cases, benign pulmonary conditions (pneumonia and
COPD), and one of other five cancers (Fig. 1c).

3. Results

3.1. Urine Proteomes in Controls and Six Cancers

In total, we assayed 383urine specimens and selected 231urine sub-
jects (in the training set and 7 test sets, Fig. 1) that passed QC and after
age/sex-matching (Supplementary Table S2). We have achieved high
batch-to-batch instrument reproducibility of iFOT measured with high
Pearson correlation coefficients (0.88 on average) between QC samples.
A total of 7408 proteins (Supplementary Table S2) were identified and
quantified (mean iFOT: 12.42; standard deviation: 17.09). On average,
we were able to identify and quantify 1248.69 ± 314.79 of proteins in
one urine sample. Gene ontology analysis revealed that membrane
and vesicle are the two main components of urine proteins (Supple-
mentary Fig. S1b). We observed some well-known exosomal markers
such as PDCD6IP (also known as Alix), HSPA8 (also known as HSC70),
and TSG101 as well as tetraspanin proteins and RAB proteins (Supple-
mentary Table S2 and Fig. S1c) (Yoshioka et al., 2013, Bobrie et al.,
2012, Greening et al., 2015). The relatively high abundance of these pro-
teins indicates exosomal proteins are one of the main categories in
human urine sediments. Unsupervised hierarchical clustering analysis
of urine profiles has separated some groups well, suggesting that
urine profiling may have disease-specific features (e.g. LC and benign
cases, Supplemental Fig. S2). Student's t-test on the training set identi-
fied 588 significantly altered proteins with p values b0.05 at 93.8% of
statistical power (Fig. 1b). Of these proteins, 144 were up-regulated
by N2 folds in lung cancer patients. Considering the practical purpose
of clinical biomarkers, we further removed low abundant proteins
from the list and chose 68 candidates that were relatively abundant
and were detectable in N70% of lung cancer urine specimens.

3.2. Candidate Biomarker Selection, Model Development, and Biomarker
Panel Selection

With the 68 proteins selected above, we next ran a random forest
model (Genuer et al., 2010, Breiman, 2001) to determine if theurine pro-
filing had cancer-specific features for lung cancer diagnosis (Fig. 1b). Due
to the relatively small sample sizes in two data sets, 2/3 of individuals in
the training set were selected to grow decision trees by bootstrapping
(random sampling with replacement) while the remaining samples
were left out as out of bag (oob) samples for cross-validation purpose
to estimate the classification error and measure the variable importance
(Supplementary Fig. S3). As evaluated from 1000 forests, random forest
modelwith these proteinswas able to predict lung cancer cases correctly
at ~95% of the time both on the oob samples (1/3 of training samples)
and the test set (CTL= 10, LC= 10) (Fig. 2a). The top 5most important
variables are: FTL (Ferritin light chain), MAPK1IP1L (Mitogen-Activated
Protein Kinase 1 Interacting Protein 1 Like), FGB (Fibrinogen Beta
Chain), GNS [glucosamine (N-acetyl)-6-sulfatase] andRAB33B, (Member
RAS Oncogene Family) (Fig. 2b). The top 15 proteins ranked by variable
importance were able to correctly separate lung cancer patients from
healthy individuals well in either the training set (n = 46) or the test
set (n = 20) with the area under the ROC curve (AUC) of N0.75 when
they were combined (Supplementary Fig. S4). Among them, FTL, FGB
andC9 (ComplementC9) have been reported in serumor urine lung can-
cer biomarker studies previously (Li et al., 2012, Kim et al., 2016, Ahn and
Cho, 2013, Nolen et al., 2015, Patz et al., 2007).

To build a simple random forest model with a manageable size of
variables, feature selection algorithm was implemented to remove the
redundancy as variables may be highly correlated (Genuer et al.,
2010). The algorithm selected 5 proteins (FTL, MAPK1IP1L, FGB,
RAB33B, and RAB15) in the predictive model with ~6.5% of mean
classification error rate on the oob samples (i.e. cross-validation error)
(Fig. 2c). With these 5 proteins, the predictive model could correctly
separate most of lung cancer cases from the controls in the training
set as sufficient as the random forest model using all 68 proteins
(Supplementary Fig. S5).

3.3. Evaluation of Biomarker Panel in Healthy Individuals and Benign Pul-
monary Conditions

The five proteins selected in the predictive model were then
assessed on an independent, blinded data set (test set 1, Fig. 1) com-
prised of 10 healthy controls and 10 lung cancer cases. The predictive
modelwas able to correctly classify 9 LC urine samples and 9 healthy con-
trols with 10% of prediction error on either CTL or LC samples (Table 2).
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Fig. 4. Relative abundance of five proteins in healthy controls, benign pulmonary conditions, and lung cancer patients. iFOT of five urinary proteins in the CTL (n= 33), pneumonia (n= 23),
COPD (n = 17), and LC (n = 33) groups. Abbreviations: CTL, healthy controls; COPD, Chronic Obstructive Pulmonary Disease; LC, lung cancer.
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Compared with the five clinically used tumor markers (AFP, CA 19-9, CA
125, CA 15-3, and CEA), we found that 8 out of 33 lung cancer patients
had normal blood levels of all these proteins, indicating a high false neg-
ative rate by using these markers. The protein FTL in the model had the
best discriminating power with an AUC of 0.9073 while the combined
model (logistic regression model with 5 proteins) had reached an AUC
of 0.9853 (Fig. 3a). Other four proteins were also able to separate two
groups well with AUCs: 0.8356 (MAPK1IP1L), 0.8503 (FGB), 0.8044
(RAB33B), and 0.7741 (RAB15), respectively. Since these five proteins
are over-expressed and are relatively abundant in the lung cancer group
(Fig. 4), they are most likely to be detectable if biochemical assays such
as ELISA (enzyme-linked immunosorbent assay) are adopted.

To investigate if these proteins can separate lung cancers from be-
nign lung diseases, we assayed 40 urine samples from patients who
were diagnosed with either pneumonia (n = 23) or COPD (n = 17).
The biomarker panel recognized 32 lung cancer cases with high sensi-
tivity but with medium specificity (Table 2, Fig. 3b). Further inspection
Fig. 3. AUCs of five individual markers and the combinatorial logistic model in classifying lung c
The logistic model (dashed line) combines all five markers. Abbreviations: CTL, healthy contr
esophageal cancer; GC, gastric cancer. Note: lung cancer cases in the training set and test set w
of their abundances indicated that some proteins were mildly elevated
in pneumonia or COPD, suggesting that their correlation to inflamma-
tion may account for reduced specificity (Fig. 4).
3.4. The Biomarker Panel in Differentiating Lung Cancer fromOther Cancers

Only very few studies have evaluated the specificity of the bio-
markers in classifying lung cancer against other diseases. One study
conducted by Nolen et al. found that the disease selectivity of their bio-
markers was moderate or poor in discriminating lung cancer against
breast cancer and prostate cancer (Nolen et al., 2015). To assess the can-
cer specificity, we tested our model and five proteins in predicting lung
cancer against other five common cancers in the remaining data sets
(test set 3–7, Fig. 1C). The predictive model classified lung cancer
cases with 18%, 13.8%, 20%, 6.4% and 12.5% classification errors in
predicting LCs against BCs, CCAs, CRCs, ECs, and GCs, respectively
(Table 2). The model was able to discriminate the LCs from other
ancer against (a) CTL, (b) Benign lung diseases, (c) BC, (d) CCA, (e) CRC, (f) EC, and (g) GC.
ols; LC, lung cancer; BC, bladder cancer; CCA, cervical cancer; CRC, colorectal cancer; EC,
ere combined.
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cancers with great sensitivity in all test sets (N93%) and high specificity
in three test sets (CCA vs LC: 72%; EC vs LC: 85.71%; GC vs LC: 80.85%). A
single marker, FTL, could distinguish LCs from other cancers with AUCs
N0.81 in 5 test sets (Fig. 3c-g). The logistic model in which five protein
markers were combined achieved a highest value of AUC in these data
sets (Fig. 3c-g).

We further performed case-by-case comparison to examine
whether the levels of these proteins were differentially expressed in
six cancer groups. As shown in Fig. 5, FTL is themost significantmarker,
which differentiated LCs from all other cancers with the smallest p
values (Student's t-test) comparing with other four markers; RAB33B
andRAB15were also significantly over-expressed in the LC group across
all test sets (p b 0.05), while MAPK1IP1L and FGB exhibited significant
difference in some test sets. These results indicate that the biomarker
panel is tumor-specific when it predicts lung cancer patients against
healthy controls with good sensitivity and specificity. It is worth men-
tioning that the disease specificity may not be evaluated precisely
since comparisons were made between all LCs (n = 33) and one of
other cancers thus were not completely in an independent manner al-
though the RF model during training had no prior knowledge of disease
specificity towards other cancers since no other cancer cases were in-
cluded in the training set.

3.5. Other Urinary Proteins Highly Correlated with Panel Biomarkers

The predictive model has eliminated the redundancy in the step of
feature selection in order to keep the model simple and efficient for
the prediction purpose. For this reason, we did correlation analysis to
recover other variables that were highly associated with the proteins
in the panel (Supplementary Fig. S6). Five proteins were found to be
closely related to some of these markers with a minimum of a Pearson
correlation coefficient, r ≥ 0.7. RAB14 (Member RAS Oncogene Family),
together with RAB15 and RAB33B are Rab GTPases, a family of small
GTPases which mainly functions in controlling intracellular membrane
trafficking (Hutagalung and Novick, 2011, Zhen and Stenmark, 2015,
Stenmark, 2009). The high correlation of FGG (Fibrinogen Gamma
Chain), and FGA (Fibrinogen Alpha Chain) with FGB was expected as
they are components of fibrinogen, a glycoprotein that is essential for
blood clot formation (Mosesson, 2005). FTH1 (Ferritin Heavy Chain 1)
and FTL are the subunits of the ferritin protein (Wang et al., 2010). Fer-
ritin as a biomarker for lung cancer diagnosis has been investigated in
an earlier study (Li et al., 2012). ATP6V1E1 (ATPase H+ Transporting
V1 Subunit E1) is highly correlated with MAPK1IP1L. Proteins as func-
tional molecules in the cell are usually interconnected; in this respect,
Rab GTPases, fibrinogen, and ferritin are the three major upregulated
protein families found in this study. However, the functional connection
of these protein families to lung cancer remains unknown.

4. Discussion

Lung cancer as a devastating disease continues to be a main health
challenge worldwide. Although much effort towards cancer diagnostics
and treatment has been made, lung cancer mortality has not been sig-
nificantly improved over the past several decades (Torre et al., 2016b).
Patients who are diagnosed at the late stage of the disease often face
very limited treatment options and poor prognosis (Scheff and
Schneider, 2013). Imaging technology, CT for instance, has demon-
strated high sensitivity for lung cancer screening but also suffers from
low specificity (Aberle et al., 2013). Furthermore, due to the high cost
and demand for technical expertise, CT for lung cancer screening is
only limited to those who live in developed countries, and covers only
a small population who are high risk individuals such as smokers
Fig. 5. Relative abundances offive proteins in lung cancer and other cancers. Comparison of the l
EC and LC, and (E) GC and LC. Statistical analysis was performed by Student's t-test. Abbreviat
esophageal cancer; GC, gastric cancer.
(Bach et al., 2007, Aberle et al., 2013). Therefore, searching and develop-
ing low-cost, reliable biomarkers for lung cancer screening in a large
population is highly desirable.

Blood and urine are two frequently researched biomatrices for dis-
covery of biomarkers of human diseases as both can be sampled fre-
quently and non-invasively. Urine as body fluid, however, has several
advantages over blood: 1) it can be easily obtained in large volumes;
and 2) urinary proteome is less complex and has a relatively lower dy-
namic range, thus those low abundant but functionally important pro-
teins such as exosomal proteins can be reliably measured by LC-MS/
MS (Jakobsen et al., 2015, Hoorn et al., 2005, Barratt and Topham,
2007). For those reasons, we have assayed N300 human urine samples
and identified over 7000 proteins in healthy donors, benign pulmonary
conditions, and six common cancers. We have validated that urine pro-
filing has diagnostic features for lung cancer screening and nominated a
list of candidate markers for future validation, providing a rich resource
for urinary biomarker studies.

As single biomarker may hardly achieve satisfactory discriminating
power due to the tumor heterogeneity, seeking multiple biomarkers
and developing a combinatorial model for cancer detection is hence a
desirable strategy as demonstrated by some earlier studies (Patz et al.,
2007, Radon et al., 2015). By virtue of the advanced analytical instru-
ments and statistical algorithms, we have revealed a list of candidate
urinary markers and selected five of them to build a predictive model
for lung cancer diagnosis. With this model, we are able to identify ma-
jority of lung cancer patients from control cases with great sensitivity
and specificity. The random forestmodel has achieved low classification
errors both on oob samples and independent samples. The individual
markers can separate different cases with good AUCs and the combina-
torial panel has resulted in a higher AUC value than any single markers
in different data sets. More importantly, thesemarkers when combined
present a tumor-specific profile in discriminating lung cancer against
other cancers although the individual proteins may have a limited dis-
criminating power. It is worth noting that two proteins (RAB 15 and
RAB33B) on the panel have an exosomal origin (Yoshioka et al., 2013,
Bobrie et al., 2012, Greening et al., 2015). The elevation of the RAB pro-
teins in lung cancermay be associatedwith tumorigenesis and thusmay
account for the tumor specificity (Tzeng and Wang, 2016, Zhen and
Stenmark, 2015). In summary, the panel marker we found in this
study could benefit a large population and be applied to clinical diag-
nostics of NSCLC for general purpose in the future after a validation
trial with expanded sample numbers in a multi-center setting.

It is worth noting that several other proteins that are not included in
our panel should also be placed on the candidate list, some of which has
already been investigated including C9 and Ferritin (Li et al., 2012, Kim
et al., 2016, Ahn and Cho, 2013, Nolen et al., 2015). Among all these can-
didates, RAB14, RAB15 and RAB33B belong to the family of small
GTPases; FGG, FGA, and FGB are subunits of fibrinogen; while FTH1
and FTL come from ferritin protein.

While the biomarker panel and the predictive model is powerful in
discriminating lung cancer against control cases and other cancers, the
current research should be further expanded onto a larger population
with more clinical profiles including age, smoking status, subtypes, dis-
ease stage, and race that were not or not fully explored in this study. On
the other hand, decision made based upon these proteins should be
treated with caution when applied to clinical screening, since some of
the proteins may be originated from inflammation as demonstrated
by their limited specificity in discriminatingNSCLC patients frombenign
controls and several other cancers. The potential clinical usefulness of
the biomarker panel should be combined with routine image screening
tests to rule out the false positives. Meanwhile, developing a simple
model with clear cut-off values on these proteins is also highly desirable
evels of the individualmarkers between (A) BC and LC, (B) CCA and LC, (C) CRC and LC, (D)
ions: LC, lung cancer; BC, bladder cancer; CCA, cervical cancer; CRC, colorectal cancer; EC,
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since the random forest model is a tree-based ensemble method. The
cut-off values of these proteins often vary in trees and forests. We are
well aware of the limited number of lung cancer cases in the test set
at this moment and the lack of an independent validation set, which is
necessary for future study and requires a significantly increased number
of sample sizes and thusmuchmore efforts beyond this study that is at a
relatively early stage. Further development and validation by indepen-
dent, routine techniques that are more operationally feasible also
seems indispensable for clinic uses in future.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.ebiom.2018.03.009.
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