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Abstract: The healing of wounds is a dynamic function that necessitates coordination among multiple
cell types and an optimal extracellular milieu. Much of the research focused on finding new techniques
to improve and manage dermal injuries, chronic injuries, burn injuries, and sepsis, which are frequent
medical concerns. A new research strategy involves developing multifunctional dressings to aid
innate healing and combat numerous issues that trouble incompletely healed injuries, such as extreme
inflammation, ischemic damage, scarring, and wound infection. Natural origin-based compounds
offer distinct characteristics, such as excellent biocompatibility, cost-effectiveness, and low toxicity.
Researchers have developed biopolymer-based wound dressings with drugs, biomacromolecules,
and cells that are cytocompatible, hemostatic, initiate skin rejuvenation and rapid healing, and possess
anti-inflammatory and antimicrobial activity. The main goal would be to mimic characteristics of fetal
tissue regeneration in the adult healing phase, including complete hair and glandular restoration
without delay or scarring. Emerging treatments based on biomaterials, nanoparticles, and biomimetic
proteases have the keys to improving wound care and will be a vital addition to the therapeutic
toolkit for slow-healing wounds. This study focuses on recent discoveries of several dressings that
have undergone extensive pre-clinical development or are now undergoing fundamental research.

Keywords: smart wound dressings; multifunctional dressings; biomaterials; nanoparticles; tissue
regeneration

1. Introduction

Skin is the most important organ in the body, an active immune organ, and the
principal barrier between the environment and interior organs [1]. Damages caused for
various reasons, such as domestic, sports, and military injuries to the integrity of the skin
or organs, are called wounds, which can be mechanical, thermal, chemical, or radiogenic
skin trauma. Even though self-healing is one of the characteristics of human skin, the
long-term repair process and associated pathogenic consequences such as inflammation
and secondary damage, especially for extensive full-thickness wounds, mean that wounds
put a high demand on wound dressing design and implementation. Hence, healing is
not only a medical issue but also a social and economic concern [2–5]. In general, the
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healing process is divided into four phases: hemostasis, inflammation, proliferation, and
remodeling [6,7].

The healing of wounds involves interactions between cellular growth factors, com-
ponents of blood, and extracellular matrix. Cytokines promote healing via a variety of
mechanisms, including promoting the formation of basement membrane components, pre-
venting dehydration, increasing inflammation, and promoting the formation of granulation
tissue. In adolescents, wound healing take a few days, but in adults, it can take several
weeks [8]. Depending on the time required for the stages of healing, wounds may be acute
or chronic. In less than four weeks, acute wound repair is devoid of complications and
re-establishes all stages of the healing process. Shorter wound closure time is also related
to less scar formation. Chronic wounds are deep, full-thickness or partial-thickness injuries
that do not heal in less than six weeks. They take a long time to heal and are linked to in-
creased fibrosis, resulting in hypertrophic scars and keloids in some people [9,10]. Chronic
wounds have a complicated, inflammatory nature and produce large amounts of exudate,
which impedes tissue repair. Hence, these chronic wounds impact a significant percentage
of the healthcare system and are likely to shift acute disorders into irreversible systemic
damage, culminating in catastrophic effects and even death [11,12]. Ache, limited mobility,
discharge, unpleasant smell, a distorted physical image, limited social engagement, eco-
nomic and community responsibilities, and constraints stemming from the therapy itself
are all connected with chronic wounds and limit the everyday routines and living quality
of those afflicted [13].

2. Current Challenges and Perspective

The wound healing process is dependent on several interlinked factors, which are
mainly of two types: local and systemic factors (Figure 1) [14,15]. Local factors directly
impact the wound characteristics, while systemic factors depend on the individual’s overall
status of health or illness. Soreness, sepsis, irradiation, hypothermia and oxygenation
are local factors that affect the features of the wound, whereas systemic factors such as
malnutrition, age group, gender and diseases affect an individual’s ability to heal [16–18].
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S. Guo and L.A. DiPietro have described in detail how these factors influence each
stage by delaying healing process and thus there is a necessity for consideration of these
factors during formulating wound care products depending on wound types. Annually,



Pharmaceutics 2022, 14, 1574 3 of 22

over 305 million people with acute injuries are reported globally. The total count of acute
injury observed is over nine times the overall population of cancer patients in the global [18].
Acute wounds include surgical and traumatic wounds, as well as abrasions and superficial
burns [19]. Ischemic ulcers, diabetic ulcers, venous ulcers and pressure ulcers are the
prevalent chronic damages. Annually, there are reports of 463 million diabetics, chronic foot
ulcers affect 9.1 to 26.1 million persons worldwide, and 1% of the world population with
venous ulcers. India being one of the topmost countries recording highest trauma injuries,
accounts for 10.5 out of 1000 [19]. In the US, it is estimated that annually the expenditure
for acute and chronic wound ranges from 28.1 billion to 96.8 billion US dollars [20].

In various Ayurvedic scriptures, around 1200 ailments are listed, out of which ninety
percent comprise medicinal herbs; five percent contain ores, metallic minerals, and ores;
and the remaining five percent include animal and marine products [21]. Alternative and
complementary medicines based on natural plant-based bioactive chemicals are in high
demand. The process of wound healing hastens in multiple ways by accessing different
dressings for an entire variety of wounds through various technological advancements.
Choosing the correct component dressing for a specific injury is critical for rapid repair
of the injured area [22]. According to a study, the market for wound care products will
reach 15 to 22 billion US dollars by 2024, as scientists, engineers, and clinicians are working
towards developing technologically advanced smart wound care products [19].

3. Characteristics of Multifunctional Wound Dressing

A smart and multifunctional dressing material must be applied based on the wound
type. The proficiency (a) to establish a damp environment; (b) to facilitate movements in the
epidermis; (c) to encourage blood vessel formation and tissue regeneration; (d) to provide
good permeability for oxygen and water vapor; (e) to ensure a decent heat in the wound site
to stimulate the circulation of blood; (f) to protect from infectious pathogens; (g) to be non-
adhesive to the injured area and to be easily removable; (h) to encourage debridement and to
promote leucocyte movement and enzyme build-up; (i) sterile, non-toxic, and allergy-free;
(j) biocompatible and effective drug administration; (k) high absorption potential for wound
exudates should all be considered when choosing an ideal dressing (Figure 2) [23–25].
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3.1. pH Responsive Wound Dressings

pH is one such factor that exerts a major influence on the process of healing in all
four stages. The pH of the healthy epidermis is around 4.5–6.5, whereas acute and chronic
wounds have their own pH range. Due to microbial infection and production of alkaline
by-products, the wound pH may rise to 7–9. Many methods are being used for monitoring
pH in the wound healing process, such as colorimetry, electrochemical & electromechanical
methods. These methods are laborious, costly, and consume more utility. Thus, the
development of sensor-based dressings would be easily monitorable and cost-effective.
Flex circuit transducers, optical sensor-based dyes, pH-sensitive color dyes, pH-sensitive
electrodes, and carbon dots are some strategies used to manufacture pH-sensitive wound
dressings [24,26].

3.2. Temperature Responsive Wound Dressings

During wound recovery, temperature is an important parameter that depends on
various enzymatic and biochemical reactions occurring in the injured site. Studies found
that the temperature of normal healing wounds would be around 37.8 ◦C, whereas an
increase or decrease in temperature of 2.2 ◦C might lead to deterioration of the injured
area. A reduction in temperature indicates an ischemic condition, while an increase in
temperature indicates infection and inflammatory responses. As a result, temperature
monitoring has a lot of potential as a good way to assess wound status. Temperature
sensors based on different detection mechanisms are infrared sensors, thermistors, and
resistance temperature sensors. Some of the components used for sensor preparations are
nanofibers/nano meshes of polyurethane, graphene, platinum, and gold [27,28].

3.3. Pressure Responsive Wound Dressings

Individuals with diabetic foot ulcers and pressure ulcers often undergo therapies to
relieve pressure. This pressure on the injured site is caused by friction, vigorous movements,
shear, and external pressure itself, which leads to blockage of blood circulation, resulting in
the death of surrounding cells, and tissues and impeding the healing process. Also, patients
with immobility, especially those who are bedridden, are more prone to these conditions.
The emergence of pressure sensor dressings made it easy to monitor wounded areas. There
are four types of sensors depending on their working principles: piezoresistive, capacitive,
triboelectric, and piezoelectric sensors. Development of multiple flexible pressure sensors
for wound monitoring is under way [29–32].

3.4. Moisture Responsive Wound Dressings

The moisture level in the wound area is crucial in all phases. An excessive amount of
moisture may lead to macerated tissues, and less moisture hinders healing by desiccating
the wound surfaces. High moisture content in the wound may be due to exudates from
the injury itself, excessive sweating, incontinence in urination, or trans epidermal water
loss. Excessive wound moisture leads to uncountable removal of dressings and may also
cause damage to surrounding areas of skin, resulting in maceration. Thus, dressings with
real-time sensors would be more advantageous than regular dressings [33,34]. In 2016, the
first commercially available moisture-sensitive wound dressing called “Wound Sense” was
introduced [35]. The manufacturing of breathable dressings with sensor incorporation is
made using various composite materials (polyvinyl alcohol, carbon nanotubes, graphene
oxide, graphene, nanosheets made of palladium and cerium oxide) [28].

3.5. Sustained Drug Releasing Wound Dressings

Stimuli-responsive dressings, which are externally regulated, allow monitoring and
control of the release of drugs to the injured sites [36]. Sustained drug release can be
attained by incorporating drugs into dressing layers, in which hydrogels are extensively
studied and employed. These drug delivery dressings are made of polymers such as
poly lactide-co-glycolide, polyvinyl pyrrolidone, polyvinyl alcohol, poly hydroxyalkyl-
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methacrylates, polyurethane-foam, hydrocolloid, alginate, hyaluronic acid, collagen, and
chitosan [37,38].

Wound dressings are also exhibit inbuilt self-healing properties. Some dressings are
come in injectable forms, and a few come in sprayable forms. Multiple dressing forms were
prepared by incorporating multi-functional aspects to treat various ranges and stages of
healing. In the current review, we have endeavored to collate the most recent research data
on multifunctional wound dressing materials as well as investigations on their advantages
in wound healing.

4. Articles Search for Narrative Review-Inclusion & Exclusion Criteria

This narrative review and electronic search were conducted by assessing all studies
available on the PubMed, Scopus, and Google Scholar databases from Jan 2020 to Jan
2022. The phrase for the search of various dressings included the following: “Hydrogel”
AND “wound” AND “dressing”, “Film” AND “wound” AND “dressing”, “Foam” AND
“wound” AND “dressing”, “Sponge” AND “wound” AND “dressing”, “Nanofiber” AND
“wound” AND “dressing”, “Gauze” AND “wound” AND “dressing”, “plant extract” AND
“wound” AND “dressing”. Combining results from all databases, the articles obtained
for the year 2021 were 62,781 and 50,835 articles for the year 2020. With further screening
being done by removing duplicates and excluding review articles, letters, meta-analyses,
systemic reviews, conference papers, short communications, case studies, and languages
other than English, the final number was brought down to 3315 for 2021 and 2794 for 2020
(Figure 3).

Figure 3. Flow chart of article selection and review process.

After the primary screening, the available full-length articles were screened to obtain
relevant studies about specified dressings which included animal experimentation. In this
review, a total of 45 different studies were included, in which 22% is hydrogel dressings
(n = 10), foam includes 7% (n = 3), sponge comprises of 18% (n = 8), films include 13%
(n = 6), nanofibers comprise of 13% (n = 6), gauzes and plant extracts hold 9% (n = 4) and
18% (n = 8) respectively.
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5. Wound Dressing

In 2500 BC, Mesopotamians were using clay tablets to treat various ailments and
people cleaned the injuries with milk or water prior to actually applying the resin and
honey dressing. In 460–370 BC, Hippocrates of ancient Greece were using wine or vinegar
to clean wound surfaces. Romans introduced four fundamental inflammation concepts
(rubor/redness, tumor/swelling, calor/heat and dolor/pain). Antiseptic techniques ad-
vanced significantly after the introduction of antibiotics to control infections. Modern
wound dressings were developed in the twentieth century. Currently, over 5000 wound
care products are available [39–41].

The most prevalent wound dressings come in various structures and shapes, including
foams, hydrogel, topical formulations (herbal extracts, enzymatic formulations, ointments),
gauze, films, nanofibers/composites, etc. (Figure 4).
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5.1. Hydrogels

Hydrogels are polymeric substances extensively employed in drug release, cell culture,
the epidermis, blood vessels, and muscular and smooth tissue engineering. These are 3D
networks made of hydrophilic polymer bonds formed by mechanical or covalent crosslink-
ing using physical or chemical processes [42]. Four prominent hydrogel crosslinking
strategies are ionic interactions, crystallization, complementary group chemical reactions,
and radical polymerization [43–45]. Hydrogels are moist, non-particulate, nontoxic, and
non-adherent, which are all foremost properties if the wound bed has to be kept pain-free,
well-hydrated, and well-oxygenated [46].

Many hydrogels that lack reliable flexibility could be deformed or disrupted by me-
chanical pressure because of being implemented in the injured area, which could lead
to cracks in the hydrogels, jeopardizing the dressing’s integrity as a physical shield and
letting bacteria enter the wound surface. Therefore, self-repairing dressing components
with antimicrobial activities are highly valued [47]. Sabzevari et al. designed hydrogel in
combination with anti-microbial peptide human cathelicidin P-18/LL-37 derived from con-
ditioned medium of genetically modified Wharton’s jelly derived-mesenchymal stem cells.
This hydrogel were shown to exhibit higher regenerative potential and wound repair [48].
Likewise, RRP9W4N peptides [49], (naphthalene-2-ly)-acetyl-diphenylalanine-dilysine-OH
(NapFFεKεKOH) [50], Bmkn2 [51] were also incorporated with hydrogels to hinder the
growth of infectious micro-organisms thus accelerating wound healing. Studies of com-
posite hydrogels fabricated with antibacterial agent nisin & EDTA and coagulating agent
fibrinogen, incorporation of nuclear factor erythroid 2–related factor 2 (NRF2) shown to
have excellent ability of epithelialization and wound recovery [52,53].

Contemporarily designed dressings in adhesive, sprayable or injectable forms possess
biological safety, antioxidant, antibacterial, self-healing properties, stimuli responsive, and
preserve moistness in the micro ambient while enhancing regeneration by impacting the
restorative phases of injury [54–57]. Likewise, they render an excellent forum to pack
cells, antimicrobial drugs, supplementary factors for growth and various biomolecules
of interest (Table 1) [58,59]. Hydrogels are extensively employed dressings but with few
drawbacks such as low mechanical strength, multifunctional/smart dressing may be
expensive, biocompatibility issues might arise in synthetic hydrogels, may cause skin
maceration, may be incompatible with excessively exudate wounds.

Table 1. Summary of recent advances in hydrogel dressings.

Dressing Composition Dressing Material Evaluated/
Group of Subjects Key Findings Reference

Gelatin methacrylate (GM),
methacrylate of silk fibroin (MSF), stem
cells (SC) and platelet concentrate
plasma (PCP)

Gauze, GM/MSF,
GM/MSF/PCP,
GM/MSF/PCP/SC

Wound healing, reepithelialisation, and
collagen deposition are all accelerated. [60]

N-carboxyethyl chitosan, hyaluronic
acid–aldehyde, insulin and adipic acid
dihydrazide

Control, hydrogel, hydrogel +
insulin

Expedited re-epithelialization and
neovascularization; shortened
inflammatory phase; increased
granulation tissue formation; facilitated
collagen deposition

[61]

Polymerized ionic liquid (PL), konjac
glucomannan (K) and electrical
stimulation (ES)

Control, PL-K-0, PL-K-5,
PL-K-10, PL-K-20, ES,
PL-K-ES-20

It has great mechanical qualities and
biocompatibility, and it disinfect
quickly and effectively

[62]

Poly [2-(methacryloyloxy) ethyl]
dimethyl-(3-sulfopropyl) ammonium
hydroxide (SBMA), quaternized
chitosan methacrylate (QCS) and
Gelatin methacrylate (GelMA)

Control, SQG hydrogel

Improves granulation tissue
development and collagen deposition
by demonstrating good cell activity,
hemocompatibility, and
histocompatibility

[63]
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Table 1. Cont.

Dressing Composition Dressing Material Evaluated/
Group of Subjects Key Findings Reference

Cannabidiol (CD), Zinc (Zn2+) ions and
the alginate polymer (Alg)

Control group, Tegaderm™
group (3M), Alg@Zn group,
CD/Alg@Zn group

Controlling of inflammatory
infiltration, collagen deposition and
granulation tissue production, and
blood vessel formation

[64]

Gelatin meth acryloyl (GMa), Cerium
oxide nanoparticles (CeNs) and an
antimicrobial peptide (AMP)

GMa-Dopa, GMa-Dopa-AMP,
GMa-Dopa-CeNs,
GMa-Dopa-AMP-CeNs

Spray ability, adhesiveness,
antibacterial activity, as well as the
ability to scavenge ROS and
regenerating skin are all promising

[57]

Gelatin (G), methacrylic anhydride (M),
sodium tetraborate and oxidized
dextran (BD)

GelMA/OD/Borax hydrogel

Efficiently stopped the bleeding,
decreasing bioburden and hastened the
healing of the wound

[65]

blank group, positive group
(PBS) and G-M-BD

G-M-BD-L prepolymer
solution, G-M-BD prepolymer
solution

Rose Bengal (RB), graphene oxide (GO),
polyvinyl Alcohol (PVA) hybrid
hydrogel and chitosan microspheres

PVA, GO/PVA, β-GO/PVA,
and β-GO/RB/PVA HDs

Biocompatibility and water-absorbing
capability are desirable, as is an
antimicrobial impact

[66]

N-(9-fluorenylmethoxy
carbonyl)-L-phenylalanine (Fmoc-F)
and berberine chloride (BBR)

Control, Fmoc-F/BBR,
Fmoc-F/BBR + Light

Antibacterial and anti-biofilm action
has been improved [67]

Chitosan hydrogel membrane (CS),
Cerium oxide nanoparticles (CeO2)
from Abelmoschus esculentus extract

CS, CS-1% CeO2, CS-5% CeO2

Showed excellent microbicidal,
antioxidant activity and proven to
accelerate healing time and closure

[68]

5.2. Films

Bloom et al. first documented the adoption of modern plastic film as a dressing in
1945, describing how he used cellophane to treat burns on 55 prisoners during World War
II, which influenced the work of Bull et al., who soon developed a transparent film dressing
made of nylon [69,70]. Presently, transparent film dressings are polymer membranes
of varying thicknesses that are adhesive-coated on one side. The polyurethane layer is
moist and gas permeable, reducing the risk of tissue maceration by preventing moisture
accumulation in the wound, and its transparency allows monitoring of the injured area [71].
Films are used as a primary or secondary dressing to treat partial-thickness wounds with
little or no exudate, necrosis, and infection. They are available in many sizes, both sterile
and bulk films, which are light, elastic, and quickly adhere to injuries with intricate shapes
and curves. Film dressings have scope for use on several wound types, for example, post-
operative wound healing by primary intention, superficial burns, and skin grafts, as they
allow for easy wound monitoring [72–74].

Many studies have shown that films also serve as platforms for loading various
biomolecules, drugs, and growth factors (Table 2). Arruda et al. loaded xyloglucan films
with Concanavalin A, a protein that activates the immune system, Rezvanian et al. proved
the effectiveness of simvastatin-loaded films using diabetic wound models, Kausar et al.
and Mahmood et al. incorporated antibacterial agents such as vancomycin and ofloxacin
respectively, epidermal growth factor was loaded into Gelatin films by Tanaka et al. which
shown to encourage the proliferation of keratinocytes and fibroblasts [75,76].

The most significant advantage of films is that they are transparent, allowing physi-
cians to supervise injuries without removing wound dressing, lowering the infection risk,
trauma, and suffering during dressing changes. This, however, may be less attractive to
that same patient, who might prefer not to see the wound. Film dressings are inappropriate
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for highly wet injuries or hemostatic application, and later removal of films might cause
pain and epidermal damage in some cases [71,77].

Table 2. Summary of recent advances in film dressings.

Dressing Composition Dressing Material Evaluated/
Group of Subjects Key Findings Reference

Sodium alginate and pectin loaded
with simvastatin (SIM)

Control, Saline, Hydrogel film,
Kaltostat® commercial
dressing, SIM-hydrogel film

Better angiogenic effect contributed
accelerated healing, quicker
re-epithelialization and improved
collagen deposition

[78]

Hammada scoparia leaf extract (PSP)
and poly (vinyl alcohol) (PVA)

Saline, Cytol centella cream,
PVA film (100%), (70:30)
PSP/PVA film

Hastened wound closure and
reepithelialisation [79]

Xyloglucan dressing (XG) and
Concanavalin A © Saline, XG, XGC

Non-toxic, homogenous,
angiogenesis, remodelling, early
epithelialization

[80]

Chitosan film (CF) loaded with
Vancomycin (V)

Saline, Burn, Burn
vancomycin, Burn + CF, Burn
+ VCF2

Controlled drug release, remarkable
antimicrobial effect and enhanced
wound recovery

[81]

Polycaprolactone (PCL), Gelatin, poly
(perfluoro decyl methacrylate) + poly
(dimethyl siloxane) + poly (perfluoro
decyl methacrylate (PMFA)

PCL-Gelatin, PCL-PMFA, PCL
G + F

Non-adherent ability and constant
drainage performance [82]

Ofloxacin (O), tea tree (T) and
lavender oil (L) in gellan gum
hydrogel film

Blank, O, L, T, OL, OT Antibacterial and wound-healing
properties are notable [83]

5.3. Sponges

High adhesive properties are a must-have criterion for stopping bleeding. Because
the sponge structure possesses adhesive characteristics, the implant surface adheres to
the wounded organ’s surface without utilizing additional suture material or other tech-
niques [84]. In addition to adhesive qualities, other significant aspects such as absorbability
and sorption are based on the chemical structure and spatial structural organization. The
determination of efficiency is done by the method used to create the morphological basis
of the samples, which is usually a sponge structure of animal origins such as collagen or
synthetic sources such as cellulose salts [84,85].

In 2019, Hartinger et al. developed a vancomycin-releasing hemostatic sponge made
of collagen (derived from Cyprinus carpio) and evaluated its efficacy in infected incision
wound models of Wistar rats. They observed a statistically significant release of van-
comycin; colony-forming units were lower with vancomycin-loaded sponges compared to
the placebo group [86]. Zhao et al. developed a multifunctional 10% Kangfuxin interlinked
carboxymethyl chitosan/alginate sponge, which has proven to assist in faster wound clo-
sure than other groups such as 5% & 15% treated groups [87]. A porous nanocomposite
sponge studied by Rongxiu et al., comprising graphene oxide, polyvinyl alcohol, and
sodium alginate, had excellent absorbability, antimicrobial effects, and cytocompatibility
and can be used to treat wounds with more exudates [88]. Sponges loaded with antimi-
crobials such as penicillin, streptomycin, and amoxicillin were prepared to study their
hemostatic, coagulating, antimicrobial, and faster healing rates, respectively [89,90]. Many
significant studies (Table 3) conducted using newly synthesized multifunctional sponge
dressings were found to display hemostatic effects, biocompatibility, reduced bioburden,
and reduced wound closure time. In some cases, sponge dressings might be mechanically
unstable; may cause maceration due to higher moisture content; and, in the absence of
antibiotics, may lead to the development of microbial infections. They are also not suitable
for dry wounds like secondary burn wounds.
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Table 3. Summary of recent advances in sponge dressings.

Dressing Composition Dressing Material Evaluated/
Group of Subjects Key Findings Reference

Chitosan, alginate, hyaluronic acid,
genipin

Medical gauze, CAHS1,
CAHS2 and CAHS3

Facilitates wound closure and
haemostatic [91]

Kang Fuxin (K), Alginate (AG) and
carboxymethyl chitosan (CMC)

Control, AC, AG, ACK-5,
ACK-10, ACK-15

Good moisture transmission,
plasticity, antimicrobial features, low
cytotoxicity, and haemostatic

[87]

Chain based sponge dressing (CSD) CSD and gauze Achieved haemostasis quickly [92]

Janus polyurethane,
Superhydrophobic silica
nanoparticles, super hydrophilic
polyurethane (PU)

Saline, PU Sponge, Janus PU
sponge

Reduced the risk of infection,
excessive wetting and accelerated the
efficiency of healing

[93]

Platelet rich plasma (PRP), collagen
sponge scaffold (CSS) with modified
polydopamine (PDA)

PDA-CSS-PRP, CSS-PRP, CSS
and Normal Saline

Fast angiogenesis, rapid collagen
arrangement leading to less scar
development

[94]

Corn stalk (CS), silver nanoparticles
(AgNPs) and chitin sponge (CH)

Control, polyvinyl formal
sponge, CH-CS-AgNPs,
CH-CS, CH

Biocompatibility and nontoxicity, fast
wound closure rate [95]

Chitosan and H. syriacus petroleum
ether extract (SPC)

Control, Standard Mebo®,
SPC-plain, SPC-low,
SPC-medium, SPC-high

Perfect re-epithelization and
epidermal remodelling [96]

recombinant collagen (rCOL)

Implantation test with rCOL,
COL

Perfect biocompatibility with no
sensitivity, no toxicity, no stimulation
reactions observed and excellent
haemostatic effect

[97]

Saline, rCOL sponge
extraction

Saline, Saline extraction,
Solvent saline, Seasame oil
Solvent extraction, non-polar
solvent extraction

Andrias davidianus dermal secretion
(ADDS)- nanocrystals of cellulose and
nanofibers of cellulose (CS) sponge

Control, Gelatin sponge,
ADDS-CS3, ADDS-CS2 Excellent haemostatic properties [98]

5.4. Nanofibers/Nanocomposite

Electro-spun nanofibers are a novel type of material with varying fiber sizes in the
nanometer range that is created through a number of techniques including template syn-
thesis, phase separation, drawing, self-assembly, and electrospinning. Because of its ease of
production, roughly comparable easiness over the procedure, and ease of scale-up, electro-
spinning appears to be among the most compelling of these strategies. These properties aid
in cell recognition, ECM structure similarity, and enhanced protein binding, all of which
result in better biocompatibility. Due to their high surface-area-to-volume ratio, excel-
lent porous structure, and plasticity, they are employed in medical utilizations, including
scaffolds for regenerative medicine, delivering therapeutic agents, and as dressings for
various wounds [99,100]. Nanofibrous forms of various polymers have been introduced as
an artificial extracellular matrix (ECM) [101]. Chitosan [102], collagen [103], gelatin [104]
and silk are the most cited natural polymers used as electro spun nanofibrous scaffolds,
while polylactic acid [105], poly-lactic-co-glycolic acid [106], polyglycolic acid, polycapro-
lactone [104] and poly-caprolactone/lactide copolymer are the most widely employed
synthetic polymers.

Electrospinning wound dressings with nanofibers have several advantages. For
starters, the structural and physiological properties are comparable to those of the natural
ECM [107,108]. Furthermore, the electrospinning polymer matrix can integrate the biosta-
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bility of natural polymeric substances with the uniform automated potency of artificial
polymeric substances [101]. The porosity structure of the nanofiber membrane allows for
the effective loading of a variety of physiologically active components, including antibacte-
rial medicines, nanostructured materials, vitamins, growth hormones, and herbal extracts
(Table 4) [109,110]. By adjusting the structure and size of fibers, the release of biological
molecules or therapeutic agents can be regulated, thus enabling the effectual recovery of the
injured area. Therefore, electro-spun nanofibrous materials exhibit significant possibility
in the production of modern bioactive wound dressings [99,111]. There is a need for the
development of nanofibrous dressings to be compatible with wounds with heavy bleeding,
high exudate formation, and lower production costs.

Table 4. Summary of recent advances in nanofiber dressings.

Dressing Composition Dressing Material Evaluated/
Group of Subjects Key Findings Reference

Antimicrobial peptide KRWWKWWRRC (K),
Collagen nanosheet (CN) Blank, CN, KCN,

Good reepithelialisation, rapid
wound closure and low
inflammation

[103]

Poly (caprolactone) (PCL), Poly (vinyl
alcohol) (PVA), collagen nanofibers (Col),
Momordica charantia pulp extract (Ex)

Control, PCL/PVA/Col,
PCL/PVA/Col/Ex 1%,
PCL/PVA/Col/Ex 5%,
PCL/PVA/Col/Ex 10%

Hemocompatible,
cytocompatibility, and prevent
bacterial penetration

[104]

Nanofiber mat of cellulose acetate (CA)
loaded with parathyroid hormone related
protein (Pthrp-2)

CA, CAP-1%, CAP-5%
Promoted epithelialization,
collagen deposition and blood
vessel formation

[110]

Moringa oleifera seed (MOS) polysaccharide
(PS), nanocomposite with silver (AgNPs)

Distilled water, betadine
ointment, MOS-PS-AgNPs-25,
MOS-PS-AgNPs-50,
MOS-PS-AgNPs-100

Supports wound tightening and
tissue generation as well [112]

Salvia officinalis extract-assisted biosynthesis
route to synthesize zinc oxide and
Magnetite-based nanocomposites

mupirocin® ointment,
magnetite ointment, zinc
oxide/magnetite ointment,
control

Granulation tissue, collagen
density and epithelization
improvements observed

[113]

Bilayer scaffold consists curcumin dextran
nanoparticles (CDN), cerium oxide
nanoparticles (CON) loaded Gelatin cryogel
layer and polyvinyl alcohol-poly
(vinylpyrrolidone)-iodine-potassium iodide
layer (GCL)

Control, GCL,
GCL-CDN-CON, Tegaderm
pad commercial

Strong antioxidant, antibacterial
and faster wound closure [114]

5.5. Foams

In foams, a semi-obstructive outer layer surrounds the polyurethane or silicone core.
The hydrophobic external surface repels fluids and germs while still facilitating oxygena-
tion [115,116]. They are potential wound drainage absorbents; therefore, the frequency of
dressing change is low. In addition, since foam is non-adhesive, in the course of changing,
the foam dressings may reduce injury and adjoining dermal bruise The hydrofiber, which
turns into a gel when it comes into contact with a wet wound, is made with a polyurethane
layer, and the hydrofiber layer, in turn, has a layer of foamed polyurethane or polyurethane
with a filmy texture. Foam dressings come in various thicknesses and can be adherent
or nonadherent. The foams are frequently provided with a film backing that serves as a
moisture and microbe-resilient shield to the environment. The conductivity of the film
backings varies, influencing the efficiency of water vaporization and gaseous exchange. All
of these are considered foam dressings [116,117].

The foam dressing designed by Miaomiao et al. with multi-layers of polyvinyl alcohol,
sodium carboxymethylcellulose mesh, and drug Stearyl trimethyl ammonium chloride
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displayed dynamic exudate absorption, antimicrobial effect, and coagulation of blood [118].
Several types of foam dressings contain silver (Ag), which is active in reducing microbial
load and possibly speeding up wound healing (Table 5). Foam dressings maintain a moist
environment in and around the wounded area, promote good absorption, are hemostatic,
and provide good adherence. Yet foams may tightly adhere to a wound if the wound
dries. They are opaque in nature, the gaseous exchange is limited, and excessive exudate
absorption by foams might lead to maceration of surrounding skin.

Table 5. Summary of recent advances in foam dressings.

Dressing Composition Dressing Material Evaluated/
Group of Subjects Key Findings Reference

Mesostructured cellular silica foams
(MCF) decorated with silver ions (Ag) Control, MCF and MCF-Ag

MCF-Ag antibacterial haemostatic
agent with splendid water absorption
and antibacterial capacity

[119]

Polyurethane biomacromolecule
combined foam (PUC), asiaticoside
(AS), Silver nanoparticle (AgNPs)

PUC-AS-AgNPs, commercial
gauze

shorter wound closure time, higher
reepithelialisation and less pain score [120]

Hyaluronic acid, a cell wall fragment of
Cutibacterium acnes (LimpiAD) LimpiAD foam Prevented skin lesions or any sign of

skin damage [121]

5.6. Gauzes

Gauze is an ancient dressing used by the Egyptians to wrap bodies before burial.
Gauze products are of two subcategories based on fabric construction or material composi-
tion they are (i) woven and (ii) non-woven. Non-woven gauze dressings are made of rayon
or synthetic fibers and are developed to replace woven products because they adhere less to
the wound bed and produce less lint. Woven products, also known as absorbent gauze, are
typically made of 100 percent natural cotton yarns, which are at use over centuries. Cutting
these woven gauzes will result in shed of fibers and is susceptible to linting with fibers [122].
Gauzes that dry quickly have traditionally been used to cover and treat damage in the
dermal area. Dermal coverings that produce and maintain balanced moisture content are
considered best for wound healing [74]. Traditional gauze is likely inexpensive, compatible,
readily available, and frequently used in surgical and clinical practices. Recently developed
gauze materials are modified with polymers, nanoparticles, and other components to make
them more reliable for use in various wound therapies. They lack qualities such as being
dry and lacking moisture balance, which may disrupt the healing wound and cause tissue
damage when removed, and frequent replacement is required if saturated with wound
exudates (Table 6).

Table 6. Summary of recent advances in gauze dressings.

Dressing Composition Dressing Material Evaluated/
Group of Subjects Key Findings Reference

Gauze (G), Quat 188, silver
nanoparticles (AgNPs),
oxytetracyline hydrochloride (Ox)
and salicyl-imine-chitosan
biopolymer (SIC)

Gauze fabric, Dermazin Ointment,
G/Ag NPs/Ox, G/Ag NPs/Ox/CS,
fabrics/Ag NPs/Ox/SIC-0.2, G/Ag
NPs/Ox/SIC-0.4, G/Ag
NPs/Ox/SIC-0.6

Promoting fibrosis and collagen
reorganization [25]

Cotton guaze (CG), chitosan (C),
Gelatin (G) and alginate (A) Control, CG and AGCCg-5

High fluid absorption, excellent
biocompatibility,
hemocompatibility, haemostatic
performance, low cost, reliability,
safety, and a simple manufacturing
process

[123]
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Table 6. Cont.

Dressing Composition Dressing Material Evaluated/
Group of Subjects Key Findings Reference

Amino-modified cotton gauze (CG),
poly (carboxybetaine-co-dopamine
methacrylamide) (PCM) copolymer,
silver nanoparticles (AgNPs)

Blank, Pristine CG, PCM@AgNPs-CG

Showed excellent
hemocompatibility,
cytocompatibility, reduced the
inflammatory response and wound
infection

[124]

Gauze, polydopamine,
perfluorocarbon and silver
nanoparticle (Lotus@Gauze)

Vaseline® petrolatum gauze,
Atrauman®Ag gauze, Lotus@Gauze,
Irradiated Vaseline® petrolatum
gauze, Irradiated atrauman®Ag
gauze, Irradiated Lotus@Gauze

Antiadhesive and antibacterial
gauzes [125]

5.7. Others

Currently, more attention being paid on dressings prepared from natural and synthetic
sources [126]. Plant extracts [127–129], Adult stem cell therapies [130–132] studied effec-
tively with injectable forms and loaded on to dressings were also found to be effective in skin
regeneration. Numerous biochemical parameters, including cell proliferation and immune
function, are regulated by proteolytic enzymes. Exogenous protease was the very first enzy-
matic treatment used to treat chronic wounds [133]. Biopolymers and bioactive compounds
used in wound dressings are obtained from natural sources: plants, animals, and even
microbial [134,135]. For manufacturing dressings based on wound type and requirements,
biopolymers such as chitosan, cellulose, hyaluronic acid, alginate, elastin, dextran, fibrin,
pectin, gelatin, collagen, and fibronectin are most often used [136]. A number of plant
(papain, ficin, actinidin) and bacterial proteases or peptide (collagenase) based formulations
are under development to target chronic wound debridement, possessing antimicrobial,
angiogenesis, hemostatic, anti-inflammatory, anti-scarring properties (Table 7) [137].

Table 7. Summary of recent studies in plant extracts and proteases.

Dressing Composition Dressing Material Evaluated/
Group of Subjects Key Findings Reference

Bergenia ciliata rhizome ethanolic extract
Control, Povidine ointment,
Bergenia ciliata, 5% (w/w) and 10%
(w/w) ointments

Wound healing is faster and wound
contraction is better. [128]

Bridelia micrantha methanol leaf extract

Silver sulphadiazine cream,
aqueous cream, 10% BME
aqueous cream, 2.5% BME
aqueous cream, 0.625% BME
aqueous cream

Angiogenesis, collagenation, and
re-epithelization all improved, as did
antibacterial and antioxidant activities

[127]

Serine protease (Tricuspidin) from
Tricosanthus tricuspidata

Tricuspidin & Trypsin Excellent proteolytic ability,
anti-inflammatory effect

[133]
Tricuspidin & PBS

Plantago major extract (PM), ursolic acid (UA)
and oleanolic acid (OA)

Gel, Gel (Mebo), PM, UA, and OA
gels Non-toxic & improve wound healing [138]

Urtica dioica extract, Chitosan (C), gold
(G)/perlite nanocomposite ointment(P)

Control, mupirocin® ointment, P,
PG, PGC

Decreasing the length of healing time and
stimulates MRSA-infected wound
regeneration

[139]

Cysteine protease (Drupin) from Ficus
drupacea (Fd) latex

Saline, Neosporin, papain,
Fd-protein rich fraction, drupin,
drupin-IAA

Controlled expression of MMP’s, increased
collagen production, cellular migration and
proliferation

[140]

Bromelain based Escghar ex (ESX) ESX group, Gel arm group Good debridement activity of the
formulation [141]

Serine protease (SP), Antiquorin (Aq)
Euphorbia antiquorum Saline, Aq, SP + Aq Improved platelet aggregation and quick

haemostatis [142]



Pharmaceutics 2022, 14, 1574 14 of 22

5.8. Plant Derived Bioactive Compounds and Biopolymers in Wound Therapy

Ayurvedic preparations, biomolecules, drugs, and pharmaceutically important plants
have minimal side effects, as well as less side effects than synthetic drugs, according to
research on traditional and medicinal plants. Medicinal herbs and herbal preparations
for tissue repair are inexpensive. Polyphenols, alkaloids, flavonoids, steroids, tannins,
and terpenoids are just a few of the phytoconstituents derived from medicinal plants.
Honey is one such kind of solution produced by bees using nectar from plants, and it
is rich in water, monosaccharides, disaccharides, proteins, amino acids, minerals, and
pigments (Figure 5). Many research studies have proven that honey is effective at all stages
of the wound healing process. They have excellent anti-inflammatory and antibacterial
effects [143,144]. Curcumin, demethoxycurcumin, and bisdemethoxycurcumin are three
major phytoconstituents sourced from Curcuma longa. These components are proven to
kill viruses and bacteria, having anti-oxidative and anti-inflammation properties [145,146].
Aloe vera is a plant that grows in hot climate regions and arid regions. This plant contains
major derivatives belonging to the group of anthracenes along with sugars, enzymes,
minerals, vitamins, and pigments. The remarkable healing potential of Aloe vera is due to
the presence of glucomannan, which regulates fibroblast growth factors, collagen synthesis,
and secretion [147–149]. Nimbolinin, nimbin, nimbidin, nimbidol, sodium nimbinate,
gedunin, salannin, quercetin, nimbanene, 6-desacetylnimbinene, nimbandiol, nimbolide,
and nimbiol are extracted from various parts of Azadirachta indica. Quercitin has a vital role
as an anti-microbial agent and an anti-inflammatory agent [150–152].
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5.9. Polymers

Cellulose is a polysaccharide predominately employed for manufacturing scaffolds,
matrices, dressings for chronic wounds, and shortening healing time. Cellulose is synthe-
sized by bacteria such as Acetobacter xylinum and plants. The triggering effect on granulative
and epithelializing phases in partial and full-thickness wound models proves that it has the
potential to accelerate wound healing without any side effects. It is used in regenerative
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medicine as a wound-healing scaffold for severely damaged skin and small-diameter blood
vessel replacement due to its similarity to ECM. Cellulose is an innovative product that is
recommended as an alternative dressing for superficial partial-thickness burn wounds be-
cause it is a natural biomimetic, biodegradable, antibacterial, skin—friendly, and non-toxic
polysaccharide [153].

Chitin is a simple and abundant -(14) glycan made up of 2-acetoamido-2-deoxy-
d-glucopyranose units. It is a key element of arthropod shells such as crabs, shrimp,
lobsters, and insects, and it is also formed in extracellular environment by fungi and some
brown algae. Chitin is a highly water-insoluble compound that is a byproduct or waste
of the crab, shrimp, and crawfish processing industries. Chitosan is a useable and basic
sequential polysaccharide derived from the N-deacetylation of chitin in the presence of
alkali. Chitin and chitosan have been shown to have antitumor, hypocholesterolemic,
and antihypertensive properties. As chitosan is present in abundance, also non-toxic and
being biocompatible, development of dressings using chitosan is given importance. On
the other hand it is also active against bacterial and fungal infections [154]. Collagen is the
most abundant, triple-helical, and structural protein present in human beings. Collagen is
produced by fibroblast cells, which play an important role in all phases of wound healing.
Because of its degradability, biocompatibility, and ability to promote the organization
and accumulation of new collagen, it has numerous biomedical applications. Despite its
excellent biological performance, collagen’s poor mechanical properties, high degradability,
and inability to prevent the growth of bacteria have limited its biomedical applications.
As a result, cross-linkers and other materials are frequently used in the manufacturing of
collagen-based dressings. Gelatin, as a derivative, is similar to collagen, and due to its
excellent biocompatibility and biodegradability, it can also be used as a raw material for
wound dressing [155].

Hyaluronic acid is a biopolymer that relates to the glycosaminoglycan family of het-
eropolysaccharides found in the human vitreous humour, joints, rooster comb, umbilical
cord, epidermis, and connective tissue. Furthermore, HA can be obtained through bacterial
fermentation. As a major component of the edema fluid, HA promotes the recruiting pro-
cess of neutrophil cells, which are engaged in the phagocytosis of debris and the removal
of dead tissue, as well as the subsequent release of tumour necrosis factor-alpha (TNF-),
interleukin-1 (IL-1) and interleukin-8 [156]. Silk is a naturally existing polymer with nu-
merous applications in medicine, particularly wound dressing. Silk fibres are derived from
silkworms and are primarily composed of proteins, fibroin, and sericin, which are made
up of eighteen different amino acids. Silk is used in a variety of biomedical applications,
including healing process, cytocompatibility, blood compatibility, high tensile strength, and
oxygen permeability. Silk fibroin is an excellent treatment for chronic wounds, diabetic foot
ulcers, and burns. Because of its biocompatible and mechanical properties, it is combined
with other biomaterials such as alginate, elastin, silver sulfadiazine, and epidermal growth
factors in the form of films, hydrogels, and electrospun nanofibers. The silk-blend dressings
promote keratinocyte proliferation and migration, have a greater affinity for fibroblasts,
and influence ECM secretion, thereby improving wound healing [157].

6. Conclusions

In wound healing, the employment of biomaterials and bioactive chemicals dates back
to ancient times, but synthetic materials and nanoparticles have proven to be essential in
developing a successful treatment plan. Most films, foams, hydrogels, sponges, and com-
posite dressings are exploited in clinical settings as wound healing products are composed
of biomaterials. Multifunctional dressings’ investigation focuses primarily on those that
encapsulate bioactive substances, sustain drug release, are stimuli sensitive, homeostatic,
and have plenty of other prospects for clinical benefits. Still, some of these products do
not release biologicals that directly enhance the healing process. These studies can be
considered viable to some extent. Despite the emergence of multiple trials with abundant
treatments, there is a lack of high-quality evidence. They are still in the initial phases
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and therefore do not meet all of the demands of modern evidence-based treatments due
to the small number of animals, varying sizes and degrees of wounds, the timeframe of
observation, and restricted methods of monitoring wound healing. Unrelenting attempts
to create, if not a universal, then at least an optimal drug acting at all stages of wound
healing and using the maximum number of natural mechanisms of tissue regeneration
have not yet been crowned with success. Conducting more trials would determine the
efficacy of these dressings in clinical settings. The core objective would be to imitate the
aspects of fetal tissue regeneration in the mature healing process, involving whole hair and
glandular restoration without postponement or scarring. Emerging treatments based on
biomaterials, nanoparticles, and proteases with biomimetic properties hold much potential
for improving wound care and will be a valuable addition to the therapeutic toolbox for
treating slow-healing wounds.
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