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Much progress has been made in uncovering the computational capabilities of spiking
neural networks. However, spiking neurons will always be more expensive to simulate
compared to rate neurons because of the inherent disparity in time scales—the spike
duration time is much shorter than the inter-spike time, which is much shorter than
any learning time scale. In numerical analysis, this is a classic stiff problem. Spiking
neurons are also much more difficult to study analytically. One possible approach to
making spiking networks more tractable is to augment mean field activity models with
some information about spiking correlations. For example, such a generalized activity
model could carry information about spiking rates and correlations between spikes
self-consistently. Here, we will show how this can be accomplished by constructing a
complete formal probabilistic description of the network and then expanding around a
small parameter such as the inverse of the number of neurons in the network. The
mean field theory of the system gives a rate-like description. The first order terms in
the perturbation expansion keep track of covariances.
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INTRODUCTION
Even with the rapid increase in computing power due to Moore’s
law and proposals to simulate the entire human brain notwith-
standing Ailamaki et al. (2012), a realistic simulation of a func-
tioning human brain performing non-trivial tasks is remote.
While it is plausible that a network the size of the human brain
could be simulated in real time Izhikevich and Edelman (2008);
Eliasmith et al. (2012) there are no systematic ways to explore the
parameter space. Technology to experimentally determine all the
parameters in a single brain simultaneously does not exist and
any attempt to infer parameters by fitting to data would require
exponentially more computing power than a single simulation.
We also have no idea how much detail is required. Is it suffi-
cient to simulate a large number of single compartment neurons
or do we need multiple-compartments? How much molecular
detail is required? Do we even know all the important biochemical
and biophysical mechanisms? There are an exponential number
of ways a simulation would not work and figuring out which
remains computationally intractable. Hence, an alternative means
to provide appropriate prior distributions for parameter values
and model detail is desirable. Current theoretical explorations of
the brain utilize either abstract mean field models or small num-
bers of more biophysical spiking models. The regime of large but
finite numbers of spiking neurons remains largely unexplored. It
is not fully known what role spike time correlations play in the
brain. It would thus be very useful if mean field models could be
augmented with some spike correlation information.

This paper outlines a scheme to derive generalized activ-
ity equations for the mean and correlation dynamics of a fully
deterministic system of coupled spiking neurons. It synthesizes

methods we have developed to solve two different types of prob-
lems. The first problem was how to compute finite system size
effects in a network of coupled oscillators. We adapted the meth-
ods of the kinetic theory of gases and plasmas Ichimaru (1973);
Nicholson (1993) to solve this problem. The method exploits the
exchange symmetry of the oscillators and characterizes the phases
of all the oscillators in terms of a phase density function η(θ, t),
where each oscillator is represented as a point mass in this den-
sity. We then write down a formal flux conservation equation
of this density, called the Klimontovich equation, which com-
pletely characterizes the system. However, because the density is
not differentiable, the Klimontovich equation only exists in the
weak or distributional sense. Previously, e.g., Desai and Zwanzig
(1978); Strogatz and Mirollo (1991); Abbott and van Vreeswijk
(1993); Treves (1993) the equations were made usable by taking
the “mean field limit” of N → ∞ and assuming that the den-
sity is differentiable in that limit, resulting in what is called the
Vlasov equation. Instead of immediately taking the mean field
limit, we regularize the density by averaging over initial condi-
tions and parameters and then expand in the inverse system size
N−1 around the mean field limit. This results in a system of cou-
pled moment equations known as the BBGKY moment hierarchy.
In Hildebrand et al. (2007), we solved the moment equations for
the Kuramoto model perturbatively to compute the pair corre-
lation function between oscillators. However, the procedure was
somewhat ad-hoc and complicated. We then subsequently showed
in Buice and Chow (2007) that the BBGKY moment hierarchy
could be recast in terms of a density functional of the phase den-
sity. This density functional could be written down explicitly as
an integral over all possible phase histories, i.e., a Feynman-Kac
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path integral. The advantage of using this density functional for-
malism is that the moments to arbitrary order in 1/N could be
computed as a steepest-descent expansion of the path integral,
which can be expressed in terms of Feynman diagrams. This made
the calculation more systematic and mechanical. We later applied
the same formalism to synaptically coupled spiking models Buice
and Chow (2013b).

Concurrently with this line of research, we also explored the
question of how to generalize population activity equations, such
as the Wilson-Cowan equations, to include the effects of correla-
tions. The motivation for this question is that the Wilson-Cowan
equations are mean field equations and do not capture the effects
of spike-time correlations. For example, the gain in the Wilson-
Cowan equations is fixed, (which is a valid approximation when
the neurons fire asynchronously), but correlations in the firing
times can change the gain Salinas and Sejnowski (2000). Thus,
it would be useful to develop a systematic procedure to aug-
ment population activity equations to include spike correlation
effects. The approach we took was to posit plausible microscopic
stochastic dynamics, dubbed the spike model, that reduced to the
Wilson-Cowan equations in the mean field limit and compute the
self-consistent moment equations from that microscopic theory.
Buice and Cowan (2009) showed that the solution of the mas-
ter equation of the spike model could be expressed formally in
terms of a path integral over all possible spiking histories. The
random variable in the path integral is a spike count whereas in
the path integral for the deterministic phase model we described
above, the random variable is a phase density. To generate a sys-
tem of moment equations for the microscopic stochastic system,
we transformed the random spike count variable in the path
integral into moment variables Buice et al. (2010). This is accom-
plished using the effective action approach of field theory, where
the exponent of the cumulant generating functional, called the
action, which is a function of the random variable is Legendre
transformed into an effective action of the cumulants. The desired
generalized Wilson-Cowan activity equations are then the equa-
tions of motion of the effective action. This is analogous to the
transformation from Lagrangian variables of position and veloc-
ity to Hamiltonian variables of position and momentum. Here,
we show how to apply the effective action approach to a deter-
ministic system of synaptically coupled spiking neurons to derive
a set of moment equations.

APPROACH
Consider a network of single compartment conductance-based
neurons

C
dVi

dt
= −

n∑
r = 1

gr
(
xr

i

)
(Vi − vr) +

N∑
j = 1

gijsj(t)

τr
i

dxr
i

dt
= f (Vi, xi)

τj
dsj

dt
= h

(
Vj, sj

)

τg
dgij

dt
= φ

(
gij, V

)

The equations are remarkably stiff with time scales spanning
orders of magnitude from milliseconds for ion channels, to sec-
onds for adaptation, and from hours to years for changes in
synaptic weights and connections. Parameter values must be
assigned for 1011 neurons with 104 connections each. Here, we
present a formalism to derive a set of reduced activity equations
directly from a network of deterministic spiking neurons that cap-
ture the spike rate and spike correlation dynamics. The formalism
first constructs a density functional for the firing dynamics of all
the neurons in a network. It then systematically marginalizes the
unwanted degrees of freedom to isolate a set of self-consistent
equations for the desired quantities. For heuristic reasons, we
derive an example set of generalized activity equations for the first
and second cumulants of the firing dynamics of a simple spiking
model but the method can be applied to any spiking model.

A convenient form to express spiking dynamics is with a phase
oscillator. Consider the quadratic integrate-and-fire neuron

dVi

dt
= Ii + V2

i + αiu(t) (1)

where I is an external current and u(t) are the synaptic cur-
rents with some weight αi. The spike is said to occur when
V goes to infinity whereupon it is reset to minus infinity. The
quadratic non-linearity ensures that this transit will occur in a
finite amount of time. The substitution V = tan(θ/2) yields the
theta model Ermentrout and Kopell (1986):

dθi

dt
= 1 − cos θi + (1 + cos θi) (Ii + αiu) (2)

which is the normal form of a Type I neuron near the bifur-
cation to firing Ermentrout (1996). The phase neuron is an
adequate approximation to spiking dynamics provided the inputs
are not overly strong as to disturb the limit cycle. The phase neu-
ron also includes realistic dynamics such as not firing when the
input is below threshold. Coupled phase models arise naturally in
weakly coupled neural networks Ermentrout and Kopell (1991);
Hoppensteadt and Izhikevich (1997); Golomb and Hansel (2000).
They include the Kuramoto model Kuramoto (1984), which we
have previously analyzed Buice and Chow (2007); Hildebrand
et al. (2007).

Here, we consider the phase dynamics of a set of N coupled
phase neurons obeying

θ̇i = F(θ, γi, u(t)) (3)

u̇(t) = −βu(t) + βν(t) (4)

ν(t) = 1

N

N∑
j = 1

∑
l

δ
(

t − tl
j

)
(5)

where each neuron has a phase θi that is indexed by i, u is a
global synaptic drive, F(θ, γ, u) is the phase and synaptic drive
dependent frequency, γi represents all the parameters for neuron
i drawn from a distribution with density g(γ), ν is the popula-
tion firing rate of the network,tl

j is the lth firing time of neuron j
and a neuron fires when its phase crosses π. In the present paper,
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we consider all-to-all or global coupling through a synaptic drive
variable u(t). However, our basic approach is not restricted to
global coupling.

We can encapsulate the phase information of all the neurons
into a neuron density function Buice and Chow (2007, 2011,
2013a,b); Hildebrand et al. (2007).

η(θ, γ, t) = 1

N

N∑
i = 1

δ(θ − θi(t)) δ(γ − γi) (6)

where δ(·) is the Dirac delta functional, and θi(t) is a solution to
system (3–5). The neuron density gives a count of the number
of neurons with phase θ and synaptic strength γ at time t. Using
the fact that the Dirac delta functional in (5) can be expressed
as

∑
l δ(t − tl

j) = θ̇jδ(π − θj), the population firing rate can be
rewritten as

ν(t) =
∫

dγ F(π, γ, u(t))η(π, γ, t) (7)

The neuron density formally obeys the conservation equation

∂

∂t
η(θ, γ, t) + ∂

∂θ
[Fη(θ, γ, t)] = 0 (8)

with initial condition η(θ, γ, t0) = η0(θ, γ) and u(t0) = u0.
Equation (8) is known as the Klimontovich equation Ichimaru
(1973); Liboff (2003). The Klimontovich equation, the equation
for the synaptic drive (4), and the firing rate expressed in terms
of the neuron density (7), fully define the system. The system is
still fully deterministic but is now in a form where various sets
of reduced descriptions can be derived. Here, we will produce
an example of a set of reduced equations or generalized activ-
ity equations that capture some aspects of the spiking dynamics.
The path we take toward the end will require the introduction of
some formal machinery that may obscure the intuition around
the approximations. However, we feel that it is useful because it
provides a systematic and controlled way of generating averaged
quantities that can be easily generalized.

For finite N, (8) is only valid in the weak or distributional
sense since η is not differentiable. In the N → ∞ limit, it has
been argued that η will approach a smooth density ρ that evolves
according to the Vlasov equation that has the same form as (8) but
with η replaced by ρ Ichimaru (1973); Desai and Zwanzig (1978);
Strogatz and Mirollo (1991); Nicholson (1993); Hildebrand et al.
(2007). This has been proved rigorously in the case where noise is
added using the theory of coupled diffusions McKean Jr (1966);
Faugeras et al. (2009); Baladron et al. (2012); Touboul (2012).
This N → ∞ limit is called mean field theory. In mean field
theory, the original microscopic many body neuronal network
is represented by a smooth macroscopic density function. In
other words, the ensemble of networks prepared with different
microscopic initial conditions is sharply peaked at the mean field
solution. For large but finite N, there will be deviations away
from mean field Buice and Chow (2007); Hildebrand et al. (2007);
Buice and Chow (2013a,b). These deviations can be characterized
in terms of a distribution over an ensemble of coupled networks

that are all prepared with different initial conditions and param-
eter values. Here, we show how a perturbation theory in N−1

can be developed to expand around the mean field solution. This
requires the construction of the probability density functional
over the ensemble of spiking neural networks. We adapt the tools
of statistical field theory to perform such a construction.

FORMALISM
The complete description of the system given by equations
(4, 7, 8) can be written as

u̇(t) + βu(t) − β

∫
dγ F(π, γ, u(t))η(π, γ, t) = 0 (9)

∂

∂t
η(θ, γ, t) + ∂

∂θ
[F(θ, γ, u(t))η(θ, γ, t)] ≡ Lη = 0 (10)

The probability density functional governing the system specified
by the synaptic drive and Klimontovich equations (9) and (10)
given initial conditions (η0, u0) can be written as

P[η, u] =
∫

Du0(t)Dη0(θ, γ) P[η, u|η0, u0] P0[η0, u0, γ] (11)

where P [η, u|η0, u0] is the conditional probability density func-
tional of the functions (η, u), and P0 [η0, u0] is the density
functional over initial conditions of the system. The integral is
a Feynman-Kac path integral over all allowed initial condition
functions. Formally we can write P [η, u|η0, u0] as a point mass
(Dirac delta) located at the solutions of (9) and (10) given the
initial conditions:

δ [Lη − η0δ(t − t0)]

δ

[
u̇ + βu − β

∫
dγ F(π, γ, u(t))η(π, γ, t) − u0δ(t − t0)

]

The probability density functional (11) is then

P[η, u] =
∫

Du0(t)Dη0(θ, γ) δ [Lη − η0δ(t − t0)]

× δ

[
u̇ + βu − β

∫
dγ F(π, γ, u(t))η(π, γ, t)

− u0δ(t − t0)

]
P0 [η0, u0, γ] (12)

Equation (12) can be made useful by noting that the Fourier rep-
resentation of a Dirac delta is given by δ(x) ∝ ∫

dk eikx. Using the
infinite dimensional Fourier functional transform then gives

P[η, u] =
∫

Dη̃Dũ e−NS[η,η̃,u,ũ].

The exponent S[η, u] in the probability density functional is
called the action and has the form

S = Su + Sϕ + S0 (13)
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where

Sϕ =
∫

dθdγdt ϕ̃(x) [∂tϕ(x) + ∂θF(θ, γ, u(t))ϕ(x)] (14)

represents the contribution of the transformed neuron density to
the action,

Su = 1

N

∫
dt ũ(t)

(
u̇(t) + βu(t)

− β

∫
dγF(π, γ, u(t))[ϕ̃(π, γ, t) + 1]ϕ(π, γ, t)

)
(15)

represents the global synaptic drive, S0[ϕ̃0(x0), u0(t0)] represents
the initial conditions, and x = (θ, γ, t). For the case where the
neurons are considered to be independent in the initial state, we
have

S0 [ϕ̃0(x0), u0 (t0)] = − 1

N
ũ(t0)u0 (16)

− ln

(
1 +

∫
dθdγϕ̃0 (θ, γ, t0) ρ0 (θ, γ, t0)

)

where u0 is the initial value of the coupling variable and ρ0(θ, γ, t)
is the distribution from which the initial configuration is drawn
for each neuron. The action includes two imaginary auxiliary
response fields (indicated with a tilde), which are the infinite
dimensional Fourier transform variables. The factor of 1/N
appears to ensure correct scaling between the u and ϕ vari-
ables since u applies to a single neuron while ϕ applies to the
entire population. The full derivation is given in Buice and Chow
(2013b) and a review of path integral methods applied to dif-
ferential equations is given in Buice and Chow (2010). In the
course of the derivation we have made a Doi-Peliti-Jannsen trans-
formation Janssen and Täuber (2005); Buice and Chow (2013b),
given by

ϕ(x) = η(x)e−η̃(x)

ϕ̃(x) = eη̃(x) − 1

In deriving the action, we have explicitly chosen the Ito conven-
tion so that the auxiliary variables only depend on variables in
the past. The action (13) contains all the information about the
statistics of the network.

The moments for this distribution can be obtained by
taking functional derivatives of a moment generating func-
tional. Generally, the moment generating function for a ran-
dom variable is given by the expectation value of the expo-
nential of that variable with a single parameter. Because our
goal is to transform to new variables for the first and second
cumulants, we form a “two-field” moment generating func-
tional, which includes a second parameter for pairs of random
variables,

exp(N W[J, K]) =∫
Dξ exp

[
−NS[ξ] + N

∫
dx Ji(x)ξi(x) + N

2∫
dxdx′ξi(x)Kij(x, x′)ξj(x′)

]
(17)

where J and K are moment generating fields, ξ1(x) = u(t),
ξ2(x) = ũ(t), ξ3(x) = ϕ(x), ξ4(x) = ϕ̃(x), and x = (θ, γ, t).
Einstein summation convention is observed beween upper and
lower indices. Unindexed variables represent vectors. The inte-
gration measure dx is assumed to be dt when involving indices
1 and 2. Covariances between an odd and even index corresponds
to a covariance between a field and an auxiliary field. Based on
the structure of the action S and (17) we see that this represents
a linear propagator and by causality and the choice of the Ito
convention is only non-zero if the time of the auxiliary field is
evaluated at an earlier time than the field. Covariances between
two even indices correspond to that between two auxiliary fields
and are always zero because of the Ito convention.

The mean and covariances of ξ can be obtained by taking
derivatives of the action W[J, K] in (17), with respect to J and
K and setting J and K to zero:

δW

δJi
= 〈ξi〉|J, K = 0

δW

δKij
= 1

2
〈ξiξj〉

∣∣∣∣
J, K = 0

Expressions for these moments can be computed by expanding
the path integral in (17) perturbatively around some mean field
solution. However, this can be unwieldy if closed form expres-
sions for the mean field equations do not exist. Alternatively, the
moments at any order can be expressed as self-consistent dynami-
cal equations that can be analyzed or simulated numerically. Such
equations form a set of generalized activity equations for the
means ai = 〈ξi〉, and covariances Cij = N[〈ξiξj〉 − aiaj].

We derive the generalized activity equations by Legendre trans-
forming the action W , which is a function of J and K, to
an effective action � that is a function of a and C. Just as a
Fourier transform expresses a function in terms of its frequen-
cies, a Legendre transform expresses a convex function in terms
of its derivatives. This is appropriate for our case because the
moments are derivatives of the action. The Legendre transform of
W[J, K] is

�[a, C] = −W[J, K] +
∫

dxJiai + 1

2

∫
dxdx′

[
aiaj + 1

N
Cij

]
Kij

(18)
which must obey the constraints

δW

δJi
= ai

δW

δKij
= 1

2

[
aiaj + 1

N
Cij

]
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and

δ�

δai
≡ �i, 00 = Ji + 1

2
aj

[
Kij + Kji

]

δ�

δCij
≡ �0, ij = 1

2N
Kij (19)

The generalized activity equations are given by the equations of
motion of the effective action, in direct analogy to the Euler-
Lagrange equations of classical mechanics, and are obtained by
setting Ji = 0 and Kij = 0 in (19).

In essence, what the effective action does is to take a prob-
abilistic (statistical mechanical) system in the variables ξ with
action S and transform them to a deterministic (classical mechan-
ical) system with an action �. Our approach here follows that
used in Buice et al. (2010) to construct generalized activity equa-
tions for the Wilson Cowan model. However, there are major
differences between that system and this one. In Buice et al.
(2010), the microscopic equations were for the spike counts of an
inherently probabilistic model so the effective action and ensu-
ing generalized activity equations could be constructed directly
from the Markovian spike count dynamics. Here, we start from
deterministically firing individual neurons and get to a proba-
bilistic description through the Klimontovich equation. It would
be straightforward to include stochastic effects into the spiking
dynamics.

Using (18) in (17) gives

exp(−N �[a, C])=
∫

Dψ exp

[
−NS[ξ] + N

∫
dx Ji (ξi − ai)

+ N

2

∫
dxdx′

[
ξiξj − aiaj − 1

N
Cij

]
Kij

]
(20)

where J and K are constrainted by (19). We cannot com-
pute the effective action explicitly but we can compute it
perturbatively in N−1. We first perform a shift ξi = ai +
ψi, expand the action as S[a + ψ] = S[a] + ∫

dx(Li[a]ψi +
(1/2)

∫
dx′Lij[a]ψiψj) + · · · and substitute for J and K with the

constraints (19) to obtain

exp(−N �[a, C]) = exp
(
−NS[a] − NTr �0, ijCij

)
∫

Dψ exp

[
−N

∫
dx

(
Li[a]ψi + 1

2

∫
dx′Lij[a]ψiψj

)

+ N

∫
dx �i, 00ψi + N2

∫
dxdx′ψiψj�

0, ij
]

(21)

where

Tr AijBij =
∫

dxdx′Aij(x, x′)Bij(x, x′) (22)

Our goal is to construct an expansion for � by collecting terms in
successive orders of N−1 in the path integral of (21). Expanding
� as �[a, C] = �0 + N−1�1 + N−2�2 and equating coefficients
of N in (21) immediately leads to the conclusion that �0 = S[a],

which gives

exp(−N �[a, C]) = exp
(
−NS[a] − Tr �

0, ij
1 Cij

) ∫
Dψ

exp

[
−N

2

∫
dxLij[a]ψiψj + N

∫
dx �

0, ij
1 ψiψj

]

where higher order terms in N−1 are not included. To lowest non-

zero order �0, ij = N−1�
0, ij
1 since �0 is only a function of a and

not C. If we set

�
0, ij
1 = (1/2)Lij − (1/2)Qij, (23)

we obtain

exp(−N �[a, C]) = exp

(
−NS[a] − 1

2
Tr LijCij + 1

2
Tr QijCij

)

×
∫

Dψ exp

[
−N

2

∫
dx Qij[a]ψiψj

]
(24)

to order N−1. Qij is an unknown function of a and C,
which we will deduce using self-consistency. The path inte-
gral in (24), which is an infinite dimensional Gaussian that

can be explicitly integrated, is proportional to 1/
√

det Qij =
exp(−(1/2) ln det Qij) = exp(−(1/2)Tr ln Qij), using properties
of matrices. Hence, (24) becomes

exp(−N �[a, C])

= exp

(
−NS[a] − 1

2
Tr LijCij − 1

2
Tr QijCij + 1

2
Tr ln Qij

)

and

�[a, C] = S[a] + 1

2N
Tr LijCij + 1

2N
Tr ln Qij − 1

2N
Tr QijCij

Taking the derivative of � with respect to Cij yields

�0, ij = 1

2N

(
Lij + (Q−1)kl ∂

∂Cij
Qlk − ∂

∂Cij
(QklClk)

)

Self consistency with (23) then requires that Qij = (C−1)ij which
leads to the effective action

�[a, C] = S[a] + 1

2N
Tr ln(C−1)ij + 1

2N
Tr LijCij (25)

where

∫
dx′ (C−1)ik(x, x′)Ckj(x′, x0) = δijδ(x − x0)

and we have dropped the irrelevant constant terms.
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The equations of motion to order N−1 are obtained from (19)
with Ji and Kij set to zero:

δS[a]
δai

+ 1

2N

δ

δai
Tr LijCij = 0 (26)

1

2N
[−(C−1)ij + Lij] = 0 (27)

and (27) can be rewritten as

∫
dx′Lik(x, x′)Ckj(x′, x0) = δijδ(x − x0) (28)

Hence, given any network of spiking neurons, we can
write down a set of generalized activity equations for the
mean and covariance functions by (1) constructing a neu-
ron density function, (2) writing down the conservation law
(Klimontovich equation), (3) constructing the action and (4)
using formulas (26) and (28). We could have constructed
these equations directly by multiplying the Klimontovich
and synaptic drive equations by various factors of u and
η and recombining. However, as we saw in Buice et al.
(2010) this is not a straightforward calculation. The effec-
tive action approach makes this much more systematic and
mechanical.

PHASE MODEL EXAMPLE
We now present a simple example to demonstrate the con-
cepts and approximations involved in our expansion. Our
goal is not to analyze the system per se but only to demon-
strate the application of our method in a heuristic setting.
We begin with a simple non-leaky integrate-and-fire neu-
ron model, which responds to a global coupling variable.
This is a special case of the dynamics given above, with F
given by

F[θ, γ, u] = I(t) + γu (29)

The action from (14) and (15) is

S[a] =
∫

dθdγdt a4(x) [∂ta3(x) + ∂θ(I + γa1(t)) a3(x)]

+ 1

N

∫
dt a2(t)

(
ȧ1(t) + βa1(t) − β

∫
dγ (I + γa1(t))

[a4(π, γ, t) + 1] a3(π, γ, t)) (30)

and we ignore initial conditions for now.
In order to construct the generalized activity equations

we need to compute the first and second derivatives of
the action Li and Lij. Taking the first derivative of (30)
gives

L1[a] (
x, x′) = δS[a(x)]

δa1 (t′)
=

∫
dθdγ dtγa4(x)∂θa3(x)δ

(
t − t′

)

+ 1

N

[∫
dt a2(t)

d

dt
δ
(
t − t′

) + βa2
(
t′
)

− a2
(
t′
)
β

∫
dγ γ

[
a4(π, γ, t′) + 1

]
a3(π, γ, t′)

]

L2[a](x, x′) = δS[a(x)]
δa2(t′)

= 1

N

[
da1

dt′
+ βa1(t′) − β

∫

dγ
(
I + γa1(t′)

) [
a4(π, γ, t′) + 1

]
a3(π, γ, t′)

]

L3[a](x, x′) = δS[a(x)]
δa3(x′)

=
∫

dt a4(θ
′, γ′, t)∂tδ(t − t′)

+
∫

dθa4(θ, γ
′, t′)∂θ(I + γ′a1(t′))δ(θ − θ′)

− β

N
a2(t′)

(
I + γ′a1(t′)

) (
a4(π, γ′, t′) + 1

)

× δ(π − θ′)

L4[a](x, x′) = δS[a(x)]
δa4(x′)

= ∂t′a3(x′) + ∂θ′
(
I + γ′a1(t′)

)
a3(x′)

− β

N
a2(t′)

(
I + γ′a1(t′)

)
a3(π, γ′, t′)δ(π − θ′)

(31)

The mean field equations are obtained by solving Li = 0 using
(31). We immediately see that a2 = a4 = 0 are solutions, which
leaves us with

ȧ1 + βa1 − β

∫
dγ(I + γa1) a3(π, γ, t) = 0 (32)

∂ta3 + (I + γa1) ∂θa3 = 0 (33)

The mean field equations should be compared to those of the
spike response model Gerstner (1995, 2000). We can also solve
(33) directly to obtain

a3(x, t) = ρ0

(
θ −

∫ t

t0

dt′
[
I�(t′) + γa1(t′)

]
, γ, �

)

where ρ0 is the initial distribution. If the neurons are initially dis-
tributed uniformly in phase, then ρ0 = g(γ)/2π and the mean
field equations reduce to

ȧ1(t) + βa1(t) − β

2π
(I + γ̄a1(t)) = 0 (34)

which has the form of the Wilson-Cowan equation, with
(β/2π) (I + γ̄a1) acting as a gain function. Hence, the Wilson-
Cowan equation is a full description of the infinitely large system
limit of a network of globally coupled simple phase oscillators
in the asynchronous state. For all other initial conditions, the
one-neuron conservation equation (called the Vlasov equation in
kinetic theory) must be included in mean field theory.
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To go beyond mean field theory we need to compute
Lij(x, x′, x′′) = δLi(x, x′)/δaj(x′′):

L11[a] = 0

L12[a] = 1

N

[
− d

dt′′
+ β − β

∫
dγ γ

[
a4(π, γ, t′′) + 1

]
a3(π, γ, t′′)

]
δ(t′′ − t′)

L13[a] =
[
γ′′

∫
dθ a4(x)δ(γ − γ′′)∂θδ(θ − θ′′)

− β

N
γ′′a2(t′)

[
a4(π, γ′′, t′′) + 1

]
δ(π − θ′′)

]
δ(t′ − t′′)

L14[a] =
[
γ′′∂θ′′ a3(x′′) − β

N
γ′′a2(t′′)a3(π, γ′′, t′′)δ(π − θ′′)

]

δ(t′ − t′′)

L21[a] = 1

N

[
d

dt′
+ β − β

∫
dγ γ

[
a4(π, γ, t′) + 1

]
a3(π, γ, t′)

]

δ(t′ − t′′)

L22[a] = 0

L23[a] = − β

N
(I + γ′′a1(t′))

[
a4(π, γ′′, t′)) + 1

]
δ(π − θ′)

δ(t′ − t′′)

L24[a] = − β

N
(I + γ′′a1(t′))a3(π, γ′′, t′)]δ(π − θ′′)δ(t′ − t′′)

L31[a] =
[∫

dθ a4(θ, γ
′, t′)γ′∂θδ(θ − θ′) − β

N
a2(t′)γ′

[
a4(π, γ′, t′) + 1

]
δ(π − θ′)

]
δ(t′ − t′′)

L32[a] = − β

N

(
I + γ′a1(t′)

) (
a4(π, γ′, t′) + 1

)
δ(π − θ′)

δ(t′ − t′′)

L33[a] = 0

L34[a] = [
δ(θ′ − θ′′)∂t′′ − ∂θ′′

(
I + γ′a1(t′)

)
δ(θ′′ − θ′)

− β

N
a2(t′)(I + γ′a1(t′))δ(π − θ′)δ(π − θ′′)

]

δ(γ′ − γ′′)δ(t′′ − t′)

L41[a] =
[
∂θ′γ′a3(x′) − β

N
a2(t′)γ′a3(π, γ′, t′)δ(π − θ′)

]

δ(t′ − t′′)

L42[a] = − β

N
(I + γ′a1(t′))a3(π, γ′, t′)δ(π − θ′)δ(t′ − t′′)

L43[a] = ∂t′δ(x′ − x′′) + ∂θ′
(
I + γ′a1(t′)

)
δ(x′ − x′′)

− β

N
a2(t′)

(
I + γa1(t′)

)
δ(π − θ′)δ(π − θ′′)

δ(γ′ − γ′′)δ(t′ − t′′)

L44[a] = 0

The activity equations for the means to order N−1 are given by
(26). The only non-zero contributions are given by L13 and L31

resulting in

L2 + 1

2N

δ

δa2

∫
dxdx′(L13C13 + L31C31) = 0

L4 + 1

2N

δ

δa4

∫
dxdx′(L13C13 + L31C31) = 0

since a2 = a4 = 0 and correlations involving response variables
(even indices) will be zero for equal times. The full activity
equations for the means are thus

ȧ1 + βa1 − β

∫
dγ(I + γa1) a3(π, γ, t)

− β

N

∫
dγ γC(π, γ, t) = 0 (35)

∂ta3 + (I + γa1) ∂θa3 + 1

N
γ∂θC(θ, γ, t) = 0 (36)

where C(θ, γ, t) = C13(t; θ, γ, t) = C31(θ, γ, t; t).
We can now use the Lij in (28) to obtain activity equations

for Cij. There will be sixteen coupled equations in total but the
applicable non-zero ones are

[
d

dt
+ β − β

∫
dγ γa3(π, γ, t)

]
C11 (t; t0)

− β

∫
dγ (I + γa1) C31 (π, γ, t; t0)

− β

∫
dγ (I + γa1(t)) a3(π, γ, t)C41(π, γ, t; t0) = 0 (37)

[
d

dt
+ β − β

∫
dγ γa3(π, γ, t)

]
C13(t; x0)

− β

∫
dγ (I + γa1) C33 (π, γ, t; x0)

− β

∫
dγ (I + γa1(t)) a3(π, γ, t)C43 (π, γ, t; x0) = 0 (38)

γ∂θa3(x)C11 (t; t0) + [∂t + (I + γa1) ∂θ] C31(x; t0)

− β

N
(I + γa1(t)) a3(π, γ, t)δ(π − θ)C21(t, t0) = 0 (39)

γ∂θa3(x)C13(t; x0) + [∂t + (I + γa1(t)) ∂θ] C33(x, x0)

− β

N
(I + γa1(t)) a3(π, γ, t)δ(π − θ)C23(t, x0) = 0 (40)

Adding (38) and (39) and taking the limit t0 → t and setting
θ0 = θ, γ0 = γ gives

∂tC(θ, γ, t) +
[
β − β

∫
dγ′ γ′a3(π, γ′, t) + (I + γa1) ∂θ

]
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C(θ, γ, t) − β

∫
dγ′ (

I + γ′a1
)

C33(π, γ′, t; x)

− 2β (I + γa1(t)) a3(π, γ, t)δ(π − θ) + γ∂θa3(x)C11(t; t) = 0

where we use the fact that C21(t, t′) = N and C43(x; x′) = δ(θ −
θ′)δ(γ − γ′) in the limit of t′ approaching t from below and equal
to zero when approaching from above. Adding (37) and (40) to
themselves with t and t0 interchanged and taking the limit of t0

approaching t gives

[
d

dt
+ 2β − 2β

∫
dγ γa3(π, γ, t)]

]
C11(t; t)

− 2β

∫
dγ (I + γa1) C(π, γ, t) = 0

[∂t + (I + γa1(t)) ∂θ] C33(x; x) + 2γ[∂θa3(x)]C(x) = 0

because C41(x; t) = 0 and C23(t; x) = 0. Putting this all together,
we get the generalized activity equations

da1

dt
+ βa1(t) − β

∫
dγ (I + γa1(t)) a3(π, γ, t)

− β

N

∫
dγ γC(π, γ, t) = 0 (41)

∂ta3(θ, γ, t) + (I + γa1) ∂θa3(θ, γ, t)

+ 1

N
γ∂θC(θ, γ, t) = 0 (42)

∂tC(θ, γ, t) +
[
β − β

∫
dγ′ γ′a3(π, γ′, t) + (I + γa1) ∂θ

]

C(θ, γ, t) − β

∫
dγ′ (

I + γ′a1
)

C33(π, γ′, t; θ, γ, t)

− 2β (I + γa1(t)) a3(θ, γ, t)δ(π − θ)

+γ∂θa3(θ, γ, t)C11(t; t) = 0 (43)[
d

dt
+ 2β − 2β

∫
dγ γa3(π, γ, t)

]]
C11(t; t)

− 2β

∫
dγ (I + γa1) C(π, γ, t) = 0 (44)

[∂t + (I + γa1(t)) ∂θ] C33(θ, γ, t; θ, γ, t)

+ 2γ∂θa3(θ, γ, t)C(θ, γ, t) = 0 (45)

Initial conditions, which are specified in the action, are required
for each of these equations. The derivation of these equations
using classical means require careful consideration for each par-
ticular model. Our method provides a blanket mechanistic algo-
rithm. We propose that these equations represent a new scheme
for studying neural networks.

Equations 41–45 are the complete self-consistent generalized
activity equations for the mean and correlations to order N−1. It
is a system of partial differential equations in t and θ. These equa-
tions can be directly analyzed or numerically simulated. Although
the equations seem complicated, one must bear in mind that

they represent the dynamics of the system averaged over ini-
tial conditions and unknown parameters. Hence, the solution
of this PDE system replaces multiple simulations of the original
system. In previous work, we required over a million simula-
tions of the original system to obtained adequate statistics Buice
and Chow (2013b). There is also a possibility that simplify-
ing approximations can be applied to such systems. The system
has complete phase memory because the original system was
fully deterministic. However, the inclusion of stochastic effects
will shorten the memory and possibly simplify the dynamics.
It will pose no problem to include such stochastic effects. In
fact, the formalism is actually more suited for stochastic systems
Buice et al. (2010).

DISCUSSION
The main goal of this paper was to show how to systematically
derive generalized activity equations for the ensemble averaged
moments of a deterministically coupled network of spiking neu-
rons. Our method utilizes a path integral formalism that makes
the process algorithmic. The resulting equations could be derived
using more conventional perturbative methods although possi-
bly with more calculational difficulty as we found before Buice
et al. (2010). For example, for the case of the stochastic spike
model, Buice et al. (2010) presumed that the Wilson-Cowan
activity variable was the rate of a Poisson process and derived
a system of generalized activity equations that corresponded to
deviations around Poisson firing. Bressloff (2010), on the other
hand, assumed that the Wilson-Cowan activity variable was a
mean density and used a system-size expansion to derive an alter-
native set of generalized activity equations for the spike model.
The classical derivations of these two interpretations look quite
different and the differences and similarities between them are
not readily apparent. However, the connections between the two
types of expansions are very transparent using the path integral
formalism.

Here, we derived equations for the rate and covariances
(first and second cumulants) of a deterministic synaptically cou-
pled spiking network as a system size expansion to first order.
However, our method is not restricted to these choices. What
is particularly advantageous about the path integral formal-
ism is that it is straightforward to generalize to include higher
order cumulants, extend to higher orders in the inverse sys-
tem size, or to expand in other small parameters such as the
inverse of a slow time scale. The action fully specifies the sys-
tem and all questions regarding the system can be addressed
with it.

To give a concrete illustration of the method, we derived the
self-consistent generalized activity equations for the rates and
covariances to order N−1 for a simple phase model. The resulting
equations consist of ordinary and partial differential equations.
This is to be expected since the original system was fully deter-
ministic and memory cannot be lost. Even mean field theory
requires the solution of an advective partial differential equa-
tion. The properties of these and similar equations remain to
be explored computationally and analytically. The system is pos-
sibly simpler near the asynchronous state, which is marginally
stable in mean field theory like the Kuramoto model Strogatz and

Frontiers in Computational Neuroscience www.frontiersin.org November 2013 | Volume 7 | Article 162 | 8

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Buice and Chow Generalized activity equations

Mirollo (1991) and like the Kuramoto model, we conjecture that
the finite size effects will stabilize the asynchronous state Buice
and Chow (2007); Hildebrand et al. (2007). The addition of noise
will also stabilize the asynchronous state. Near asynchrony could
be exploited to generate simplified versions of the asynchronous
state.

We considered a globally connected network, which allowed
us to assume that networks for different parameter values and
initial conditions converge toward a “typical” system in the large
N limit. However, this property may not hold for more realistic
networks. While the formalism describing the ensemble average
will hold regardless of this assumption, the utility of the equa-
tions as descriptions of a particular network behavior may suffer.
For example, heterogeneity in the connectivity (as opposed to the
global connectivity we consider here) may threaten this assump-
tion. This is the case with so called “chaotic random networks”
Sompolinsky et al. (1988) in which there is a spin-glass transi-
tion owing to the variance of the connectivity crossing a critical
threshold. This results in the loss of a “typical” system in the large
N limit requiring an effective stochastic equation which incorpo-
rates the noise induced by the network heterogeneity. Whether
the expansion we present here is useful without further consider-
ation depends upon whether the network heterogeneity induces
this sort of effect. This is an area for future work. A simpler issue
arises when there are a small discrete number of “typical” sys-
tems (such as with bistable solutions to the continuity equation).
In this case, there are noise induced transitions between states.
While the formalism has a means of computing this transition
Elgart and Kamenev (2004), we do not consider this case here.

An alternative means to incorporate heterogeneous connec-
tions is to consider a network of coupled systems. In such a
network, a set of generalized activity equations, such as those
derived here or simplified versions, would be derived for each
local system, together with equations governing the covariances
between the local systems. Correlation based learning dynam-
ics could then be imposed on the connections between the local
systems. Such a network could serve as a generalization of cur-
rent rate based neural networks to include the effects of spike
correlations with applications to both neuroscience and machine
learning.
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