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ABSTRACT MGE1 encodes a yeast chaperone involved in Fe-S cluster metabolism
and protein import into the mitochondria. In this study, we identified MGE1 as a
multicopy suppressor of susceptibility to the antifungal fluconazole in the model
yeast Saccharomyces cerevisiae. We demonstrate that this phenomenon is not exclu-
sively dependent on the integrity of the mitochondrial DNA or on the presence of
the drug efflux pump Pdr5. Instead, we show that the increased dosage of Mge1
plays a protective role by retaining increased amounts of ergosterol upon flucona-
zole treatment. Iron metabolism and, more particularly, Fe-S cluster formation are in-
volved in regulating this process, since the responsible Hsp70 chaperone, Ssq1, is re-
quired. Additionally, we show the necessity but, by itself, insufficiency of activating
the iron regulon in establishing the Mge1-related effect on drug susceptibility. Fi-
nally, we confirm a similar role for Mge1 in fluconazole susceptibility in the patho-
genic fungi Candida glabrata and Candida albicans.

IMPORTANCE Although they are mostly neglected compared to bacterial infec-
tions, fungal infections pose a serious threat to the human population. While some
of them remain relatively harmless, infections that reach the bloodstream often be-
come lethal. Only a few therapies are available, and resistance of the pathogen to
these drugs is a frequently encountered problem. It is thus essential that more re-
search is performed on how these pathogens cope with the treatment and cause re-
current infections. Baker’s yeast is often used as a model to study pathogenic fungi.
We show here, by using this model, that iron metabolism and the formation of the
important iron-sulfur clusters are involved in regulating susceptibility to fluconazole,
the most commonly used antifungal drug. We show that the same process likely
also occurs in two of the most regularly isolated pathogenic fungi, Candida glabrata
and Candida albicans.
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Fungal infections pose a significant threat to the health of humans and other
organisms. Some of these infections are superficial and merely impose a mild form

of inconvenience to the patient, while others are invasive, causing severe disease and,
potentially, death. Once an invasive infection is established, the likelihood of survival
for the patient rarely exceeds 50% (1). The gravity of fungal infections and the
concomitant importance of searching for new and better antifungal therapies are
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generally underappreciated. The number of drugs available against fungal infections is
limited, and those that are commonly used often suffer from being fungistatic rather
than fungicidal (2, 3). The azoles, with fluconazole (flu) being the most studied,
comprise one of these commonly used, fungistatic classes of antifungals (4). The azoles
target the ergosterol biosynthesis pathway, more particularly, the lanosterol 14�-
demethylase (Erg11). This enzyme is essential in Saccharomyces cerevisiae, making the
nonfungicidal nature of these drugs paradoxical (5, 6). Resistance to azoles is regularly
caused by increased expression of genes encoding efflux pumps, causing overexpres-
sion of or altering the target gene by point mutations or generating cellular responses
to cope with stress (4). The fungus can, however, also obtain certain transient, meta-
bolic or epigenetic, adaptations that confer decreased susceptibility to the antifungal
agent. This slow residual growth at inhibitory concentrations of the drug is called
tolerance or trailing growth and hypothetically also generates the time needed for and
the possibility of directional selection promoting the acquirement of alterations in the
genome, causing resistance (7, 8).

In this project, we isolated MGE1 as a multicopy suppressor of fluconazole suscep-
tibility in S. cerevisiae. Mge1 is a cochaperone for members of the Hsp70 family of
chaperones (9, 10), which serve functions in several cellular processes such as protein
folding, preventing protein aggregation, protein translocation, targeted degradation,
and adjusting the activity of regulatory proteins (11, 12). This cochaperone was
discovered as a member of the mitochondrial import system, translocating proteins
across the inner membrane into the matrix of the mitochondria (9, 13–15). The Hsp70
molecule involved is Ssc1, which is, like Mge1, an essential protein and is involved in
refolding of denatured proteins (9, 16–18). Mge1 also functions as the nucleotide
exchange factor of Ssq1, another Hsp70 chaperone, which is involved in the Fe-S cluster
biosynthesis pathway (19). Fe-S clusters are essential cofactors involved in redox,
catalytic, and regulatory processes, including the regulation of the iron starvation
response (20–24). Ssq1 is responsible for transferring the assembled Fe-S cluster from
the Isu1 scaffold to the target protein by destabilizing the connection between the
cluster and this scaffold (25). In contrast to Ssc1 and Mge1, Ssq1 is not essential because
when Ssq1 is depleted, Ssc1 can probably take over part of its function (26). We showed
earlier that iron metabolism is involved in regulating susceptibility to fluconazole, since
addition of the iron chelator doxycycline to fluconazole-treated Candida albicans and
S. cerevisiae cells reduces or even completely abolishes tolerance (7, 27). In this paper,
we provide evidence of the involvement of Fe-S cluster metabolism and signaling
through the iron regulon in the Mge1-dependent regulation of fluconazole suscepti-
bility in S. cerevisiae. We also demonstrate that this altered susceptibility is accompa-
nied by modulation of the metabolic flux through the ergosterol synthesis pathway.
Finally, we show that overexpressing the orthologues of MGE1 in the pathogenic fungi
C. glabrata and C. albicans affects fluconazole susceptibility in a similar way. As such,
elucidating this apparently conserved fungal mechanism may yield interesting new
targets for drug development.

RESULTS
Increased dosage of Mge1 acts as a suppressor of susceptibility to fluconazole

in S. cerevisiae. Aiming to identify new regulators of fluconazole susceptibility, we
performed a screening of BY4742 transformed with multicopy plasmids, containing
parts of the S. cerevisiae genomic library obtained from F. Lacroute (28). To reduce the
background growth of the reference strain on the screening medium containing
supra-minimum inhibitory concentrations (MICs) of fluconazole, we added the iron
chelator doxycycline, for which we and others reported a synergistic effect with
fluconazole earlier (7, 27). The resulting reduction of background growth allowed us to
more clearly distinguish true multicopy suppressors of fluconazole susceptibility. Using
these sensitized screening conditions (10 �g/ml fluconazole and 50 �g/ml doxycy-
cline), we isolated the Hsp70 cochaperone Mge1, next to Erg11, as a dosage-dependent
suppressor of susceptibility to fluconazole. We subcloned the MGE1 fragment (contain-
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ing the promoter, open reading frame [ORF], and terminator) from the pFL44 plasmid
into YEPlac195 and verified overexpression in transformants using quantitative reverse
transcription-PCR (qRT-PCR), which yielded a fold increase of 11.7 (standard error of the
mean [SEM], 1.40) compared to the control strain. This increased expression causes a
strong decrease in susceptibility to fluconazole compared to the empty vector control.
The improved growth of the transformed BY4742 strain (indicated as MGE1 in all
figures) compared to the control (with empty YEPlac195, indicated as EV) was visualized
by means of the Etest method and spot assays (Fig. 1A and B). The MICflu of these
strains was determined by Etest analyses and broth microdilution assays. All experi-
ments were done with at least three biological repeats, showing consistent results. The
MICflu values are depicted in Table 1. We can conclude from these data that overex-
pression of MGE1 causes a decrease in the susceptibility to fluconazole in S. cerevisiae
and that this effect is more clearly visible under sensitized conditions where doxycy-
cline is added to the medium. From the broth microdilution assay, we not only were

FIG 1 MGE1 overexpression improves growth of the wild-type S. cerevisiae strain on fluconazole. (A) Etest
analysis of the overexpression strain (MGE1) and control strain (EV). (B) Serial dilutions of both strains were
spotted on SDglu medium containing fluconazole (flu; 10 or 20 �g/ml) and/or doxycycline (dox; 50 or
100 �g/ml). Pictures were taken after 48 and 72 h of incubation at 30°C. (C) Tolerance assay. Data represent
dose-response curves determined for both strains, with dotted lines indicating 50% (upper line) and 90%
(middle line) growth inhibition and the initial inoculum (lower line). No significant difference was observed
in trailing growth between the overexpression strain and control strain (P � 0.731 for 128 �g/ml flu and
P � 0.381 for 64 �g/ml flu, tested by two-way ANOVA with Bonferroni correction).
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able to determine the MIC50 and MIC90 of the mutant compared to the control but also
defined the effect of the overexpression on the growth at supra-MICs of fluconazole,
called tolerance. Figure 1C shows that, although the MIC50 and MIC90 change clearly
when MGE1 is overexpressed, there is no significant difference between the colony
forming unit (CFU) counts at higher fluconazole concentrations. Therefore, in the
following parts of this article, we use only the MICflu as a readout of drug susceptibility.

Next, we aimed to check the effect of fluconazole on MGE1 expression under our
experimental conditions. We performed qRT-PCR experiments on a wild-type BY4742
strain in the absence or presence of 20 �g/ml fluconazole. The expression of the gene
decreased 2-fold in the presence of the drug, indicating that Mge1 itself might be a
direct or indirect target of fluconazole {relative expression level with SEM, 1 � 0.046
versus 0.498 � 0.045 for 0 versus 20 �g/ml fluconazole with P � �0.001 [paired
Student’s t test on log2(Y) transformed data]}.

Mge1 can induce fluconazole resistance independently of rho0 formation and
Pdr5. S. cerevisiae cells can lose part or all of their mitochondrial genome, generating
so-called rho� or rho0 cells, respectively (29, 30). It has been reported that such cells
acquire resistance to certain chemicals such as fluconazole, though the underlying
mechanisms are not yet fully known (31). Petite-negative strains contain nuclear
mutations that render the loss of (part of) the mitochondrial genome lethal (32).
Consequently, these strains cannot form rho0 or rho� cells. To verify whether decreased
fluconazole susceptibility of the MGE1 overexpression strain might be caused by

TABLE 1 The effect of MGE1 overexpression on the MICflu of several strainsd

Strain

MICflu (�g/ml)

Etest

Broth microdilution
assay

MIC50 MIC90

S. cerevisiae BY4742 EV 6–8 8–16 16
S. cerevisiae BY4742 MGE1 24–32 16–32 32–64
S. cerevisiae ira2� EV 4–6 8–16 8–16
S. cerevisiae ira2� MGE1 12–16 16–32 16–32
S. cerevisiae yme1� EV 12–16 8–16 16–32
S. cerevisiae yme1� MGE1 32–48 16–32 32–64
S. cerevisiae opi1� EV 12–16 8–16 8–16
S. cerevisiae opi1� MGE1 48–64 32–64 32–64
S. cerevisiae rho0 EV 24–32 16–32 16–32
S. cerevisiae rho0 MGE1 �256 32–64 32–64
S. cerevisiae pdr5� EV 0.25 0.5–1 0.5–1
S. cerevisiae pdr5� MGE1 0.75 0.5–1 1–2
S. cerevisiae upc2� EV 4–6 4–8 4–8
S. cerevisiae upc2� MGE1 24–32 8–16 16–32
S. cerevisiae tom70� EV 6–8 8–16 8–16
S. cerevisiae tom70� MGE1 16–24 16–32 32–64
S. cerevisiae ecm10� EV 6–8 8–16 16–32
S. cerevisiae ecm10� MGE1 24–32 32–64 32–64
S. cerevisiae ssq1� EV 2–4a 2–4a 2–4a

S. cerevisiae ssq1� MGE1 1–1.5a —b —b

S. cerevisiae aft1� EV 4–6 8–16 16
S. cerevisiae aft1� MGE1 4–6 8–16 8–16
S. cerevisiae aft2� EV 4–6 8–16 8–16
S. cerevisiae aft2� MGE1 32–48 16–32 32–64
S. cerevisiae BY4742 6–8 8–16 16–32
S. cerevisiae fra1� 6–8 8–16 16–32
C. glabrata HTL EV 8 (16–24)c 2–4 4–8
C. glabrata HTL pTDH3-CgMGE1 24 (48–64)c 4–8 8–16
C. glabrata HTL pPGK1-CgMGE1 16 (48–64)c 2–4 8–16
aData were determined after 72 h on SCglu (latter only for Etest).
b—, data could not be determined due to low growth.
cRPMI medium with 0.2% (or 2%) glucose was used.
dValues were determined by Etest and broth microdilution analysis. MGE1, MGE1 overexpression; EV, empty
vector control.
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increased generation of rho0/� cells, we transformed petite-negative strains with the
overexpression vector. We chose three mutants involved in seemingly independent
processes. The null mutants of OPI1, IRA2, and YME1 were all discovered to be
dependent on mitochondrial DNA (mtDNA) (33, 34). For these strains, the MICflu tests
were performed in minimal synthetic defined glucose (SDglu) medium as well as rich
yeast extract-peptone-dextrose (YPD) medium, as it has been suggested that some
petite-negative strains depend only on their mtDNA in rich medium (34). Figure S1A
in the supplemental material and the MICflu values in Table 1 and in Table S4 in the
supplemental material show the sustained effect of MGE1 overexpression on growth of
the petite-negative strains in the presence of fluconazole, arguing against the hypoth-
esis that rho0/� cells are the sole cause of improved growth on fluconazole. We have
to take into account, however, that overexpression of MGE1 could potentially suppress
the dependency of the petite-negative mutants on their mtDNA. Nevertheless, over-
expression of MGE1 also causes an increase in the MICflu of a rho0 strain, as can be seen
in Table 1 and Fig. S1A, confirming our hypothesis more incontestably. Taken together,
these data suggest that the decreased susceptibility to fluconazole in MGE1-
overexpressing cells is not (solely) caused by increased generation of rho0/� cells.

Overexpression of genes encoding drug efflux pumps is another well-known
method of acquiring resistance to drugs that can penetrate the cell. In Candida species,
expression of genes of the CDR and MDR families, encoding ABC transporters and major
facilitators, respectively, are often found upregulated in clinically isolated resistant
strains (35–37). The orthologue of the C. albicans CDR1 gene in S. cerevisiae is PDR5. It
was verified that PDR5 expression is augmented in rho0/� cells compared to rho� cells.
The acquired resistance to several types of chemicals is thought to be caused by this
phenomenon (31). Expression levels of PDR5 were higher in the MGE1 overexpression
strain, indicating that Pdr5 might have been involved in the increased growth on
fluconazole {relative expression level � SEM for 0 �g/ml fluconazole and EV versus
MGE1, 1.000 � 0.047 versus 1.596 � 0.165 with P � 0.01; for 20 �g/ml fluconazole and
EV versus MGE1, 1.482 � 0.086 versus 2.494 � 0.088 with P � 0.001 [Bonferroni-
corrected two-way analysis of variance (ANOVA) of log2(Y) transformed data]}. To
determine whether this increase was the sole cause of the decreased susceptibility of
the MGE1 overexpression strain, we assessed the effect of MGE1 overexpression on the
MICflu of the pdr5� strain. It can be seen from Table S4 and Fig. S1B that deletion of
PDR5 in the rho0 background reduced the MICflu to the same level as deletion of PDR5
in the wild-type BY4742 background, reinforcing the notion that much of the flucona-
zole resistance of rho0/� cells is due to upregulation of PDR5 expression. Overexpress-
ing MGE1 in a pdr5� strain still resulted in a significant increase of the MICflu from 0.25
to 0.75 �g/ml (Table 1; Fig. S1B) indicating that, while increased expression of PDR5 in
cells with an elevated dosage of Mge1 may still play a minor role, Mge1 can induce
fluconazole resistance independently of the efflux pump.

Overexpression of MGE1 increases the residual amount of ergosterol after
treatment with fluconazole independently of the expression of fluconazole-
induced ERG genes. As already shown by Arthington-Skaggs et al. for C. albicans (38),
resistance to fluconazole often correlates with higher residual ergosterol levels after
drug application. To investigate the possible role of ergosterol in mediating the effect
of MGE1 overexpression on fluconazole susceptibility, we measured ergosterol in the
overexpression mutant. As can be seen from Fig. 2A, in the absence of fluconazole,
there was only a small difference between the control and the strain overexpressing
MGE1. Upon treatment with fluconazole, however, the fraction of ergosterol remaining
in the mutant was significantly higher than the control (Fig. 2A and C). This
phenotype was again independent of Pdr5, since the effect was still visible in the
pdr5� mutant (Fig. 2B and C). To elucidate how MGE1 overexpression affects sterol
synthesis in general, we performed gas chromatography-mass spectrometry (GC-
MS) analysis of the sterols isolated from our strains, in the absence and presence of
fluconazole (Fig. S2A and B). As fluconazole targets Erg11, lanosterol accumulates
and ergosterol levels decrease in the presence of the drug. Under these conditions,
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lanosterol is also converted to 14-methylfecosterol and ultimately to the toxic com-
pound 14-methylergosta-8,24(28)-dien-3�,6�-diol, which represents an important as-
pect of the mode of action of the drug (39, 40). Interestingly, we saw that, compared
to the control strain, overexpression of MGE1 reduced the metabolic flux that leads to

FIG 2 Ergosterol levels are less affected by fluconazole when MGE1 is overexpressed. S. cerevisiae cells were
grown in SDglu medium for 24 h, in the presence or absence of fluconazole. (A and B) Ergosterol levels for
transformants in the BY4742 background (A) and pdr5� background (B) are displayed. We note that for the
pdr5� strain, a smaller amount of fluconazole had to be used, due to the increased sensitivity to the drug. The
values were calculated relative to the average of the values from the untreated samples. For panels A and B,
the interaction between both parameters was statistically significant (P � 0.001). (C) Percentage of residual
ergosterol for both backgrounds, after fluconazole treatment. Statistical analysis was conducted by two-way
ANOVA with Bonferroni correction (A and B) and an unpaired Student’s t test (C); ***, P � 0.001.
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toxic sterol formation, thereby maintaining a higher flux toward ergosterol production
(Fig. 3).

As Erg11 is the target of fluconazole and the point in the sterol synthesis pathway
where progress to either ergosterol or the toxic sterol is defined, it seems valid to
hypothesize that Erg11 might be the enzyme linking Mge1 to ergosterol. We checked
the expression levels and protein levels of ERG11 and the Erg11 protein, respectively, in
the mutant and control strains in both the absence and presence of fluconazole.
Remarkably, gene expression levels and protein levels remained the same and were
reduced, respectively, rather than upregulated in the MGE1 overexpression strain
(Fig. S3A and B). For the Western blot analysis, we used an anti-hemagglutinin (anti-HA)
antibody and the AFc202 strain, where ERG11 was tagged chromosomally with a 3	 HA
tag, thus representing native expression. We verified that the MICflu of this mutant is
similar to that of the BY4742 wild-type strain, as can be seen in Table S4. Apart from
ERG11, other genes encoding ergosterol biosynthesis enzymes have also been shown
to be induced upon azole treatment (41–44). Still, we found that overexpression of
MGE1 did not significantly upregulate the expression of ERG2, ERG3, ERG4, ERG5, ERG6,
ERG7, ERG8, ERG9, ERG12, ERG19, ERG24, or ERG25 under either control or fluconazole-
treated conditions (Fig. S3A). As described by MacPherson et al. in 2005 for C. albicans

FIG 3 MGE1 overexpression alters the level of several sterols. Cells were grown in SDglu medium for 24 h in the presence or absence of
fluconazole. Sterol levels were determined by GC-MS and are displayed for ergosterol, lanosterol, 14-methylfecosterol, and 14-methylergosta-
8,24(28)-dien-3�,6�-diol. The values were calculated relative to the internal standard (ITS; cholestane). The interaction between the two
parameters was significant for each sterol (P � 0.05). Statistical analysis was conducted by two-way ANOVA with Bonferroni correction; *, P � 0.05;
**, P � 0.01; ***, P � 0.001. Data from other sterols that were detected, but that were generally less abundant or could not be identified, are
displayed in Fig. S2A.
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(43), Upc2 confers resistance to antifungals by modulating expression of certain genes
involved in ergosterol biosynthesis. We confirm here that Mge1 did not function
upstream of Upc2 in increasing the MICflu, since MGE1 overexpression still caused a
decrease in fluconazole susceptibility in an upc2� strain (Table 1; Fig. S1C). Additionally,
Upc2 did not influence MGE1 expression, as can be seen from Fig. S3C. In summary,
although Mge1 alters the flux through the sterol synthesis pathway, thereby maintain-
ing increased ergosterol levels and decreasing toxic sterol levels, this does not appear
to be mediated by changing the expression level of the fluconazole-dependent genes
encoding the main biosynthesis enzymes in this sterol pathway.

The Mge1-dependent decrease in fluconazole susceptibility requires the mito-
chondrial chaperone Ssq1. Both known processes involving Mge1, i.e., Fe-S cluster
formation and protein import across the inner mitochondrial membrane, are localized
to the mitochondria. Although the literature also reports on the localization of Mge1 to
this organelle (45), the experimental procedures used always consisted of in vitro rather
than in vivo methods. To verify that Mge1 indeed functions inside the mitochondria, in
the absence as well as the presence of fluconazole, we checked its localization by
fluorescence microscopy. From Fig. 4, it can be seen that Mge1 localized to the
mitochondria in the overexpression mutant, under both conditions. This indicates that
the function by which Mge1 causes a decrease in the susceptibility to fluconazole must
also be confined to this organelle. It was verified that MGE1-GFP overexpression still
caused an increased MICflu level (Table S4).

To further elucidate the mode of action by which Mge1 converts resistance to
fluconazole, we postulated that this phenotype is effectuated by either of the down-
stream Hsp70 proteins. Ssc1 is part of the TIM23 complex spanning the inner mito-
chondrial membrane and works as an ATPase, providing energy to transport proteins
into the mitochondria. A paralog of Ssc1, Ecm10, probably arose through genome
duplication (82% amino acid identity) and is thought to have functions that overlap
those of Ssc1 (46–48). It has been shown that Ecm10 also interacts with Mge1 (48). Ssq1
shows limited homology with Ssc1 (52% amino acid identity) and plays a role in one of
the initial steps of Fe-S cluster formation, together with Mge1 (19). To determine
whether the effect of MGE1 overexpression on fluconazole susceptibility operates
through Ssc1, Ecm10, or Ssq1, we verified if the resistance phenotype is still observed
in mutants with a defect in either of the downstream pathways. Tom70 is part of the
translocase of the outer mitochondrial membrane (TOM) complex, playing a role in

FIG 4 Mge1 localizes to the mitochondria. The BY4742 strain expressing both MGE1-GFP and mitochondrially targeted (Mt)
mCherry was incubated for 24 h in the absence or presence of 20 �g/ml fluconazole, pictures were taken afterward. The scale
bar represents 5 �m. DIC, differential interference contrast.
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recognizing and importing mitochondrial proteins (49, 50). Deletion of the TOM70 gene
affects protein import into the mitochondria (50). The MICflu of the tom70� strain was
equal to that of the wild type (Fig. S1D; Table S4), and overexpression of MGE1 in this
strain resulted in an increase in the MICflu similar to that seen with the wild type,
indicating that full protein import into the mitochondria is not essential for the
Mge1-related effect on fluconazole susceptibility (Fig. S1D; Table 1). As mentioned
before, Ecm10 is a paralog of Ssc1. Since deletion of ECM10, in contrast to SSC1, is
viable, we decided to see if overexpression of MGE1 in this strain would still cause an
increase in the MICflu. As can be seen from Fig. S1E and Table S4, the ecm10� strain had
an MICflu similar to that of the wild-type BY4742 strain. Overexpression of MGE1 in this
strain changed this MICflu in the same way as was seen with BY4742 (Fig. S1E; Table 1),
implying that Ecm10 is also not involved. Deletion of SSQ1 is viable; therefore, we also
tested the MICflu of the ssq1� strain and found it to be significantly lower than that of
the BY4742 wild-type strain (Fig. S1F; Table S4), in agreement with a previous report by
Dagley et al. (51). Overexpression of MGE1 in the ssq1� strain yielded remarkably few
and slow-growing transformants (our unpublished observations), suggesting that com-
bining a deletion of SSQ1 with overexpression of MGE1 alters the cells’ fitness. Addi-
tionally, when MGE1 was overexpressed, the MICflu of the ssq1� strain did not increase
compared to that of the empty vector control and even displayed a decrease (Fig. S1F;
Table 1). This suggests that Ssq1 is necessary to establish the Mge1-mediated effect on
fluconazole susceptibility.

Activation of the iron regulon is necessary but not sufficient for Mge1 to exert
its effect on fluconazole susceptibility. It seems evident, from the literature and
previous findings described above, that iron plays a role in regulating susceptibility to
fluconazole (7, 27). In an attempt to clarify how this happens and how Mge1 provides
a link in this process, we investigated the possible involvement of the iron regulon. Aft1
is a transcriptional regulator which induces transcription of genes involved in the
recovery of iron upon iron starvation (22, 23). AFT2 encodes a paralog of AFT1, which
arose through gene duplication. The proteins encoded by the two genes have partially
overlapping functions, with Aft2 being responsible for the iron metabolism when Aft1
is not present (24). Overexpression of MGE1 still reduced the susceptibility to flucona-
zole in an aft2� strain, but this effect was lost in the aft1� strain (Fig. S1G; Table 1). As
Aft1 is necessary for the Mge1-related effect, we speculated that, upon overexpression
of the cochaperone gene, the expression of iron regulon genes might also be induced.
We confirmed this for six iron regulon genes (Fig. 5). Next, we questioned whether mere
activation of the iron regulon could explain the Mge1-regulated effect on fluconazole
susceptibility or whether this is only part of the mechanism. Fra1 is a negative regulator
of the iron regulon. In the presence of an as-yet-unknown signal coming from the Fe-S
cluster metabolism in the mitochondria, Fra1 forms a complex with Fra2, Grx3, and Grx4
and inhibits the translocation of Aft1 to the nucleus, thereby inhibiting transcription of
the iron regulon genes (52). Deletion of FRA1 was shown to induce the iron regulon,
even in the presence of large amounts of iron (52). We confirmed that deletion of FRA1
induced expression of the iron regulon genes in our experimental setup as well. In
Fig. 5, we show that the induction of expression in the fra1� strain was always similar
to or higher than the induction seen upon MGE1 expression, indicating the validity of
the comparison. If activation of the iron regulon were the sole mechanism by which
MGE1 overexpression leads to fluconazole resistance, the fra1� strain should also show
an increased MICflu compared to that of the wild-type BY4742 strain. However, Table 1
and Fig. S1H show that this is not the case, indicating the requirement of yet another
unknown process to work in conjunction with iron regulon activation in establishing
fluconazole resistance downstream of Mge1. Thus, activation of the iron regulon is
necessary but is insufficient by itself to induce resistance against fluconazole down-
stream of Mge1.

Increased dosage of Mge1 also acts as a suppressor of susceptibility to flu-
conazole in C. glabrata. C. glabrata and C. albicans are two of the most frequently
isolated pathogenic fungi in humans (53). For the past few years, C. glabrata infections
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have been on the rise in northern Europe and the United States, indicating a need for
specific research and drug development (54). Its evolutionarily close relationship with
S. cerevisiae (55) implies that the phenotype that we observed for S. cerevisiae MGE1
(ScMGE1) overexpression with respect to susceptibility to fluconazole might also apply
to MGE1 in C. glabrata. The closest C. glabrata orthologue of S. cerevisiae Mge1 is
encoded by CAGL0J03850g, which is indicated as an uncharacterized ORF in the
Candida Genome Database (CGD) (56). Comparing the protein sequence of S. cerevisiae
Mge1 to that of its orthologue in C. glabrata yielded an amino acid identity of 68%. We
thus refer to the C. glabrata orthologue as C. glabrata Mge1 (CgMge1). To investigate
the effect of CgMGE1 overexpression on susceptibility to fluconazole, we created two
plasmids expressing the CgMGE1 ORF, together with its terminator, from either the
CgPGK1 promoter or the CgTDH3 promoter. Overexpression of MGE1 in the transformed
2001HTL strains was verified using qRT-PCR, yielding fold increases of 24.9 (SEM, 5.54)
for the CgPGK1 promoter and 42.9 (SEM, 4.0) for the CgTDH3 promoter compared to the
control. Both Etest and broth microdilution analyses indicated that overexpression of
CgMGE1 in C. glabrata also increased the MICflu (Table 1; Fig. S4A). The microdilution
assay was performed on RPMI medium containing 0.2% glucose, while the Etest
analysis was performed on RPMI agar plates containing both 0.2% and 2% glucose. The
addition of extra glucose generally enhances the ability to visually inspect the MICflu, as
formerly shown for C. albicans (57). As with S. cerevisiae, no significant effect of CgMGE1
overexpression on tolerance was observed (Fig. S4B). In summary, these data suggest
that, similarly to the situation in S. cerevisiae, CgMge1 plays a role in regulating
susceptibility to fluconazole in C. glabrata.

Overexpression of MGE1 affects both resistance and tolerance in C. albicans.
Although the incidence of C. glabrata infections is increasing steadily in certain parts of
the world, C. albicans is still the most prevalent cause of Candida infections worldwide
(53). The evolutionary distance between this important pathogen and S. cerevisiae is,
however, bigger than is the case for C. glabrata, indicating that S. cerevisiae might not
be as good a model system for C. albicans as it is for C. glabrata (55). To check whether
Mge1 is also involved in fluconazole susceptibility in C. albicans, we generated a

FIG 5 Expression of typical iron regulon genes increases upon overexpression of MGE1 or deletion of FRA1. Expression of the representative iron
regulon genes HMX1, FRE1, FIT1, FTR1, FET3, and ARN1 was analyzed by qRT-PCR. For each gene, the left panel shows the effect of overexpressing
MGE1 in the BY4742 strain versus the EV control. The right panel shows comparisons of the levels of gene expression between BY4742 and fra1�
strains. Results are displayed as the average of log2(Y) transformed values with the SEM. The values were calculated relative to the averages of
the values from the respective controls. Statistical analysis was conducted by unpaired Student’s t test with Bonferroni correction; *, P � 0.05; **,
P � 0.01; ***, P � 0.001.
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plasmid where C. albicans MGE1 (CaMGE1) is under the control of the strong, consti-
tutive CaACT1 promoter. The CIp10 plasmid integrates in the genome at the RP10 locus,
where it should stably overexpress CaMGE1 (58). The SC5314 strain was transformed
with either the overexpression construct or the empty plasmid as a control. While the
control transformants displayed a uniform MICflu phenotype, overexpression of CaMGE1
yielded two phenotypes. One group of transformants did not show an alteration in the
MICflu compared to the EV controls, while others showed an increased MICflu which was
mainly visible after 24 h of incubation (Fig. S5A and B). We reasoned that this could
have been due to different levels of overexpression of CaMGE1, as we also had
observed various levels of (over)expression in the past upon transformation of C. albi-
cans (our unpublished observations). It is speculated that this might be due to the high
plasticity of the C. albicans genome (59). Here, we confirm a highly variable level of
CaMGE1 overexpression in our transformants and demonstrate that the observed
variation is largely due to the various results with respect to copy number integration
of the plasmid in the genome (Fig. S5A). As can be seen in Fig. 6, the highest CaMGE1
expression levels of the transformants correlated with an increase in the MICflu,
indicating that, above a certain threshold of CaMGE1 expression, increased resistance to
fluconazole was detected. Intriguingly, for those strains, we found a decrease in
tolerance (Fig. S5C). Our results thus indicate that upon (sufficient) overexpression of
MGE1, resistance of C. albicans to fluconazole is increased, similarly to the situation in
S. cerevisiae and C. glabrata. In contrast to the latter organisms, however, this increased
resistance in C. albicans seems to come at the cost of a lower tolerance to the same
drug.

DISCUSSION

In this study, we identified Mge1, a cochaperone involved in Fe-S cluster metabolism
and protein import into the mitochondria, as a multicopy suppressor of fluconazole
susceptibility (16, 17, 19). When an S. cerevisiae mutant strain grows in the presence of
an otherwise inhibitory chemical, it is important to consider increased rho0/� formation
and drug efflux as possible modes of action (60). Several groups have already reported
on a relation between Mge1, or its downstream chaperones, and mtDNA stability (18,
30, 61, 62). However, we show here that neither loss of the mitochondrial DNA nor drug
efflux through Pdr5 can solely account for the increased growth of the MGE1 overex-
pression strain on fluconazole (33, 34).

FIG 6 Overexpression level of CaMGE1 in SC5314 correlates with the MICflu. C. albicans strain SC5314 was
transformed with plasmid pLDa01 (CIp10-CaMGE1), and fluconazole sensitivity was determined with the
Etest method. Transformants with MICflu values that were similar to or higher than those seen with the
EV control strains were obtained. For 4 transformants of each group, CaMGE1 expression was determined
by qRT-PCR, and the values were calculated relative to the average of the values from the EV control
samples (see Fig. S5). The results are displayed as the average of log2(y) transformed values with the SEM
along with the separate data points. The statistical analysis was conducted by unpaired Student’s t test;
**, P � 0.01. WT, wild type.
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The target of fluconazole is Erg11, an enzyme involved in the biosynthesis of
ergosterol (5, 6). In this report, we show that ergosterol levels are elevated in an
S. cerevisiae strain where MGE1 is overexpressed, a phenomenon which is much more
prominent after the addition of fluconazole. It thus seems that Mge1 evokes a protec-
tive mechanism by which the cell can retain higher levels of ergosterol upon treatment
with fluconazole. A detailed analysis of the sterol spectra of our strains indicated that,
upon fluconazole addition, MGE1 overexpression reduces the metabolic flux toward
potential toxic sterols, most notably 14-methylergosta-8,24(28)-dien-3�,6�-diol (39, 40).
The reduced accumulation of this sterol, together with the retention of more ergosterol
upon fluconazole treatment, illustrates how Mge1 reduces susceptibility to the drug. As
Erg11 functions at the cross-section between the pathways leading to either ergosterol
production or toxic sterol accumulation, we analyzed the abundance of this enzyme
but found no increase at the level of either gene expression or protein abundance upon
MGE1 overexpression. Analysis of the expression of other ERG genes, known to be
regulated by fluconazole, could also not identify a transcriptional mechanism explain-
ing the observed sterol profiles. It is possible that MGE1 overexpression specifically
alters the enzyme activity of Erg11 or of other ergosterol biosynthesis enzymes, rather
than their expression. It remains unclear how Mge1, operating in the mitochondria,
would impact ergosterol biosynthesis, which mainly takes place in the endoplasmic
reticulum (ER) (63).

To further elucidate how Mge1 function might be linked to fluconazole suscepti-
bility, we looked at the known Mge1 effectors. We demonstrated the involvement of
the Hsp70 chaperone Ssq1, as this chaperone is necessary for the cell to retain its MICflu

at the wild-type level and as overexpression of MGE1 in the ssq1� strain could not
increase fluconazole resistance. Ssq1 is essential for mitochondrial Fe-S cluster metab-
olism, which somehow functions as an iron-sensing system in the cell, since in the
presence of sufficient iron, an inhibitory signal originates from this metabolism and
impairs transcription of the iron regulon genes (64). Intriguingly, we found that
overexpressing MGE1 in the wild-type strain causes a significant increase in expression
of characteristic iron regulon genes. Furthermore, deleting AFT1, the gene encoding the
main transcriptional regulator of the iron regulon, impairs the effect of Mge1 on
fluconazole susceptibility, indicating the strict dependence of our phenotype on this
regulon. It is possible that overloading the cell with Mge1 might impair, rather than
increase, the cochaperone’s function. This would then lead to a reduced Fe-S signal,
thereby activating the iron regulon and generating fluconazole resistance by modu-
lating sterol synthesis, as shown before under iron-limiting conditions in yeast (65, 66).
Several elements argue against such a straightforward mechanism, however. First of all,
Schmidt et al. reported that overexpression of MGE1 increases the activity of Ssq1 (67),
implying increased rather than impaired Fe-S cluster biogenesis. Second, impairing
Ssq1 function does not lead to fluconazole resistance, as we observed that the ssq1�

strain was more sensitive, and not resistant, to fluconazole. Finally, although we
demonstrate the dependency of fluconazole resistance on the activation of the iron
regulon, we also clearly show that this is not sufficient, since mere activation of the iron
regulon through FRA1 deletion does not cause any change in the MICflu. It thus remains
to be investigated how Mge1 activity is linked to the iron regulon on one side and to
fluconazole susceptibility on the other side. It is tempting to speculate that increasing
Mge1 activity alters the balance in Fe-S cluster proteins in a specific way, causing
fluconazole resistance via two separate pathways: by activating the iron regulon and
simultaneously by some other, yet-to-be-elucidated mechanism. Future in-depth anal-
ysis of the changes in the Fe-S cluster metabolism upon MGE1 overexpression would
thus represent a valuable system to elucidate this mechanism. This analysis could
pinpoint Fe-S species which regulate the resistance to fluconazole through modulation
of ergosterol metabolism, i.e., by reducing toxic sterol production and increasing
ergosterol retention. At the same time, as the identities of the specific Fe-S species
which are involved in regulating the iron regulon are still unknown at present, such an
analysis would also provide crucial information on this topic.
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Apart from the observations made in S. cerevisiae, we also validated the Mge1-
related effect on fluconazole resistance in the fungal pathogens C. glabrata and
C. albicans. Very little is known about Fe-S cluster metabolism in either pathogen. The
C. glabrata orthologue of ScSSQ1 is uncharacterized (56). The C. albicans orthologue was
characterized recently (68); these researchers confirmed a role for CaSsq1 in iron
metabolism and iron regulon modulation. More research is necessary to uncover the
exact role of the Mge1-Ssq1 module in regulating the susceptibility of fungal cells to
fluconazole. Knowledge of this mechanism could provide novel drug targets which
would increase the antifungal potential of azoles in combinatorial therapies.

MATERIALS AND METHODS
Strains and plasmids. All S. cerevisiae strains used in this study are isogenic with respect to the

BY4742 laboratory strain and are listed in Table S1 in the supplemental material. Strain AFc202, carrying
a chromosomal 3	HA C-terminal tag at ERG11, was constructed by transforming BY4742 with a PCR
fragment obtained using primers listed in Table S2 and plasmid pMPY-3xHA as a template (69).
Transformants were allowed to pop out the URA3 marker by homologous recombination, and uracil
auxotrophs were selected using 5-fluoroorotic acid (5-FOA). The BY4742 strain was made rho0 by
repeated growth in the presence of 25 �g/ml ethidium bromide in minimal medium, as described in
reference 70. Deletion of PDR5 in BY4742 and rho0 strains was accomplished by amplification of the
hygromycin resistance marker gene from plasmid pFA6a-hphNT1 (71) and consequent transformation.
C. glabrata and C. albicans strains used in the experiments are also listed in Table S1. C. albicans strains
LDa01 to LDa08 were generated by transforming the StuI-linearized pLDa01 plasmid in SC5314. The
LDa09 strain was created similarly by integration of the empty CIp10-NAT1 plasmid. All specific geno-
types were checked by diagnostic PCR.

Plasmids are listed in Table S3. Plasmid pAFc86 contains MGE1 under the control of its promoter and
terminator. The SnaBI-XhoI fragment from the Lacroute library plasmid was cloned into YEplac195
linearized using SmaI. Plasmid pESc01 is similar to pAFc86, with fusion of MGE1 to the gene encoding
green fluorescent protein [GFP(S65T)]. This plasmid was created by amplification of the MGE1 promoter,
the MGE1 ORF, the GFP gene, and the MGE1 terminator and assembly of them in the YEPlac195 plasmid
using In-Fusion cloning (Clontech). The mitochondria were marked by transforming a plasmid containing
mCherry fused to a mitochondrial targeting sequence in the appropriate strains (72). Plasmids pESg01
and pESg02 were generated by assembling the CgPGK1 promoter or CgTDH3 promoter and the CgMGE1
ORF and its terminator in the pCgACH backbone (73) by In-Fusion cloning. Plasmid CIp10-NAT1 was
generated by exchanging the CaURA3 marker together with its promoter and terminator from the CIp10
plasmid (58) for the dominant C. albicans optimized NAT1 gene together with a CaACT1 promoter and
terminator (74), using NotI and SpeI. Another CaACT1 promoter and terminator were added in the
multiple cloning site, opened with MluI-NheI and XhoI-KpnI, respectively. Plasmid pLDa01 was generated
by integrating the CaMGE1 gene in the PstI-ClaI-cut CIp10-NAT1 vector.

Growth conditions: media and chemicals. S. cerevisiae strains were grown in SDglu, unless stated
otherwise. This medium contains 0.17% Difco yeast nitrogen base without amino acids or ammonium
sulfate, 0.5% ammonium sulfate, and 2% glucose. Liquid medium was pH adapted to pH 5.5. For solid
medium, the pH was set at 6.5 and 1.6% agar was added. Depending on the strain, additional amino acids
or nucleotides were added according to the method described in reference 75. For spot assays,
fluconazole (F8929; Sigma) and doxycycline (D9891; Sigma) were added to the medium at concentrations
of 10 or 20 �g/ml and 50 or 100 �g/ml, respectively. The procedure used to screen for multicopy
suppressors of susceptibility to fluconazole-doxycycline was described in reference 7. For some specific
experiments, YPD medium (containing 1% yeast extract, 2% peptone, and 2% glucose) was used.
C. albicans and C. glabrata strains were pregrown in synthetic complete glucose (SCglu) medium or
SC(-HIS)glu medium, composed of SDglu with the addition of complete or drop-out CSM (MP Biomedi-
cals). Assays were carried out in filter-sterilized RPMI 1640 medium with L-glutamine (R6504; Sigma) and
buffered with 0.165 M morpholinepropanesulfonic acid at pH 7. Depending on the assay, autoclave-
sterilized and precooled agar and/or 1.8% glucose was added to the medium. Cell cultures containing
fluconazole or doxycycline were always kept in the dark.

Determination of fluconazole susceptibility: MICflu evaluation, tolerance assays, and spot
assays. To determine the MICflu for the strains, two methods were always used in parallel. In the Etest
method (BioMérieux), the MICflu was determined as the concentration of fluconazole where the halo of
growth inhibition/retardation intersected with the strip. Overnight cultures were adjusted to an optical
density at 600 nm (OD600) of 0.5 in water for S. cerevisiae and an OD600 of 0.2 for C. glabrata and
C. albicans and were spread on SDglu or RPMI (with 0.2% or 2% glucose) plates. The strips were placed
onto the lawn of cells, and the plates were incubated at 30°C or 37°C for 48 h. Broth microdilution assays
were conducted according to the Clinical Laboratory and Standards Institute (CLSI) standard methods
(76). Round-bottom, UV-sterilized 96-well microtiter plates were used, where all wells were filled with 0.5
to 2.5 	 103 cells/ml, 0 to 128 �g/ml fluconazole in 1/2 dilutions, and SDglu or RPMI medium (the latter
with 0.2% glucose). For C. albicans, the fluconazole dilution series was set between 0 and 32 �g/ml
fluconazole. After incubation of the plates at 30°C or 37°C under nonshaking conditions for 48 h, we
measured the OD600 of the resuspended cultures in each well to obtain quantitative and objective data.
A dose-response curve was created, and the MIC values were calculated by subtracting the background
OD values determined for the medium from all measured data points and subsequent normalization to
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the condition without fluconazole. The concentrations of the drug, between which the relative OD falls
below 50 or 10% of the no-drug OD are called the MIC50 and the MIC90, respectively. To evaluate the drug
tolerance of our strains, we generated dose-response curves based on CFU counts for the MGE1
overexpression strain and empty vector control. The wells of the broth microdilution assay plate were
resuspended, and each culture was diluted and plated. The drug tolerance was determined by checking
the CFU counts under the conditions seen with the two highest fluconazole concentrations. For spot
assays, overnight cultures were adapted to an OD600 of 1, and 5 serial 1/5 dilutions were spotted. SDglu
medium was used with different concentrations of fluconazole and doxycycline. The plates were
incubated at 30°C for 48 or 72 h. All experiments were conducted with at least three biological repeats,
and representative results are shown.

Sterol measurement. Sterols were extracted according to the method described in reference 77,
with a few adaptations. In summary, cells were grown for 24 h in minimal medium, with or without
20 �g/ml fluconazole. The cells were collected, resuspended in saponification medium, and subjected to
vortex mixing. The samples were incubated for 1 h at 80°C, after which 1 ml of water and 4 ml of hexane
were added. After mixing, the two layers were allowed to separate. For spectrophotometrical analysis,
UV-transmittable 96-well microtiter plates (3635; Costar Corning) were used to allow measurement of the
OD281 and OD230. A formula from reference 38 was used to measure the percentages of ergosterol
(corrected for cellular wet weight and resuspension volume). For GC-MS analysis, the sterols were
extracted twice with hexane, which was then evaporated by vacuum centrifugation. The sterols were
resuspended in 100 �l silylating mixture (85432; Sigma) and incubated at room temperature for 30 min.
Finally, 500 �l hexane was added and the samples were immediately stored at �20°C for later analysis
by GC-MS. One microliter of the sample was injected into a gas chromatograph-mass spectrometer
(Shimadzu QP2010 Ultra Plus) equipped with an HP-5ms nonpolar column (Agilent) (30 m in length,
0.25-mm inner diameter [id.]; 0.25-�m thin layer). Helium was used as carrier gas with a flow rate of
1.4 ml/min. Injection was carried out at 250°C in split mode after 1 min and with a ratio of 1:10. The
temperature was first held at 50°C for 1 min and then allowed to rise to 260°C at a rate of 50°C/min,
followed by a second ramp of 2°C/min until 325°C was reached; that temperature was maintained for
3 min. The mass detector was operated in scan mode (50 to 600 atomic mass units [amu]), using electron
impact ionization (70 eV). The temperatures of the interface and detector were 290°C and 250°C,
respectively. A mix of linear n-alkanes (from C8 to C40) was injected to serve as external retention index
markers. Sterols were identified by their retention time relative to the internal standard (cholestane) and
specific mass spectrometric patterns using AMDIS version 2.71. The deconvoluted spectra were matched
to GC-MS libraries described in reference 78 and NIST/EPA/NIH version 2011. Analysis was performed by
integration over the base ion of each sterol, and abundance was calculated relative to the internal
standard, comparing the relative peak areas of the compounds across treatments using two-way ANOVA
with Bonferroni correction. Apart from the P values for pairwise comparison, the P values for interaction
between the two parameters are also described.

RNA extraction and gene expression analysis by qRT-PCR. S. cerevisiae strains were grown in
SDglu medium at 30°C for 24 h, with or without 20 �g/ml fluconazole. C. glabrata and C. albicans cells
were incubated for 8 h at 37°C or 30°C in RPMI medium, with or without 1 �g/ml fluconazole. Cells were
washed with ice-cold water, resuspended in TRIzol (Thermo, Fisher), and broken using glass beads and
a FastPrep machine (MP Biomedicals). RNA was extracted by respective addition of chloroform and
isopropanol and washed three times with 70% ethanol. Equal amounts of RNA were treated with a DNase
enzyme (New England Biolabs) and converted to cDNA (iScript cDNA synthesis kit; Bio-Rad). Real-time
quantitative PCR (qPCR) reactions were conducted using GoTaq polymerase (Promega) and a StepOne-
Plus real-time PCR device (Thermo, Fisher). Data were analyzed using qBasePlus software (Biogazelle)
(79). Further data analysis and statistics analysis of log2(Y) transformed expression values were performed
with Graphpad Prism. Transformation of the data points was performed to enable the use of standard
statistical methods. Graphs show the means of the transformed values, together with their SEM. The
statistical method used is mentioned under each figure. Copy number analysis of the genomic DNA of
transformants was performed by qPCR, as described above.

Western blotting. S. cerevisiae strains were grown in SDglu medium for 24 h at 30°C, with or without
20 �g/ml fluconazole. Cells were washed with lysis buffer (200 mM sorbitol, 20 mM HEPES–KOH [pH 6.8],
1 mM EDTA, 50 mM potassium acetate and protease inhibitors [Roche]), and glass beads were added to
break them using a FastPrep machine. The amount of proteins was quantified using the Pierce protein
assay (Thermo, Fisher), and 6 �g was loaded per well on an Invitrogen NuPage Novex bis-Tris gradient
gel (4% to 12%). We used anti-HA (12013819001; Roche) and anti-Pgk1 (459250; Invitrogen) as loading
controls. The blots were visualized using a FujiFilm LAS-4000 mini system and accompanying software.

Fluorescence microscopy. To determine the location of Mge1-GFP inside the cell, we used a
FluoView FV1000 confocal microscope (Olympus IX81) and its software. We visualized GFP with a 488-nm
argon laser and BA505-540 emission filter and mCherry with a 559-nm laser and BA575-675 emission
filter. A 60	 UPlanSApo (numerical aperture [NA], 1.35) objective lens was used.
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