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Abstract: The present study examined and compared the effects of low- and high-molecular weight
(MW) chitosan, a nutraceutical, on lipid metabolism in the intestine and liver of high-fat (HF)
diet-fed rats. High-MW chitosan as well as low-MW chitosan decreased liver weight, elongated
the small intestine, improved the dysregulation of blood lipids and liver fat accumulation, and
increased fecal lipid excretion in rats fed with HF diets. Supplementation of both high- and
low-MW chitosan markedly inhibited the suppressed phosphorylated adenosine monophosphate
(AMP)-activated protein kinase-α (AMPKα) and peroxisome proliferator-activated receptor-α
(PPARα) protein expressions, and the increased lipogenesis/cholesterogenesis-associated protein
expressions [peroxisome proliferator-activated receptor-γ (PPARγ), sterol regulatory element binding
protein-1c and -2 (SREBP1c and SREBP2)] and the suppressed apolipoprotein E (ApoE) and
microsomal triglyceride transfer protein (MTTP) protein expressions in the livers of rats fed with HF
diets. Supplementation with both a low- and high-MW chitosan could also suppress the increased
MTTP protein expression and the decreased angiopoietin-like protein-4 (Angptl4) expression in the
intestines of rats fed with HF diets. In comparison between low- and high-MW chitosan, high-MW
chitosan exhibits a higher efficiency than low-MW chitosan on the inhibition of intestinal lipid
absorption and an increase of hepatic fatty acid oxidation, which can improve liver lipid biosynthesis
and accumulation.
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1. Introduction

People who eat a Western pattern of diet, which is generally characterized by high calories, high
protein, high fat and high salt, and have a low physical activity level tend to become obese and increase
the risk of suffering the metabolic syndrome [1]. Obesity is one of the risk factors for the occurrence
of cancer, cardiovascular disease, and diabetes. There are 39% of women and 39% of men aged ≥18
overweight and 18% of overweight or obese children and adolescents in 2016 [2]. Insulin resistance
and dyslipidemia induced by obesity and diabetes are risk factors for the occurrence of nonalcoholic
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fatty liver disease (NAFLD) [3,4]. How to prevent and improve obesity and diabetes has become an
important issue to reduce the prevalence of NAFLD.

Supplementation of chitosan has been reported to be responsible for regulating the metabolism
of carbohydrates and lipids. Chitosan could reduce the activity of intestinal disaccharides, increase
the excretion of lipids, improve insulin resistance, and prevent hepatic lipid accumulation in diabetic
animal models [5–8]. Zeng et al. (2008) have shown that the influence of the absorption and distribution
of chitosan in mice with oral administration is attributable to its water solubility and molecular weight
(MW); the decreased MW and increased water solubility can enhance the absorption of chitosan
molecules [9]. Chiu et al. (2017) have also discovered that low-MW chitosan produces greater effects
than chitosan oligosaccharide to alleviate the abnormal intestinal disaccharidase activity and lipid
metabolism in high-fat (HF) diet-fed rats [5]. Kondo et al. (2000) have shown that low-MW chitosan can
prevent the progression of non-insulin-dependent diabetes mellitus by using low-dose streptozotocin
(STZ) [10]. Yao et al. (2008) have found that high-MW chitosan possessed more potential than
low-MW chitosan in decreasing hyperglycemia and hypercholesterolemia in diabetic rats [11]. Both
low- and high-MW chitosan have been suggested to be capable of decreasing liver gluconeogenesis
and increasing muscle glucose uptake to alleviate hyperglycemic effects in STZ-induced type 1 diabetic
rats [7]. The regulation of both low- and high-MW chitosan in intestinal and liver lipid metabolism still
remains to be further investigated. The present study examined and compared the effects of low- and
high-MW chitosan on intestinal and hepatic lipometabolism in HF diet-fed rats. This study focuses
on the ability of comparatively low- and high-MW chitosan to inhibit intestinal lipid metabolism and
explore the differences of the effects of low- and high-MW chitosan on fatty liver in HF diet-fed rats.

2. Results

2.1. Effects of Low- and High-Mw Chitosan on Plasma Biochemical Indices, Organ Weight, and Body Weight in
Hf Diet-Fed Rats

After 8 weeks of feeding different diets, the changes of food intake, caloric intake, body weight,
and organ weight are shown in Table 1. The food intake was not affected in HF diet-fed rats with
or without chitosan as compared to control rats. No behavioural alteration was observed by adding
high-MW or low-MW chitosan to HF diet-fed rats. The final body weight was markedly higher in the
HF diet-fed group than in the NC group, which could not be reversed by both low- and high-MW
chitosan supplementations. Both low- and high-MW chitosan supplementations significantly inhibited
the increased liver weight in HF diet-fed rats (Table 1). The relative adipose tissue weight showed no
significant difference between the HF diet-fed + low- or high-MW chitosan group and the HF diet-fed
group, although high-MW chitosan could reduce the weight of peripheral adipose tissue weight
compared to the normal control group (Table 1). Both low- and high-MW chitosan supplementations
significantly prolonged the length of the small intestine compared to the normal control group (Table 1).

Changes in the levels of blood lipids and tumor necrosis factor-α (TNFα) are shown in Table 2.
The blood levels of total cholesterol (TC), low density lipoprotein-cholesterol (LDL-C) + very low
density lipoprotein-cholesterol (VLDL-C), VLDL-C, LDL-C, high density lipoprotein-cholesterol
(HDL-C), TC/HDL-C, and TNF-αwere significantly upregulated in the HF diet group, which could be
significantly reversed by both low- and high-MW chitosan supplementations. Unexpectedly, the blood
triglyceride (TG) level was decreased in the HF diet group compared to NC group (Table 2). Both
low- and high-MW chitosan supplementations markedly inhibited the HF diet group and decreased
blood TG level, but there was no statistically significant difference compared to the NC group (Table 2).
Moreover, the blood levels of liver function markers AST and ALT were markedly upregulated
in the HF diet group, which could be significantly reversed by both high- and low-MW chitosan
supplementations (Table 2).
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Table 1. The changes of body weight, liver and adipose tissue weight, and small intestine length in rats
fed with different experimental diets for 8 weeks.

Diet NC HF HC LC

Food intake (g) 27.9 ± 1.7 a 25.3 ± 1.9 a 26.7 ± 1.3 a 25.9 ± 1.5 a

Caloric intake (kcal/kg/day) 107.0± 6.4 a 109.3 ± 8.3 a 115.0 ± 5.8 a 111.9 ± 6.5 a

Body weight (g) 539.9 ± 22.5 a 578 ± 47.3 b 518.3 ± 34.1 a 543.4 ± 18.9 a

Liver weight (g) 14.5 ± 1.5 a 33.3 ± 4.9 b 20.0 ± 1.9 c 23.0 ± 3.2 d

Relative liver weight
(g/100 g BW) 2.7 ± 0.2 a 5.9 ± 0.7 b 3.9 ± 0.4 a 4.2 ± 0.5 a

Adipose tissue weight (g) 28.7 ± 6.3 a,b 23.1 ± 5.2 b 18.0 ± 5.6 b,c 20.7 ± 3.1 b,c

Relative adipose weight (g/100 g BW) 5.2 ± 1.0 a 4.1 ± 0.8 b 3.5 ± 1.0 b 3.8 ± 0.5 b

Perirenal adipose weight (g) 16.7 ± 3.6 a 14.0 ± 3.4 a 10.7 ± 2.7 b 12.1 ± 2.2 a

Epididymal adipose weight (g) 12.0 ± 3.0 a 9.1 ± 2.0 b 7.3 ± 3.3 b 8.6 ± 1.5 b

Small intestine length (cm) 116.3 ± 2.6 a,b 116.0 ± 5.2 a 132.6 ± 11.4 b,c 129.1 ± 10.3 b,c

Relative small intestine length
(cm/100 g BW) 21.4 ± 1.2 a 20.7 ± 1.6 a 25.6 ± 1.4 b 23.5 ± 1.9 c

Data are presented as mean ± standard deviation (SD) for each group (n = 7–8). Different letters (a, b, and c) indicate
significant differences (p < 0.05). NC: normal control +5% cellulose; HF: High-fat diet +5% cellulose; HC: High-fat
diet +5% High molecular weight chitosan; LC: High-fat diet +5% Low molecular weight chitosan.

Table 2. The changes of plasma lipids, TNF-α, and liver functional markers levels in rats fed with
different experimental diets for 8 weeks.

Diet NC HF HC LC

Total cholesterol (mg/dL) 63.1 ± 9.3 a 87.4 ± 11.7 b 56.2 ± 7.9 a 52.3 ± 17.0 a

HDL-C (mg/dL) 44.7 ± 5.8 a 9.1 ± 7.9 b 26.7 ± 2.7 b 25.5 ± 4.1 b

LDL-C + VLDL-C (mg/dL) 18.4 ± 7.2 a 58.3 ± 12.0 b 29.5 ± 10.2 c 26.7 ± 18.7 a,c

VLDL-C (mg/dL) 14.9 ± 8.1 a 28.8 ± 8.2 b 16.0 ± 6.4 a 14.0 ± 12.7 a

LDL-C (mg/dL) 3.5 ± 1.6 a 29.5 ± 11.4 b 13.6 ± 7.7 c 12.7 ± 10.5 c

TC/HDL-C (mg/dL) 1.4 ± 0.2 a 3.2 ± 0.9 b 2.1 ± 0.5 c 2.1 ± 0.9 a,c

HDL-C/LDL-C + VLDL-C ratio 2.8 ± 1.2 a 0.5 ± 0.2 b 1.0 ± 0.4 c 2.2 ± 2.7 a,b,c

Triglyceride (mg/dL) 96.2 ± 43.3 a 34.5 ± 5.1 b 44.1 ± 8.8 c 45.8 ± 13.0 c

TNF-α (pg/dL) 10.9 ± 2.3 a 36.8 ± 13.7 b 17.1 ± 3.6 c 22.8 ± 7.3 c

ALT (U/L) 15.7 ± 3.5 a 72.2 ± 32.1 b 25.5 ± 15.9 a,c 35.1 ± 25.0 c

AST (U/L) 42.1 ± 16.6 a 79.1 ± 42.8 b 39.4 ± 22.2 a 59.7 ± 31.2 a,b

Data are presented as mean ± SD for each group (n = 7–8). Different letters (a, b, and c) indicate significant
differences (p < 0.05). NC: normal control + 5% cellulose; HF: High-fat diet + 5% cellulose; HC: High-fat diet
+ 5% High molecular weight chitosan; LC: High-fat diet + 5% Low molecular weight chitosan. ALT = alanine
aminotransferase; AST = aspartate aminotransferase

2.2. Effects of Low- and High-Mw Chitosan on The Lipometabolism in Adipose and Liver Tissues and Feces of
Hf Diet-Fed Rats

As shown in Figure 1A,B, the TG level and lipoprotein lipase (LPL) activity in the perirenal adipose
tissues were significantly lower in the high-MW, but not low-MW, chitosan supplementation group
than in the HF diet group, although there were no significant changes in the HF diet group compared to
the NC group. High-MW, but not low-MW, chitosan supplementation could also significantly increase
the lipolysis rate compared to the HF diet group (Figure 1C).
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Figure 1. Effects of high- or low-MW chitosan on TG (A), lipoprotein lipase (LPL) (B), and lipolysis rate
(C) in perirenal adipose tissues of HF diet-fed rats. The rats were fed with different experimental diets
for 8 weeks. Data are presented as mean ± SD (n = 8). Different letters indicate significant differences
(p < 0.05). NC, normal control +5% cellulose; HF, high fat diet +5% cellulose; HC, high fat diet +5%
high-MW chitosan; LC, high fat diet +5% low-MW chitosan.

We next investigated the effects of chitosan on lipid-related profiles in the livers of HF diet-fed
rats. As shown in Table 3, there was severe TC and TG accumulation in the livers of HF diet-fed
rats, which could be exhibited by a significant reversed effect by both low- and high-MW chitosan
supplementations. Moreover, the histological examination showed severe hepatic vacuolization in
HF diet-fed rats, which could be exhibited by a significant reversed effect by both low- and high-MW
chitosan supplementations (Figure 2).

Table 3. The changes of hepatic cholesterol and triglyceride levels in rats fed with different experimental
diets for 8 weeks.

Diet NC HF HC LC

Total cholesterol - - - -
(mg/g liver) 2.7 ± 1.0 a 152.6 ± 13.7 b 52.6 ± 28.4 c 65.4 ± 33.2 c

(g/liver) 0.04 ± 0.02 a 5.1 ± 0.8 b 1.1 ± 0.6 c 1.6 ± 0.9 c

Triglyceride - - - -
(mg/g liver) 12.1 ± 5.0 a 96.0 ± 22.2 b 49.2 ± 20.1 c 58.7 ± 29.0 c

(g/liver) 0.2 ± 0.1 a 3.1 ± 0.5 b 1.0 ± 0.4 c 1.4 ± 0.8 c

Data are presented as mean ± SD for each group (n = 7–8). Different letters (a, b, and c) indicate significant
differences (p < 0.05). NC: normal control +5% cellulose; HF: High-fat diet +5% cellulose; HC: High-fat diet +5%
High molecular weight chitosan; LC: High-fat diet +5% Low molecular weight chitosan.
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Figure 2. Effect of high- or low-MW chitosan on hepatic morphology in HF diet-fed rats. The livers
were isolated from rats fed with different experimental diets for 8 weeks. Tissue sections were stained
with hematoxylin and eosin. A: NC, normal control +5% cellulose; B: HF, high fat diet +5% cellulose; C:
HC, high fat diet +5% high-MW chitosan; D: LC, high fat diet +5% low-MW chitosan.

The fecal lipid-related profiles were also tested and shown in Table 4. Both low- and high-MW
chitosan supplementations significantly upregulated the fecal weights and fecal TC and TG levels
compared to the HF diet group.

Table 4. The changes of fecal weight, total cholesterol and triglyceride concentration in rats fed with
different experimental diets for 8 weeks.

Diet NC HF HC LC

Feces wet weight (g/day) 2.9 ± 0.2 a 2.8 ± 0.2 a 3.1 ± 0.5 b 3.6 ± 0.5 b

Feces dry weight (g/day) 2.2 ± 0.2 a,b 2.0 ± 0.2 b 2.4 ± 0.5 a 2.9 ± 0.5 a,c

Total cholesterol - - - -
(mg/g feces) 2.4 ± 0.4 a 12.2 ± 1.5 b 24.2 ± 4.8 c 23.2 ± 4.7 c

(mg/day) 5.4 ± 1.1 a 24.3 ± 3.4 b 59.4 ± 20 c 66.5 ± 17.3 c

Triglyceride - - - -
(mg/g feces) 0.4 ± 0.2 a 0.7 ± 0.2 b 1.8 ± 0.4 c 2.0 ± 0.3 c

(mg/day) 0.9 ± 0.4 a 1.4 ± 0.5 b 4.5 ± 1.5 c 5.7 ± 1.4 c

Data are presented as mean ± SD for each group (n = 7–8). Different letters indicate significant differences (p < 0.05).
NC: normal control +5% cellulose; HF: High-fat diet + 5% cellulose; HC: High-fat diet + 5% High molecular weight
chitosan; LC: High-fat diet + 5% Low molecular weight chitosan.

2.3. Effects of Low- and High-Mw Chitosan on Lipometabolic Signals in the Liver, Blood, and Intestine of Hf
Diet-Fed Rats

To evaluate the mechanisms of the preventive effects of low- and high-MW chitosan on
HF diet-diversified homeostasis of lipids, we investigated the protein or gene expressions of
lipometabolic regulators [adenosine monophosphate (AMP)-activated protein kinase-α (AMPKα),
peroxisome proliferator-activated receptor-α (PPARα)], peroxisome proliferator-activated receptor-γ
(PPARγ), sterol regulatory element binding protein-1c and -2 (SREBP1c and SREBP2)] [12] and lipid
transport-related proteins [angiopoietin-like protein-4 (Angptl4), microsomal triglyceride transfer
protein (MTTP), and apolipoprotein E (ApoE)] [13–15]. As shown in Figure 3, HF diet-fed rats
markedly inhibited the protein expressions of PPARα and phosphorylated AMPKα (decreased
pAMPKα/AMPKα ratio) in the liver, which could be exhibited by a significant reversed effect by
both low- and high-MW chitosan supplementations. The effects of high-MW chitosan on AMPK
phosphorylation and PPARα protein expression were significantly higher than low-MW chitosan
(Figure 3). Moreover, both low- and high-MW chitosan supplementations significantly inhibited
the increased protein expressions of SREBP2, SREBP1c, and PPARγ, in the livers of HF diet-fed rats
(Figure 4). The effects of chitosan on the expressions of Angptl4, ApoE, and MTTP proteins were
shown in Figure 5. HF diet feeding significantly decreased the protein expressions of hepatic MTTP,
ApoE, plasma Angptl4, and intestinal Angptl4, and increased the protein expression of intestinal
MTTP, which could be exhibited by a significant reversed effect by both low- and high-MW chitosan
supplementations. The effects of high-MW chitosan on MTTP, ApoE and Angptl4 protein expressions
were significantly better than low-MW chitosan (Figure 5).
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Figure 3. Effect of high- or low- MW chitosan on hepatic AMPKα and PPARα protein expressions in
HF diet-fed rats. The rats were fed with different experimental diets for 8 weeks. Protein expressions of
phosphorylated AMPKα/AMPKα (A) and PPARα (B) were determined by Western blot. Densitometric
analysis for protein levels corrected to AMPKα or β-actin (internal control) was shown. Data are
presented as mean ± SD (n = 6). Different letters indicate significant differences (p < 0.05). NC, normal
control +5% cellulose; HF, high fat diet +5% cellulose; HC, high fat diet +5% high-MW chitosan; LC,
high fat diet +5% low-MW chitosan.
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Figure 4. Effect of high- or low-MW chitosan on hepatic SREBP2, SREBP1c and PPARγ protein
expressions in HF diet-fed rats. The rats were fed with different experimental diets for 8 weeks.
Protein expressions of SREBP2 (A), SREBP1c (B), and PPARγ (C) were determined by Western blot.
Densitometric analysis for protein levels corrected to β-actin (internal control) was shown. Data are
presented as mean ± SD (n = 6). Different letters indicate significant differences (p < 0.05). NC, normal
control + 5% cellulose; HF, high fat diet + 5% cellulose; HC, high fat diet + 5% high-MW chitosan; LC,
high fat diet + 5% low-MW chitosan.
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Figure 5. Effect of high- or low-MW chitosan on MTTP, ApoE, and Angptl4 protein expressions in
the liver, blood, or intestine of HF diet-fed rats. The rats were fed with different experimental diets
for 8 weeks. Protein expressions of hepatic ApoE and MTTP (A), blood Angptl4 (B), and intestinal
MTTP and Angptl4 (C) were determined by Western blot. Densitometric analysis for protein levels
corrected to β-actin (internal control) was shown. Data are presented as mean ± SD (n = 6). Different
letters indicate significant differences (p < 0.05). NC, normal control +5% cellulose; HF, high fat diet
+5% cellulose; HC, high fat diet +5% high-MW chitosan; LC, high fat diet +5% low-MW chitosan.

3. Discussion

Absorption of chitosan in the intestine is mainly affected by the molecular weight and water
solubility of chitosan. Low-MW chitosan is more easily absorbed in the intestine than high-MW
chitosan [9]. The absorbed chitosan can be rapidly distributed from circulation to liver and kidney.
The intestinal absorption and tissue distribution may be the factors to affect the healthy activities
of chitosan. Sugano et al. (1980) showed that chitosan (200 kDa) supplementation possesses the
potential to lower the hypercholesterolemic effect in HF diet-fed rats for 20 days [16]. High-MW
chitosan (830 kDa) has been investigated to suppress lipid accumulation in liver and adipose tissues
in a diabetic rat model for 10 weeks [6]. Gades and Stern (2003) have shown that chitosan complex
(Absorbitol®) supplementation for 4 days can increase the fecal fat excretion in men [17]. Sugano et al.
(1988) have further indicated that the effects of lowering blood cholesterol by chitosan are independent
of their MW [18]. Nevertheless, Zhang et al. (2012) have indicated that the potential for hypolipidemic
activity by low-MW chitosan (39.8 kDa) is higher than that of high-MW chitosan (712.6 kDa) in HF
diet-fed rats for 8 weeks; but the increase in fecal fat and cholesterol excretion by high-MW chitosan
is better than low-MW chitosan [19]. Chitosan oligosaccharides (≤1 kDa and ≤3 kDa) have also
been found to possess better lipid-lowering effects than higher MW chitosan in HF diet-fed rats for
6 weeks [20]. However, Chiu et al. (2017) have recently suggested that low-MW chitosan (80 kDa)
supplementation provides a better improvement than chitosan oligosaccharide (0.719 kDa) on lipid
metabolism in HF diet-fed rats for 10 weeks [5]. Yao et al. (2008) have also indicated that the effects
of high-MW chitosan (1000 kDa) on lipid-lowering and fecal fat excretion-increasing are greater than
low-MW chitosan (14 kDa) in a diabetic rat model for 4 weeks [11]. In the present study, we also
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demonstrated that high-MW chitosan (740 kDa) had a higher efficiency than low-MW chitosan (91 kDa)
on the suppression of intestinal lipid absorption and the increase of hepatic fatty acid oxidation in HF
diet-fed rats for 8 weeks; but there was no significant difference between low- and high-MW chitosan
on the elevation in fecal TC and TC excretion. For a comparison of the effects of low- and high-MW
chitosan supplementations, the differences in the intestinal absorption efficiency of chitosan and their
adsorption capacity of dietary lipids may result in their different outcome on the mediation of blood
and hepatic lipometabolism.

LPL in adipose tissue plays a critical role in lipometabolism. It can hydrolyze the core triglyceride
of chylomicrons and VLDL to free fatty acid and monoglycerides. Fatty acid is uptaken and re-esterified
and stored in adipose tissue or used as an energy source in muscle. Gaidhu et al., (2010) have shown
that the LPL activity is increased in epididymal and visceral adipose tissues, and the lipolysis rate is
decreased in subcutaneous and visceral adipose tissues in HF diet (60% kcal from fat)-fed rats [21]. In
the present study, we explored that high-MW, but not low-MW, chitosan supplementation significantly
decreased the TG level and LPL activity and increased the lipolysis rate in the perirenal adipose tissues
compared to the HF diet group. These effects of high-MW chitosan resulted in the enhancement of
lipolysis and the decrease of TG storage in the adipose tissues.

MTTP, an endoplasmic reticulum (ER)-resident chaperone, can assemble chylomicrons in the
enterocytes. The increase in intestinal MTTP expression can be observed in high-cholesterol and
HF diet-fed inositol-requiring enzyme 1 (IRE1β)-deficient mice, leading to hyperlipidemia and fatty
liver [22]. Angptl4 is known as an endogenous inhibitor of LPL. Angptl4-deficient mice have been
found to increase intestinal pancreatic lipase (PL) activity and lipid accumulation and reduce lipid
excretion in feces, leading to increased weight gain and fat mass [23]. Therefore, MTTP and Angptl4
play a critical role in intestinal lipid digestion and absorption. In the present study, the increased
MTTP and decreased Angptl4 protein expressions were exhibited in the intestines of HF diet-fed rats.
Feeding both low- and high-MW chitosan could significantly inhibit the effects of HF diet on MTTP
and Angptl4, leading to the suppression of dietary TG hydrolysis and the absorption and increase of
fecal lipid excretion. High-MW chitosan was more effective than low-MW chitosan in inhibiting MTTP
protein expression, indicating that high-MW chitosan may have higher potential in reducing dietary
lipid absorption and increasing lipid excretion than low-MW chitosan in the intestine. However, there
was no significant difference on the hypolipidemic effect and the increased fecal lipid excretion in HF
diet-fed rats between high- and low-MW chitosan supplementations, suggesting chitosan may possess
multiple molecular targets in intestinal lipid metabolism.

AMPK activation plays a critical role in the mediation and maintenance of cell homeostasis [24].
Increasing AMPK activation has been shown to improve NAFLD through the inhibition of de novo
lipogenesis, the increase of hepatic fatty acid oxidation, and the enhancement of mitochondrial function
and integrity in adipose tissue [25]. When AMPK is activated, the adipogenic transcription factors
(eg. SREBPs and PPARγ) are downregulated to deactivate transcriptional activity, which impairs lipid
synthesis in the liver and improves hepatic lipid metabolism. SREBP-1c is known to be involved in the
synthesis of TG and fatty acid; SREBP-2 can activate cholesterol synthesis in the liver [26]. AMPK could
also regulate liver PPARα activity [27]. PPARα regulates the activities of fatty acid oxidation systems
including microsomalω-oxidation and peroxisomal and mitochondrial β-oxidation that are involved
in energy expenditure [28]. In PPARα-deficient ob/ob mice, the inhibition of fatty acid oxidation
contributed to increasing weight gain and severe fatty liver [29]. The deterioration of mitochondrial
fatty acid β-oxidation capacity has been suggested to cause hepatic diacylglycerol accumulation and
insulin resistance [30]. In the present study, HF diet inhibited the AMPKα phosphorylation and PPARα
protein expression and accelerated the protein expressions of SREBP1c, SREBP2, and PPARγ, and
increased the TC and TG synthesis in the livers, which can be exhibited by a significant reversed effect
by both high- and low-MW chitosan supplementations. High-MW chitosan was more efficient than
low-MW chitosan on the upregulation of AMPKα phosphorylation and PPARα protein expression.
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We found that both low- and high-MW chitosan supplementations significantly prolonged the
length of the small intestine. Since chitosan could significantly reduce the digestion and absorption of
lipids, it was speculated that the animals may adapt to increase the length of the small intestine to
increase the absorption interface for obtaining the sufficient nutrients. High-MW chitosan significantly
prolonged the relative small intestine length compared to low-MW chitosan, probably because
high-MW chitosan had higher adsorption capacity for dietary lipids in the small intestine than low-MW
chitosan [19]. However, the mechanism of increased intestinal length by chitosan remains to be clarified
in the future.

Kuipers et al. (1997) have demonstrated that apolipoprotein E (ApoE) deficiency impairs hepatic
very low density lipoprotein-triglyceride (VLDL-TG) assembly and secretion in mice [31]. Maugeais et
al. (2000) have found that the secretion of hepatic VLDL-TG can be promoted by ApoE expression
through the increase in the production rate of VLDL-ApoB in a mouse model [32]. The patients
of an ApoB-defective genetic form of familial hypobetalipoproteinemia frequently exerted fatty
liver [33]. MTTP has been shown to increase hepatic VLDL-TG assembly and secretion under ApoB100
background in ob/ob mice [34]. In the present study, feeding HF diet inhibited the protein expressions
of ApoE and MTTP in the liver, resulting in liver lipid accumulation, which could be reversed by
low- and high-MW chitosan supplementation. High-MW chitosan was more efficient than low-MW
chitosan on the upregulation of apoE and MTTP protein expression.

Hussain et al. (2011) have reviewed that mice possess two isoforms of MTTP, but humans express
one MTTP isoform. High-fat diet was reported to stimulate the hepatic MTTP expression in rodents [35].
On the other hand, Koo (2013) has reviewed that hepatic steatosis can be observed in patients with
ApoB100 mutation (hypobetalipoproteinemia) and MTTP mutation (abetalipoproteinemia) [36]. It was
speculated that severe fatty liver may cause the decrease in ApoB100 and MTTP and reduce the liver
secretion of VLDL-TG, leading to hepatic lipid accumulation. In our experiment condition, high-fat
diet feeding induced obvious fatty liver and inhibited hepatic ApoE and MTTP protein expressions,
resulting in liver lipid accumulation. However, the issue of contradictory results of feeding high-fat
diet on MTTP (up-regulation in the intestine and down-regulation) in rat livers still needs more
clarification and further experiments.

In this study, we found that the relative adipose weigh in the NC group was significantly higher
than that in the HF group. A previous study has indicated that insulin resistance is usually presented
in individuals with NAFLD, in which insulin cannot inhibit the lipolysis rate of white adipose tissue,
allowing large amounts of free fatty acids entry into the liver [37]. In NAFLD patients, the secretion
rate of VLDL-TG cannot be further increased when the TG infiltration in the liver exceeds 10% [38]. It
was speculated that fat infiltration in the liver decreased the ability to secrete VLDL-TG, which further
decreased the source of TG in the adipose tissue, leading to the decrease in the weight of adipose tissue.

The intestinal chylomicron and liver VLDL secretion, as well as the utilization of blood triglyceride
by muscle, heart and adipose tissues influences the changes of blood TG levels. The previous studies
have observed the decreased circulating TG levels in HF diet-fed mice [39,40]. It may be due to the
reduced dietary carbohydrates. Chiu et al. (2015) have also observed the decreased blood TG levels in
HF diet-fed rats that could be reversed by high-MW chitosan supplementation [41]. In the present
study, we explored that HF diet feeding inhibited blood Angptl4 and hepatic ApoE and MTTP protein
expressions and decreased the blood TG levels, which could be reversed by both high- and low-MW
chitosan supplementations. These results indicate that both low- and high-MW chitosan are capable of
ameliorating the alteration in lipid metabolism induced by high-fat diet feeding.

4. Materials and Methods

4.1. Materials

High-MW chitosan prepared from crab shell chitin was supplied from Charming & Beauty
Co. (Taipei, Taiwan). The high-MW chitosan (MW: 740 kDa) was used to prepare the low-MW
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chitosan (MW: 91 kDa) as described previously [42]. Fourier transform infrared spectroscopy and
the high-performance liquid chromatography were used to detect the deacetylation degree and the
average molecular weight, respectively. The measurement of viscosity was performed by a Haake
viscometer (CV20; Haake Mess-Technik GmbHu, Karlsruhe, Germany).

4.2. Animals and Diets

Male Sprague-Dawley rats (6-week old) were purchased from BioLASCO (Taipei, Taiwan) and
acclimatized with a chow diet (Rodent Laboratory Chow, Ralston Purina, St. Louis, MO, USA) for
one week. Rats were divided into four groups (n = 8 of each group): (1) normal control (NC) group,
(2) high-fat (HF) diet group, (3) HF diet +5% high-MW (740 kDa) chitosan (HC) group, (4) HF diet
+5% low-MW (91 kDa) chitosan (LC) group. The diet formulation was shown in Table 5. Rats were
individually housed in stainless-steel cages under temperature (23 ± 1 ◦C), light (12 h light/dark
cycle), and humidity (40–60% relative humidity) and were fed ad libitum. The dose of 5% for chitosan
was selected according to the findings in the literatures [5,7,19] and our pilot study. After 8 weeks
of experimental intervention, rats were fasted for 12 h and then sacrificed by exsanguination under
anesthesia. Blood samples were collected for biochemical analysis. The liver, adipose, and intestine
tissues (collected from duodenum to lieum) were isolated, weighted, and stored at −80 ◦C until the
analysis for lipid profile. Feces were harvested for 3 consecutive days prior to sacrifice and stored at
−80 ◦C until the analysis for fecal lipid contents. The animal experimental procedures were performed
in accordance with the guidelines for the care and use of laboratory animals [43] and were approved
by the Animal House Management Committee of the National Taiwan Ocean University.

Table 5. Composition of experimental diets (%).

Ingredient (%) NC HF HC LC

Casein 20 20 20 20
Lard 3 13 13 13
Soybean oil 2 2 2 2
Vitamin mixture 1 1 1 1 1
Minerals 2 4 4 4 4
Cholesterol - 0.5 0.5 0.5
Choline chloride 0.2 0.2 0.2 0.2
Cholic acid - 0.2 0.2 0.2
Corn starch 64.8 54.1 54.1 54.1
Cellulose 5 5 - -
High molecular weight chitosan 3 - - 5 -
Low molecular weight chitosan 4 - - - 5

NC: normal control (3% Lard +2% soybean oil) +5% cellulose; HF: High-fat diet (13% Lard +2% Soybean oil) +5%
cellulose; HC: High-fat diet +5% High molecular weight chitosan; LC: High-fat diet +5% Low molecular weight
chitosan. 1 AIN-93 vitamin mixture; 2 AIN-93 mineral mixture; 3 The average MW and DD of High molecular
weight chitosan about 7.4 × 105 Dalton and 91%, respectively; 4 The average MW and DD of Low molecular weight
chitosan about 9.1 × 104 Dalton and 92%, respectively.

4.3. Measurement of Triglyceride (TG), Cholesterol (TC), Lipoproteins, and Activities of Aspartate
Aminotransferase (AST) and Alanine Aminotransferase (ALT)

The TG and TC levels in samples from liver, blood, adipose tissues and feces were measured
by using Audit Diagnostics Enzymatic Assay kits (Audit Diagnostics, Cork, Ireland). The plasma
low-density lipoprotein (LDL), lipoproteins {high-density lipoprotein (HDL) and very-low-density
lipoprotein (VLDL)} were isolated through a density gradient performed by an ultracentrifuge (Hitachi,
Tokyo, Japan) with 194,000× g at 10 ◦C for 3 h. The levels of AST and ALT were determined by the
Randox®AST and ALT kits (Randox, Antrim, UK). The change of absorbance at 340 nm was detected
by a spectrophotometer (U-2880A; Hitachi, Tokyo, Japan).
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4.4. Measurement of Lipolysis Rate

Lipolysis rate was measured as described previously [41]. Briefly, 0.2 g adipose tissues were
minced and added into a N-tris-(hydroxymethyl)-methyl-2-aminoethanesulfonic acid (25 mM) buffer
containing isoproterenol (1 µM). A glycerol detection kit (Randox, Amtrim, UK) was used to measure
the glycerol levels in samples after 1, 2, and 3 h of incubation at 37 ◦C and the absorbance was recorded
at 520 nm. The lipolysis rate was expressed by nano-moles glycerol/gram adipose tissue/h.

4.5. Measurement of Lipoprotein Lipase (LPL) Activity

LPL activity was determined as described previously [41]. The 0.1 g adipose tissues were minced
and added into a Krebs-Ringer bicarbonate buffer (pH 7.4) containing 10 units/mL heparin for 60
min at 37 ◦C, and then samples were incubated with equal volume of p-nitrophenyl butyrate (2 mM).
LPL activity was measured by the levels of p-nitrophenol formation over 10 min incubation. The
absorbance was detected at 400 nm.

4.6. Histological Analysis of Liver

Five micrometer thick hepatic paraffin sections were used for histological examination. The
hematoxylin and eosin (H&E)-stained tissue sections were observed and imaged by a photo microscope
(Nikon Eclipse TS100, Nikon Instruments, Melville, NY, USA) equipped with a digital camera (Nikon
D5100, Nikon Instruments, Melville, NY, USA).

4.7. Protein Expression Analysis

The protein expression was measured by Western blotting as described previously [44]. The equal
protein extracts were spiked into 8%–12% sodium dodecyl sulfate-polyacrylamide electrophoresis
(SDS-PAGE) gel, and then transferred to polyvinylidene difluoride (PVDF) membranes (Bio-Rad,
Hercules, CA, USA). The membranes were blocked for 1 h, and then incubated with primary antibodies
including AMPKα and phosphorylated AMPKα (p-AMPKα) (Cell Signaling Technology, Danvers, MA,
USA), Angptl4, PPAR-γ, SREBP1c, PPAR-α, MTTP, SREBP2, β-actin (Santa Cruz Biotechnology, Santa
Cruz, CA, USA), and ApoE (Bioss Antibodies, Woburn, MA, USA) overnight. Next, the membranes
were hybridized with secondary antibodies. The antigen-antibody complexes were visualized by using
Bio-Rad enhanced chemiluminescence kit and exposed to Fujifilm X-ray film (Fujifilm, Tokyo, Japan).
The protein bands were densitometrically analyzed with an image software (Image J 1.51; National
Institutes of Health, Bethesda, MD, USA).

4.8. Statistical Analysis

All results are presented as the Mean ± Standard Deviation (SD). The difference among
experimental groups is assessed by one-way analysis of variance (ANOVA) followed by Dunnett's test
with the IBM SPSS Statistics 22.0 software (International Business Machines Corporation, Armonk,
NY, USA).

5. Conclusions

In conclusion, the present study showed that in a HF diet-fed rat model, both high- and low MW
chitosan (1) inhibit MTTP and increase Angptl4 protein expressions in the intestine and increase the
small intestine length and fecal lipid excretion; (2) activate AMPK and inhibit downstream lipogenesis
transcription factors (SREBP2, SREBP1c, and PPARγ) and protein expressions, and promote PPARα
protein expression in the liver; (3) and promote liver VLDL secretion-related proteins (ApoE and
MTTP) expressions, leading in reducing fatty synthesis, increasing β-oxidation, and improving fatty
liver. Comparison of low- and high-MW chitosan, high-MW chitosan is more effective than low-MW
chitosan on the regulation of liver weight, perirenal adipose weight, relative small intestine length,
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adipose TG level and LPL activity, intestinal MTTP expression, hepatic phospho-AMPKα, PPARα,
apoE, and MTTP expression.
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