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To date, several genome-scale metabolic networks have been reconstructed. These models cover a wide range of organisms, from
bacteria to human. Such models have provided us with a framework for systematic analysis of metabolism. However, little effort
has been put towards comparing biochemical capabilities of closely related species using their metabolic models. The accuracy of
a model is highly dependent on the reconstruction process, as some errors may be included in the model during reconstruction.
In this study, we investigated the ability of three Pseudomonas metabolic models to predict the biochemical differences, namely,
iMO1086, iJP962, and iSB1139, which are related to P. aeruginosa PAO1, P. putida KT2440, and P. fluorescens SBW25, respectively.
We did a comprehensive literature search for previous works containing biochemically distinguishable traits over these species.
Amongst more than 1700 articles, we chose a subset of them which included experimental results suitable for in silico simulation.
By simulating the conditions provided in the actual biological experiment, we performed case-dependent tests to compare the in
silico results to the biological ones. We found out that iMO1086 and iJP962 were able to predict the experimental data and were
much more accurate than iSB1139.

1. Introduction

1.1.Metabolic Networks. Recent advances in sequencing tech-
niques have accelerated the process of whole genome
sequencing of different organisms [1–3]. Additionally, com-
putational tools for genome annotation have improved
widely, which leads to better understanding of the function of
genomic sequences [4, 5]. With this information in hand and
a large amount of data about biochemical pathways accessible
in various databases and scientific literature, the opportunity
of emergence for the genome-scale metabolic networks has
been provided in the last decade [6]. Suchmetabolic network
models provide us with the opportunity to explore the
physiological properties of different microorganisms with
biotechnological applications [7].

1.2. Reconstruction and Mathematical Modeling of Metabo-
lism. A typical framework for modeling cellular metabolism
is constraint-based modeling, which involves stoichiomet-
ric and reversibility constraints on reactions [7, 8]. For
a particular organism, considering cellular metabolites as
the rows and metabolic reactions as the columns of the
stoichiometric matrix, a metabolic network model is created
in an iterative process. The element 𝑆

𝑖𝑗
of this matrix is

the stoichiometric coefficient of metabolite 𝑖 in reaction 𝑗,
considering positive values for products and negative values
for reactants. Each (enzymatic) reaction, in turn, is associated
with one or a few metabolic genes. In fact, the process of
metabolic network reconstruction involves compiling the
metabolism of an organism to a machine-readable format.
There are various ways to reconstruct a model ranging from
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bottomup, totallymanual approach [9] to the semiautomated
process such as rBioNet [10], GEMSiRV [11], and RAVEN
[12]. Available genome-scale metabolic network models have
a wide spectrum from bacteria [13–15], to archaea [16], and to
mammals and human [17–20].

The common point of the all reconstruction processes is
the iterative validation of the model. By performing cycles
of in silico experiments and comparing them to the wet-
lab results, the discrepancies of the model and the actual
organism are recognized. Subsequent model refinements
pave the way for having a reliable framework to perform
in silico experiments. Such a model allows the researchers
for an in-depth and systematic investigation of the cellular
metabolism. In the field of genetic engineering [21, 22], drug
targeting [23–25], and evolutionary studies [26–28], models
have been very useful so far.

1.3. Goal of the Present Study. Despite the increasing number
of available metabolic models, to the best of our knowledge,
little effort has been put towards comparing biochemical
capabilities of closely related species using their genome-
scale metabolic models. Since there is no unique approach
to reconstruct a network, the models may contain process-
dependent errors (including missing reactions). Therefore,
one should not expect themodels to reflect the biochemically
distinguishable differences as successful as thewet-lab results.
Nevertheless, if a model is accurate enough, the in silico
results should be close to the real-world data. In this study, we
used three Pseudomonas models: iMO1086 for Pseudomonas
aeruginosa PAO1 [29, 30], iJP962 for Pseudomonas putida
KT2440 [30, 31], and iSB1139 for Pseudomonas fluorescens
SBW25 [32] to interrogate the capability of models to reflect
biological differences amongst these three Pseudomonas
species.

2. Materials and Methods

2.1. Database Search. We decided to compare themodels two
by two. Considering this, three cases were to be investigated.
In first step, we comprehensively searched PubMed database
for the entries containing two of the three Pseudomonas
species. Primary search results included 675 articles for
aeruginosa-putida case, 456 articles for fluorescence-putida
case, and 622 articles for aeruginosa-fluorescence case.

The abstracts of these articles were carefully reviewed in
order to select the articles of interest. The selected articles
in this step were those articles in which biochemically
distinguishable differences between the two species were
investigated. These articles were reviewed again in detail by
reading their full-texts thoroughly, in order to see whether
they fulfill the selection criteria (see below).

2.2. Biochemical Properties Which Can Be Verified In Silico.
Not every wet-lab experiment is suitable to be simulated
in silico. The first criterion is that the particular path-
way/gene/enzyme/reaction discussed in the article should be
included in the model, as we are not supposed to change the
structure of the model. In other words, the goal of this study

is to understand the potential of the available genome-scale
metabolic networks tomodel the biochemical differences, not
to present improved models. Flux through a reaction and the
essentiality of a gene in a specific environmental condition
could be tested for the models.

2.2.1. Biochemical Differences. The three Pseudomonas spe-
cies have a part of their metabolism in common. However,
these shared pathways are not exactly the same. For example,
the reactions might have different fluxes. On the other hand,
some genes or pathways are specific to each of these species.
Pathogenesis forP. aeruginosa [33, 34] and catabolic pathways
of aromatic compounds for P. putida [35, 36] are the examples
of this type of differences. The articles investigating this kind
of biochemical differences are suitable for in silico simulation.

2.2.2. Genetic Engineering. Genetic engineering procedures
are favorable for in silico simulation. Any changes made in
the experiment in order to investigate cellular response to a
perturbation should be in the form of adding or removing
a particular pathway/gene/enzyme/reaction, or otherwise it
could not be tested. Modeling gene and pathway addition or
deletion is possible with COBRA toolbox [8, 37] (see below).

2.2.3. Cellular Response Interrogation to Environmental Per-
turbations. Any metabolic model is a biochemical system
with boundaries defined by exchange reactions. These reac-
tions allow the substances to enter or leave the system. Thus,
the experiments which have studied the cellular behavior in
a particular growth medium or growth conditions could be
computationally simulated if the related exchange reactions
are included in the model. For instance, the experiments
including measuring growth yield on different carbon or
nitrogen sources could be simulated by setting the lower
and upper bounds of the related exchange reaction to the
same constant value. Besides, the upper bound and the lower
bound of the other competing exchange reactions should
be set to zero. Therefore, no carbon/nitrogen source but the
ones provided by the medium could enter the cell. Finally,
tolerance to a specific substance is also of interest, since by
increasing the related reaction bound and performing FBA,
the cellular response to an environmental tension could be
simulated and compared to the actual results.

The articles that performed one of the above types of
experiments for at least two of the species were ultimately
selected to be the reference for our simulations.

2.3. Flux Balance Analysis (FBA). FBA is a computational
method for calculating the flux distribution of a metabolic
network under a specified condition [38]. FBA optimizes an
objective function (e.g., growth rate) based on the steady-
state assumption, which states that the concentration of the
cellular metabolites should not vary during the optimization
process. This assumption is applied by considering 𝑆 ⋅ v =
0, whereas 𝑆 is the stoichiometric matrix and v is the flux
distribution vector. Furthermore, each flux distribution v is
also constrained by the “capacity” of reactions in the form
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a ≤ v ≤ b. For example, irreversible reactions 𝑖 can only carry
nonnegative flux values; that is, 0 ≤ V

𝑖
.

As mentioned, in FBA flux through a linear biomass-
producing reaction is maximized, based on the evolutionary
assumption that a cell tends to maximize its growth. The
biomass reaction includes the substrates needed for repro-
duction with appropriate stoichiometric coefficients, which
are based on the ratios of the components forming the cellular
dry weight and the energy needed for cellular maintenance
(ATP hydrolysis).

2.4. COBRA Toolbox. We used COBRA toolbox to simulate
the wet-lab experiment conditions. This toolbox provides us
with various functions to perform in silico tests. Firstly, we
modeled the experimental conditions, and then FBA was
performed to see themodel growth yield and flux distribution
in the specified conditions.

For genetic engineering experiments, these two func-
tions of the COBRA toolbox were used: “addReaction” and
“removeRxns.”

(i) “addReaction” receives the chemical equation of the
reaction and adds it to the model. If the metabolites
are new to the model, they are inserted automatically
as a new row to the 𝑆matrix.

(ii) “removeRxns” gets the reaction IDs and deletes them
by setting the lower bound and the upper bound of
the cited reaction to zero.

In order to simulate the environmental conditions,
exchange reaction should be altered manually. The function
“changeRxnBounds” was used for this purpose. It can be used
to alter either lower or upper bound of a specific reaction.

After modeling the experimental conditions, using
COBRA toolbox functions, we ran FBA to see how the model
responds and whether it is comparable to the wet-lab results.

3. Results and Discussion

3.1. Growth on Benzene under Different Oxygen Regimes.
The growth patterns of the three Pseudomonas species
during benzene degradation have been previously investi-
gated under different oxygen regimes, namely, oxic, hypoxic,
and anoxic regimes [39]. All of the strains used in the
experiment were capable of growing under all oxygen
regimes but in a different manner. All strains were inoc-
ulated in mineral salt medium containing aqueous ben-
zene. MSM medium contains the following salts: K

2
HPO
4
,

KH
2
PO
4
, (NH

4
)
2
SO
4
,MgCl

2
, CaCl

2
, H
3
BO
3
, ZnSO

4
, NiSO

4
,

(NH
4
)
6
Mo
7
O
24
⋅4H
2
O, CuSO

4
⋅5H
2
O, MnSO

4
, CoCl

2
, and

FeCl
3.

Todefine the in silicomedium, the “exchange reactions” in
iMO1086 and iJP962 and “uptake reactions” in iSB1139 were
used. Since not all the ions used in the wet-lab medium were
included in the models, it was just possible for the ions which
had an associated reaction to enter the model. There was
no uptake reaction for benzene in the model. Therefore, we
used benzoate as the sole carbon source in our simulations.
Benzene and benzoate are both converted to catechol in the

cell [40, 41]. Hence, it is reasonable to use benzoate instead
of benzene. For carbon source, we set the lower bound and
upper bound of all possible carbon source exchange/uptake
reactions to zero, except for benzoate. The default maximum
flux for the uptake of carbon source for iMO1086 and iJP962
is 10mmol⋅gDW−1⋅hr−1. We used this upper bound value as
a constraint for the all carbon sources used in this study.
For simulating oxic, hypoxic, and anoxic conditions, we
gradually decreased the maximum possible rate of oxygen
uptake. We considered the possible oxygen uptake flux to
be greater than 50mmol⋅gDW−1⋅hr−1 as the oxic, between
10mmol⋅gDW−1⋅hr−1 and 50mmol⋅gDW−1⋅hr−1 as hypoxic,
and below 10mmol⋅gDW−1⋅hr−1 as anoxic condition.

Wet-lab experiments [39] showed that P. aeruginosa grew
best under oxic conditions and cell growth decreased as the
conditions changed from oxic to hypoxic. This decrease con-
tinues as the oxygen regime changes from hypoxic to anoxic.
Therefore, cell growth is dependent on oxygen availability.
Similar to the cell growth, benzene degradation pattern was
highly dependent on environmental oxygen. By simulating
the carbon source in themediumandoxygen regimes in silico,
we ranFBA to see how themodelwould respond to the above-
mentioned conditions. Results are summarized in Figure 1. By
lowering the flux of oxygen exchange reaction, biomass pro-
duction rate and flux through benzene degradation pathway
decreased.

Experimental results for P. putida and P. fluorescens were
different from those of P. aeruginosa.The highest cell growth
of P. putida and P. fluorescens were achieved under hypoxic
and anoxic conditions, respectively. On the other hand, P.
putida KT2440, the strain used for computational modeling,
is known to be a strict aerobe [42], which is definitely different
from the strain used to obtain the experimental data. Thus,
we do not expect to see a consistency in this case. Simulating
this experiment for iJP962, we got almost the same results as
iMO1086. Besides, by performing the in silico experiment of
growth on benzene for iSB1139, we obtained qualitatively the
same results as the case of P. aeruginosa. This implies that
the benzene catabolism between these three models might
be the same. We decided to look more carefully into this
pathway (see Figure 2). All of the three networks metabolize
benzene through the same aerobic process in computational
simulations and therefore it is natural to see almost the same
results in all three cases. Although wet-lab experiments show
different growth patterns, in all of them, biomass and benzene
degradation flux were dependent on oxygen regime in a same
manner. This might be due to the difference in the strains
used in the experiment with the ones for which the models
are reconstructed. For example P. putida KT2440 is a strict
aerobe [42], whereas the P. putida strain used in the wet-lab
experiments grew anaerobically. Another reason is that the
benzene degradation pathway used in all of the models is the
same and needs oxygen in the first step. Hence, regardless
of the different structure of the models, oxygen flux is the
determinant factor of benzene degradation pathway flux.

3.2. Growth Inhibition by Benzene. It has been shown that
high benzene concentration in a growth medium can have
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Figure 1: (a) In silico modeling of Pseudomonas species growth on
benzoate under different oxygen regimes. In all three cases, biomass
production increases as the oxygen uptake flux increases. The same
pattern exists in all of the models. However, experimental data
suggested different trends of response to the available environmental
oxygen. (b) Benzoate uptake flux under different oxygen regimes.
Similar to the growth rate, flux of the uptake reaction increases as the
available environmental oxygen concentration augments in contrast
to the experimental data.

toxic effects on the cells. In a wet-lab study, different Pseu-
domonas species have been grown under high benzene
concentrations in MSM medium in order to investigate the
tolerance of these species to benzene [43]. Initial inhibition
of cell growth occurred in P. putida when aqueous benzene
concentration was increased to 200mg/L, while P. fluorescens
stopped growing when benzene concentration approached
300mg/L. The highest tolerance was 400mg/L for P. aerug-
inosa.

By performing in silico simulation of MSMmedium with
benzoate as the sole carbon source and fixing the oxygen
exchange flux rate on 50mmol⋅gDW−1⋅hr−1, we ran FBA to
see how biomass production changes in response to increas-
ing benzoate uptake flux. Results are shown in Figure 3. The
biomass flux reached its maximum when benzoate uptake
was 11mmol⋅gDW−1⋅hr−1 for both iMO1086 and iJP962.
After the peak, by increasing benzoate uptake flux, biomass
flux decreased gradually to zero. The maximum possible
flux for benzoate uptake reaction was 24mmol⋅gDW−1⋅hr−1
for iMO1086 and 23mmol⋅gDW−1⋅hr−1 for iJP962. For
iSB1139, we did not see any decrease in growth rate. The
growth rate initially increased as the benzoate uptake flux
increased. However, for benzoate uptake fluxes greater than
13.84mmol⋅gDW−1⋅hr−1, the growth rate reaches the con-
stant value of 1.43mmol⋅gDW−1⋅hr−1.

The computational metabolic models of P. aeruginosa
and P. putida successfully reproduced the benzene inhibition
effect, although they were not successful in explaining the
differences in the tolerance levels of the two species. On the
other hand, iSB1139 failed to simulate the growth inhibition
by high concentration of benzene, which might be due to
the “loose” structure of the model, existing internal loops,
or exchange reactions which let benzoate or its metabolized
forms exit the metabolic system.

3.3. Catabolism of Arginine. There are various pathways in
different bacteria which enable them to utilize arginine as
the sole source of carbon and nitrogen [44]. A previous
study was conducted to determine the relationships between
ornithine, citrulline, and arginine utilization pathways in
Pseudomonas and related bacteria. The doubling time of the
various strains including P. aeruginosa PAO1, P. fluorescens
ATCC 13525, and P. putida IRC 204 on minimal medium
containing arginine, succinylarginine, ornithine, or citrulline
as carbon and nitrogen source has been measured in this
study [45].

We used the models of P. aeruginosa, P. fluorescens, and
P. putida to predict the biomass production rates in the
experimental conditions of the study. For in silico simulation
of growth on arginine or succinate or ornithine as the sole
source of carbon and nitrogen, we set the flux rate of glucose
and ammonium to zero and flux rate of desired metabolite’s
uptake/exchange reaction to 10mmol⋅gDW−1⋅hr−1. Neither
Succinylarginine nor citrulline uptake reactions are included
in models, nor the catabolic pathways of these compounds.
Therefore, these two cases were ruled out in our study. Results
are shown in Table 1.

The cell growth was measured by the doubling time of
each strain. Growth rate is associated with the inverse of
the doubling time, and therefore we expected to see higher
growth rates for shorter doubling times. From the in silico
data in all three models, it can be seen that the biomass
production rate increases in the cases where the model was
allowed to use two carbon sources. When we let succinate
and arginine enter the model, we are not able to force the
model to use arginine only as the nitrogen source. In all
three cases, the models were able to grow on arginine as



The Scientific World Journal 5

Oxygen(c)

Benzoate(e)                             

2,5-Dihydro-5-oxofuran-2-acetate(c) cis,cis-Muconate(c)

2-Oxo-2,3-dihydrofuran-5-acetate(c) 3-Oxoadipyl-CoA(c) 

Acetyl-CoA(c)Citrate 
cycle

3-Oxoadipate

Catechol(c)

1,6-Dihydroxy-cis-2,4-cyclohexadiene-1-carboxylic acid(c)Benzoate(c)

Figure 2: Benzoate degradation pathway. As depicted in the map, after benzoate uptake, cytoplasmic benzoate is converted to 1,6-dihydroxy-
cis-2,4-cyclohexadiene-1-carboxylic. Since oxygen is one of the reactants, lowering the flux of oxygen uptake would in turn decrease the flux
of this reaction, and the whole pathway would be less active, carrying lower flux values. This map shows only a part of metabolism.

Table 1: Biological data and in silico results for arginine and succinate utilization of the bacteria and the models. Biological data represent
doubling times and in silico results represent computational growth rates.

Additive(s) to
minimal medium

P. aeruginosa P. putida P. fluorescens
In silico data

(mmol⋅gDW−1⋅hr−1)
Biological
data (min)

In silico data
(mmol⋅gDW−1⋅hr−1)

Biological
data (min)

In silico data
(mmol⋅gDW−1⋅hr−1)

Biological
data (min)

Succinate + NH4 0.397 60 0.401 54 0.933 66
Arginine 0.627 63 0.633 60 1.038 146
Succinate + arginine 0.933 46 1.057 52 2.076 48
Ornithine 0.606 240 0.616 90 1.038 420
Succinate + ornithine 1.020 86 1.034 56 2.076 390

the sole source of carbon and nitrogen. Allowing the models
to use another carbon source like succinate would increase
the biomass production rate. The same fact was seen in case
of ornithine and succinate. When succinate was used as the
carbon and ammonium as the nitrogen source, NH+

4
was only

the nitrogen source and could not be used as the carbon
source as well. Therefore, one should compare the results in
a way that the experiments having a single carbon source are
compared to each other and not to the ones that have two
potential carbon sources.

By comparing the growth rates of iMO1086 and iJP962,
we concluded that these two models were almost consistent
with experimental data, except for the case of succinate and
arginine. In other words, since the doubling time of P. putida
is greater than that of P. aeruginosa, one should expect that
the growth rate of P. putida is less than P. aeruginosa, which
is not the case in the simulations. In case of ornithine as the
sole source of carbon and nitrogen, the differences between
the doubling times were more than what we observed in the
computational results.

For P. fluorescens in all cases, the biomass flux was higher
than that of the other two models. This might be because of
the “loose” (less-constrained) nature of the iSB1139. Compar-
ison of the results of this model under different conditions
could be more reliable. However, by doing so, the growth rate
values predicted by the model are far from the experimental
data. It suggests that this model needs some refinements and
additional constraints, and it may overestimate the biological
characteristics.

3.4. d-Fructose Catabolism. To investigate the pathways of d-
fructose catabolism in Pseudomonas species, specific activi-
ties of the fructose, and succinate catabolism enzymes in cell-
free extracts of P. putida, P. fluorescens, and P. aeruginosa, and
also the doubling time of these species have been measured.
Failure of edd− mutant of P. putida in Entner-Doudoroff
pathway was also shown, while this mutant strain was able
to grow on d-fructose [46].

In the experiment, bacteria were grown on Palleroni-
Doudoroff liquid medium [47], containing either d-fructose
or succinate. Therefore, in our simulations, we let the model
consume ammonium, chloride, magnesium, ferric ion, and
citrate which are the components of this medium. In two
sets of separate simulations, either fructose or succinate was
set as the sole source of carbon and nitrogen. We further
simulated the edd− mutant by deleting edd gene (PP 1010)
from themodel.The growth simulations on both fructose and
succinate are shown in Table 2.

Similar to the previous test, succinate could not support
biomass production as much as other carbon sources, as in
all cases, growth on succinate had the lowest biomass flux.
For the growth on d-fructose, iMO1086 and iJP962 were
found to be fairly consistent with the wet-lab data. However,
difference between the doubling times is much higher than
the difference between growth rates. The in silico growth rate
of iSB1139 in this case is too high as well and not comparable
to the other two models.

The computational model of edd− mutant in iJP962
could not reproduce the experimental results. In the wet-lab
experiments, thismutation almost doubled the doubling time
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Table 2:Growth rates of iMO1086, iJP962, and iSB1139 on fructose and succinate as the sole carbon sources. Biological data represent doubling
times and in silico results represent computational growth rates.

Substrate

P. aeruginosa P. putida P. putida (edd−) P. fluorescens

In silico data
(mmol⋅gDW−1⋅hr−1)

Biological
data
(min)

In silico data
(mmol⋅gDW−1⋅hr−1)

Biological
data
(min)

In silico data
(mmol⋅gDW−1⋅hr-1)

Biological
data
(min)

In silico data
(mmol⋅gDW−1⋅hr−1)

Biological
data
(min)

Fructose 1.129 455 1.358 235 1.358 380 3.246 204
Succinate 0.980 73 0.980 53 0.980 52 2.296 59

G
ro

w
th

 ra
te

 (m
m

ol
·g

D
W

−
1
·h

r−
1
)

Benzene uptake rate (mmol·gDW−1
·hr−1)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 10 20 30

iSB1139
iMO1086
iJP962

Figure 3: In silico modeling of Pseudomonas species growth on
benzoate in MSM medium with a fixed oxygen uptake flux of
50mmol⋅gDW−1⋅hr−1. Growth inhibition by high uptake fluxes of
benzoate is seen in iMO1086 and iJP962. However, for iSB1139, the
growth rate did not decrease, even at high benzene concentrations.

but did not have any effects on in silico growth. The reaction
associated to this gene could not carry any flux during growth
on fructose or glucose.Therefore, its removal would not have
any effect on the biomass production flux.

3.5. Construction of Nitrate Respiring Pseudomonas putida
Kt2440. P. putida is vastly used in biotechnology. However,
a major drawback of this strain is its incapability to grow
anaerobically. To overcome this disadvantage, a genetically
engineered strain was recently constructed by introducing
the denitrification pathway of P. aeruginosa [48]. This strain
was not able to grow under anoxic conditions, but significant
anaerobic survival compared to control strains was observed.

In the experiment, modified M9 medium was used.
This medium contained Na

2
HPO
4
, KH

2
PO
4
, NaCl,

NH
4
Cl, MgSO

4
, CaCl

2
, FeSO

4
⋅7H
2
O, succinate, and

pH 6.8 supplemented with either KNO
3
or NaNO

2
. One

milliliter trace metal solution was added, which contained

Nitrate(e)

Nitrate(c)

Nitrite(c)

Nitric oxide(c)

Nitrogen(e)

Nitrogen(c)

Nitrous oxide(c)

Figure 4: Denitrification pathway. Metabolites like water, proton,
ferricytochrome 𝑐, ubiquinol, and ubiquinone are excluded for
clarity. Dashed line shows the system boundary.

ZnSO
4
⋅6H
2
O, MnCl

2
⋅4H
2
O, CoSO

4
⋅7H
2
O, NiCl

2
⋅6H
2
O,

CuCl
2
⋅2H
2
O, Na

2
MoO
4
⋅2H
2
O, and HCl. The exchange

reactions of these salts (their related ions) were allowed to
carry flux wherever a corresponding exchange reaction was
in the model. Although the medium was simulated as much
as possible, it could not be simulated precisely.

In silico simulation was performed by knocking in the
reactions of denitrification pathway to iJP962. This pathway
(Figure 4) begins with an exchange reaction which uptakes
nitrate from medium. Then, the pathway continues with
reactions that convert this metabolite to gaseous nitrogen
(N
2
), which leaves the system.
By setting the flux of oxygen uptake reaction to zero and

performing FBA, the model was able to have a possible non-
zero flux distribution. However, the growth rate was zero in
these conditions. Hence, the model did not show any growth
in anaerobic conditions, similar to the genetically engineered
strain in wet-lab. However, the in silico survival was increased
as the network was able to consume nitrate. Thus, the model
was able to reproduce the wet-lab results.

Adding new reactions to a model leads to some pertur-
bations in the patterns of flux distributions. However, the
denitrification pathway could function independent of the
growth (i.e., even when the growth rate is zero), because none
of the main metabolites of the pathway had been present in
the model.
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3.6. Growth on Leucine, Isovalerate, and Succinate. Catabolic
pathway of saturated methyl-branched compounds like
leucine and isovalerate has been previously investigated
in P. aeruginosa and P. putida [49]. The gene products
of leucine/isovalerate utilization pathway (Liu) have been
studied in detail. The liuRABCDE gene cluster is essential for
leucine/isovalerate utilization in P. aeruginosa. It is indicated
that both species are able to grow on leucine or isovalerate
as the sole carbon source. Both P. aeruginosa and P. putida
grew well on isovalerate, while growth on leucine was more
favorable for P. putida in comparison to P. aeruginosa. In
silico result was able to predict this phenomenon, as the flux
through biomass reaction of iJP962 was higher (although
marginally) than that of iMO1086 (see below).

In this study, mineral salt medium was used with leucine
or isovalerate as the sole carbon source. The components
of this medium and in silico simulation of MSM are men-
tioned previously in the text. Here, for simulating growth
on leucine/isovalerate, we set the lower bound and upper
bound of the all exchange reactions of the all possible
carbon sources to zero, except for leucine or isovalerate
uptake reaction. According to the experimental results, P.
putida could grow better than P. aeruginosa on leucine.
They had the same growth pattern on isovalerate as the sole
carbon source. Since the difference was related to growth
on leucine, we simulated growth on this carbon source. In
silico results were consistent with experimental data; that
is, the growth rates of iJP962 and iMO1086 were 0.785 and
0.778mmol⋅gDW−1⋅hr−1, respectively.

In the above-mentioned experimental study [49], some
mutations weremade in order to determine the essentiality of
each gene product in the pathway inP. aeruginosa. It appeared
that by making insertion mutations in liuC and liuD genes,
the mutants lost their ability to grow on leucine. Inactivation
of liuC gene in iMO1086 had no effect on in silico growth,
while removing the liuD gene led to zero flux in biomass
production. We investigated the reason of this discrepancy
and found out that the Liu pathway of themodel was different
from the one described in the experiment. Figure 5 depicts
a part of leucine metabolism. The pathway, which goes via
3-methylbutanoyl-CoA is included in the model, and the
alternative which goes via 3-Hydroxyisovaleryl-CoA is the
one suggested previously [49]. ReactionC󸀠, which is related to
liuC, is not utilized by themodel.We added the reaction B󸀠 to
themodel, upstream to C󸀠, in order to complete the suggested
pathway by the reference. The model did not include this
reaction, although adding the new reaction did not change
the preference of themodel to carry flux through the pathway
which goes via 3-methylbutanoyl-CoA. However, reaction D
is associated with liuD. Since during growth on leucine, this
reaction is active, its deletion led to zero growth rate. The
strain used in this experiment and the strain which model is
built for are the same (i.e., both are P. aeruginosa PAO1), and
therefore the discrepancy could not be related to difference
in the strains. We propose that such an inconsistency is
presumably due to little or no flux in reactions B󸀠 and C󸀠
(if it is not an error in the reconstruction procedure and the
bioinformatics data).

L-Leucine(c)

4-Methyl-2-oxopentanoate(c)

3-Methylbutanoyl-CoA(c)  3-Hydroxyisovaleryl-CoA(c)

3-Methylcrotonyl-CoA(c)

3-Methylglutaconyl-CoA(c)

A

B

C

D

B󳰀

C󳰀

Figure 5: Leucine degradation pathway. The path in which the
arrows are green is present in the model, while the path which
includes 3-hydroxyisovaleryl-CoA is suggested by the experimental
data.

3.7. Utilization of l-Amino Acids as the Sole Source of Carbon
and Nitrogen. According to several reports, amino acid
metabolismmight occur in bacteria under nutritionally poor
conditions. Amino acids can serve as the sole source of
carbon and nitrogen in complete absence of organic growth
factors, and this physiological property is vastly seen amongst
bacteria [50–52]. An experiment has been previously con-
ducted to analyze the cell growth of twoPseudomonas species,
namely, P. fluorescens and P. aeruginosa on single l-amino
acids as sole source of carbon and nitrogen [53].

Lochhead-Chase basal medium [54] has been used with
the modification that glucose and nitrate had been replaced
by a single amino acid as both carbon and nitrogen source.
Besides amino acids, this medium contained mineral salts.
Since we could not determine the exact components of this
medium, we performed the simulations in MSM medium
which was also constituted of mineral salts. For making an
amino acid, the sole source of carbon and nitrogen, we set
the upper bound and lower bound of the exchange/uptake
reaction all of the carbon and nitrogen sources to zero.

In the wet-lab experiment, the ability of growth on all
twenty amino acids in the “l” form as the sole source of
carbon and nitrogen was investigated. The results had been
estimated visually and on a scale from 0 to 2, 0 meaning no
growth and 2 meaning good growth. They also used 1 for
poor growth. Seventeen of the amino acids produced almost
the same growth response. Only l-threonine, l-tryptophan,
and l-hydroxyproline had different effects on the cell growth
pattern. Therefore, these data could be subject to our study
since they reflect the biochemical differences.

We simulated the experiment in silico and performedFBA
to see the biomass reaction flux and compare it to wet-lab
results. In silico results are shown in Table 3. In the case of
l-hydroxyproline, there was no uptake reaction in either of
the models; hence, we could not perform FBA. We could
add an exchange reaction to the model, keeping in mind
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that the consumed metabolite should be metabolized and
a single uptake reaction may not be sufficient. Since the
catabolic pathway of l-hydroxyproline is not included in the
models, we did not perform the growth simulation on l-
hydroxyproline.

For the case of l-threonine and l-tryptophan, computa-
tional results were not completely consistent with the wet-
lab data. In iMO1086, cell growth occurred on l-threonine.
In silico simulation in this case produced the same results.
The model, however, was not able to grow on l-tryptophan
in contrast to the wet-lab data. This inconsistency might be
because of difference in the strain used in the experimental
study or an error of the model.

In case of the iSB1139 model, growth on l-threonine was
found to be possible. However, model could not produce any
biomass on l-tryptophan.This could be due to the difference
of experimental and in silico strains or missing pathways in
the model.

3.8. Histidine Utilization By Pseudomonas Species. Amino
acids like histidine are important sources of carbon, nitrogen,
and energy for Pseudomonas species. Histidine degradation
in bacteria occurs via either a four-step or a five-step
enzymatic pathway [55]. Pseudomonas fluorescens SBW25
degrades histidine by the five-step pathway [56]. On the other
hand, Pseudomonas aeruginosa PAO1 utilizes this amino acid
through both four- and five-step pathways. Studies have
shown that this bacterium does not necessarily use both
routes at the same time and it can interchange the routes
depending on the environment [57].

We assumed that by knocking out the five-step pathway in
both species,P. aeruginosawould be able to grow on histidine,
as it has the alternative histidine utilization pathway. How-
ever, the inactivation of the five-step pathway of P. fluorescens
would lead to cell death on histidine, since the only catabolic
pathway of this amino acid would be inactivated.

We simulated the minimal M9 medium conditions
for both iMO1086 and iSB1139. For this purpose, we set
the exchange reaction flux of glucose and ammonia to
zero and instead we set the uptake rate of histidine to
10mmol⋅gDW−1⋅hr−1.

As shown in Figure 6, the three first reactions are shared
between these twopathways; by blocking eitherhutF orhutG,
the five-step pathway would be blocked. We simulated inac-
tivation of the five-step pathway by inactivating hutG gene or
its associated reaction. By deleting this gene, flux through this
pathway did not change, as there was another gene associated
with the reaction with “OR.” When we removed the reaction
associated with hutG, the model could not grow on histidine.
We investigated the reason of this inconsistency andwe found
out that only the five-step pathway of histidine utilization is
included in iMO1086.Therefore, by deactivating the pathway,
the model could not simulate the growth on histidine.

It should be noted that the model of P. fluorescens, that is,
iSB1139, showed no growth on histidine as the sole source of
carbon and nitrogen. These results are against the biological
observations [56], whichmeans that themodel is presumably
incomplete (if the disagreement is not related to the strain
differences).

Histidine

Imidazolone-5-propionate

Formiminoglutamate (FIGLU)

HutH

HutU

HutI

HutF HutE

HutG

Urocanate + NH3

Formylglutamate + NH3 Glutamate + formamide

Glutamate + formate

Figure 6: Histidine utilization pathway in P. aeruginosa.This strain
can metabolize histidine either through a four-step or a five-step
pathway. P. fluorescens is only capable of utilizing histidine through
the five-step pathway.

3.9. Amino Acid Utilization in P. putida versus P. fluorescens.
Utilization of acidic amino acids and their amides as the sole
source of carbon and nitrogen by Pseudomonas species has
been investigated previously [58], and the growth profiles of
P. putida and P. fluorescens have been studied qualitatively
(Table 4). It has been shown that an enzyme involved
in glutamate and aspartate utilization, called periplasmic
glutaminase/asparaginase (PGA), is induced by glutamate
and related amino acids. PGA is the product of ansB gene.
It has also been shown that a mutant of P. putida KT2440 in
ansB gene was not able to utilize glutamine, while growth on
other amino acids was possible [58].

In the experiment, that is, growth on amino acids as the
sole source of carbon and nitrogen, bacteria were grown on
M9 minimal medium with amino acid as the sole source of
carbon and nitrogen.

We have simulated the experimental conditions in silico
bymaking the desired amino acid as the sole source of carbon
and nitrogen and setting the upper and lower bound of the
exchange/uptake reactions of all other possible carbon and
nitrogen sources to zero.

Results of amino acid consumption are shown in Table 4.
For P. putida, experimental and computational data were
almost consistent. The only case of inconsistency was related
to leucine in which no growth was seen in the wet-lab
experiment, while the model produced a considerable flux
rate of biomass production. Since the strain used in the
experiment and in silico simulation was the same, this
inconsistency might be due to falsely added reactions in the
model.
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Table 3: Relative cell growth estimated visually from amount of growth on amino acid.

Amino acid
P. aeruginosa P. fluorescens

In silico data
(mmol⋅gDW−1⋅hr−1) Biological data In silico data

(mmol⋅gDW−1⋅hr−1) Biological data

l-threonine 0.405 ++ 0.982 −

l-tryptophan 0 ++ 0 ++
l-hydroxyproline N/I + N/I ++
++: good growth; +: poor growth; −: no growth; N/I: uptake reaction not included in the model.

Table 4: Qualitative growth profiles of P. putida and P. fluorescens on three amino acids. Relative growth rates were estimated qualitatively.

Strains P. putida KT2440 P. fluorescens ATCC 13525
Amino acid as the sole source
of carbon and nitrogen

In silico data
(mmol⋅gDW−1⋅hr−1) Biological data In silico data

(mmol⋅gDW−1⋅hr−1) Biological data

Cys 0 − 0 +
Leu 0.785 − 0.156 (+)
Pro 0.639 ++ 0.161 (+)
Ser 0.283 + 0.964 ++
Gln 0.538 ++ 1.246 +
GLu 0.556 ++ 1.244 +
−: no growth; (+): negligible; +: poor growth; ++: good growth.

For the model of P. fluorescens, there are several inconsis-
tencies for cysteine, serine, glutamine, and glutamate. How-
ever, in this case, the strain used in the experiment (ATCC
13525) was different from themodeled strain (SBW25), which
may (or may not) be the source of inconsistencies.

The lethal effect of ansB deletion for growth on glutamine
has been indicated in this study. The product of this gene,
PGA, is a periplasmic enzyme that converts glutamine to
glutamate. Mutant cells lacking this enzyme were unable to
grow on glutamine and concentration of glutamine in the
medium did not decrease over time. Therefore, mutant cells
were unable to uptake this amino acid. However, they could
grow on glutamate and other amino acids [58].

By simulating experimental conditions, we performed
gene essentiality analysis. Deleting ansB gene (PP0495) or
removing its associated reaction had no effect on model
growth. The reason of the inconsistency is that there are
alternative pathways included in the model for converting
glutamine to glutamate and hence these reactions performed
the conversion in the absence of ansB product.

4. Concluding Remarks

To date, several genome-scale metabolic networks have been
reconstructed. These models have been used for different
purposes, ranging from basic science studies to metabolic
engineering applications. However, to the best of our knowl-
edge, using these models in a comparative manner has not
attracted much attention previously.

In this study, we used three Pseudomonas metabolic
network models in a series of in silico comparative simula-
tions and then evaluated the computational results with the

experimental data. It should be emphasized that for gathering
information, we used the previously reported experimental
data on the same species, but we did not limit our search
necessarily to the strains for which the models were built.
A number of studies have previously applied such a strategy
for validating reconstructed metabolic network models [59–
61]. However, this might lead to inconsistencies between
experimental and computational results, as various strains of
the same species have different biochemical properties. We
encountered such a case in our study, namely, for the aerobic
growth of P. putida on benzene (Section 3.1).

In our study, in most of the cases, P. aeruginosa and P.
putida models could reproduce previously reported experi-
mental results. However, the model for P. fluorescens failed to
predict the biological data in several instances.One reason for
high accuracy of iMO1086 and iJP962 is the vast availability
of biological data for P. aeruginosa and P. putida. Since P.
aeruginosa is an opportunistic human pathogen [33, 34] and
P. putida is a bacterium of biotechnological importance [31,
48], the models of these strains include enough data after
iterative refinement of the reconstruction process. Moreover,
these two models have been further validated during a pro-
cess called “reconciliation” [30], which includes comparing
metabolic network models to eliminate errors that have been
included in the model during the reconstruction.

The very recent in silico model of P. fluorescens, iSB1139,
showed inconsistent results with experimental data in many
of our simulations. It is known that the computational growth
rate of this model is far from the reported experimental
growth rate [32]. According to our results, this model needs
further refinement in order to produce more reliable predic-
tions.
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[14] M. Heinemann, A. Kümmel, R. Ruinatscha, and S. Panke,
“In silico genome-scale reconstruction and validation of the
Staphylococcus aureus metabolic network,” Biotechnology and
Bioengineering, vol. 92, no. 7, pp. 850–864, 2005.

[15] C. H. Schilling, M. W. Covert, I. Famili, G. M. Church, J. S.
Edwards, and B. O. Palsson, “Genome-scale metabolic model
of Helicobacter pylori 26695,” Journal of Bacteriology, vol. 184,
no. 16, pp. 4582–4593, 2002.

[16] A. M. Feist, J. C. M. Scholten, B. Ø. Palsson, F. J. Brockman,
and T. Ideker, “Modeling methanogenesis with a genome-scale

metabolic reconstruction ofMethanosarcina barkeri,”Molecular
Systems Biology, vol. 2, Article ID 2006.0004, 2006.

[17] N. C. Duarte, S. A. Becker, N. Jamshidi et al., “Global recon-
struction of the human metabolic network based on genomic
and bibliomic data,” Proceedings of the National Academy of
Sciences of the United States of America, vol. 104, no. 6, pp. 1777–
1782, 2007.

[18] L. K. Nielsen, “On the reconstruction of the Mus musculus
genome-scale metabolic network model,” in Genome Informat-
ics, p. 253, World Scientific, 2008.

[19] S. Selvarasu, I. A. Karimi, G.-H.Ghim, andD.-Y. Lee, “Genome-
scale modeling and in silico analysis of mouse cell metabolic
network,”Molecular BioSystems, vol. 6, no. 1, pp. 152–161, 2010.

[20] M. I. Sigurdsson, N. Jamshidi, E. Steingrimsson, I.Thiele, and B.
T. Palsson, “A detailed genome-wide reconstruction of mouse
metabolism based on human Recon 1,” BMC Systems Biology,
vol. 4, article 140, 2010.

[21] P. Pharkya, A. P. Burgard, and C. D. Maranas, “OptStrain: a
computational framework for redesign of microbial production
systems,” Genome Research, vol. 14, no. 11, pp. 2367–2376, 2004.

[22] P. Pharkya, A. P. Burgard, and C. D. Maranas, “Exploring the
overproduction of amino acids using the bilevel optimization
framework optknock,” Biotechnology and Bioengineering, vol.
84, no. 7, pp. 887–899, 2003.

[23] O. Folger, L. Jerby, C. Frezza, E. Gottlieb, E. Ruppin, and T.
Shlomi, “Predicting selective drug targets in cancer through
metabolic networks,” Molecular Systems Biology, vol. 7, article
501, 2011.

[24] H. U. Kim, S. B. Sohn, and S. Y. Lee, “Metabolic network
modeling and simulation for drug targeting and discovery,”
Biotechnology Journal, vol. 7, no. 3, pp. 330–342, 2012.

[25] D. Perumal, A. Samal, K. R. Sakharkar, and M. K. Sakharkar,
“Targeting multiple targets in Pseudomonas aeruginosa PAO1
using flux balance analysis of a reconstructed genome-scale
metabolic network,” Journal of Drug Targeting, vol. 19, no. 1, pp.
1–13, 2011.

[26] A. M. Feist and B. Ø. Palsson, “The growing scope of applica-
tions of genome-scale metabolic reconstructions using Escheri-
chia coli,”Nature Biotechnology, vol. 26, no. 6, pp. 659–667, 2008.

[27] C. Pál, B. Papp, and M. J. Lercher, “Adaptive evolution of bac-
terial metabolic networks by horizontal gene transfer,” Nature
Genetics, vol. 37, no. 12, pp. 1372–1375, 2005.

[28] C. Pál, B. Papp, M. J. Lercher, P. Csermely, S. G. Oliver, and L.
D. Hurst, “Chance and necessity in the evolution of minimal
metabolic networks,” Nature, vol. 440, no. 7084, pp. 667–670,
2006.

[29] M. A. Oberhardt, J. Puchałka, K. E. Fryer, V. A. P. Martins
Dos Santos, and J. A. Papin, “Genome-scale metabolic network
analysis of the opportunistic pathogen Pseudomonas aeruginosa
PAO1,” Journal of Bacteriology, vol. 190, no. 8, pp. 2790–2803,
2008.

[30] M. A. Oberhardt, J. Puchałka, V. A. P. M. dos Santos, and J. A.
Papin, “Reconciliation of genome-scale metabolic reconstruc-
tions for comparative systems analysis,” PLoS Computational
Biology, vol. 7, no. 3, Article ID e1001116, 2011.

[31] J. Puchałka,M.A.Oberhardt,M.Godinho et al., “Genome-scale
reconstruction and analysis of the Pseudomonas putidaKT2440
metabolic network facilitates applications in biotechnology,”
PLoS Computational Biology, vol. 4, no. 10, Article ID e1000210,
2008.



The Scientific World Journal 11

[32] S. E. Borgos, S. Bordel, H. Sletta et al., “Mapping global effects of
the anti-sigma factorMucA in Pseudomonas fluorescens SBW25
through genome-scalemetabolicmodeling,” BMC Systems Biol-
ogy, vol. 7, p. 19, 2013.

[33] E. E. Smith, D. G. Buckley, Z. Wu et al., “Genetic adaptation
by Pseudomonas aeruginosa to the airways of cystic fibrosis
patients,” Proceedings of the National Academy of Sciences of the
United States of America, vol. 103, no. 22, pp. 8487–8492, 2006.

[34] J. Zhang, H. Li, J. Wang, Z. Dong, S. Mian, and F.-S. X.
Yu, “Role of EGFR transactivation in preventing apoptosis
in Pseudomonas aeruginosa-infected human corneal epithelial
cells,” Investigative Ophthalmology and Visual Science, vol. 45,
no. 8, pp. 2569–2576, 2004.
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