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Abstract

Passive immunization with broadly neutralizing antibodies (bNAbs) of HIV-1 appears a

promising strategy for eliciting long-term HIV-1 remission. When administered concomi-

tantly with the cessation of antiretroviral therapy (ART) to patients with established viremic

control, bNAb therapy is expected to prolong remission. Surprisingly, in clinical trials on

chronic HIV-1 patients, the bNAb VRC01 failed to prolong remission substantially. Identify-

ing the cause of this failure is important for improving VRC01-based therapies and unravel-

ing potential vulnerabilities of other bNAbs. In the trials, viremia resurged rapidly in most

patients despite suppressive VRC01 concentrations in circulation, suggesting that VRC01

resistance was the likely cause of failure. ART swiftly halts viral replication, precluding the

development of resistance during ART. If resistance were to emerge post ART, virological

breakthrough would have taken longer than without VRC01 therapy. We hypothesized

therefore that VRC01-resistant strains must have been formed before ART initiation, sur-

vived ART in latently infected cells, and been activated during VRC01 therapy, causing

treatment failure. Current assays preclude testing this hypothesis experimentally. We devel-

oped a mathematical model based on the hypothesis and challenged it with available clinical

data. The model integrated within-host HIV-1 evolution, stochastic latency reactivation, and

viral dynamics with multiple-dose VRC01 pharmacokinetics. The model predicted that single

but not higher VRC01-resistant mutants would pre-exist in the latent reservoir. We con-

structed a virtual patient population that parsimoniously recapitulated inter-patient varia-

tions. Model predictions with this population quantitatively captured data of VRC01 failure

from clinical trials, presenting strong evidence supporting the hypothesis. We attributed

VRC01 failure to single-mutant VRC01-resistant proviruses in the latent reservoir triggering

viral recrudescence, particularly when VRC01 was at trough levels. Pre-existing resistant

proviruses in the latent reservoir may similarly compromise other bNAbs. Our study provides

a framework for designing bNAb-based therapeutic protocols that would avert such failure

and maximize HIV-1 remission.
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Author summary

Antiretroviral therapy (ART) can control but not eradicate HIV-1. Stopping ART leads to

rapid viral resurgence and progressive disease. ART is therefore administered lifelong.

Tremendous efforts are ongoing to devise strategies that will enable stopping ART and yet

prevent viral resurgence. One such strategy involves the administration of broadly neu-

tralizing antibodies (bNAbs) of HIV-1 at the time of stopping ART. This strategy is

expected to delay if not prevent viral resurgence. Surprisingly, treatment with VRC01, a

potent bNAb, resulted in hardly any improvement in viral remission. In this study, we elu-

cidate the cause of this failure. We hypothesized that VRC01-resistant strains may pre-

exist in latently infected cells, which are unaffected by ART. They can thus outlast ART

and get reactivated, triggering VRC01 failure. We built a detailed mathematical model

based on this hypothesis and showed that it quantitatively captured observations of

VRC01 failure in clinical trials on chronic HIV-1 patients. Our study thus identifies a

potential vulnerability of bNAbs, namely, bNAb-resistant strains pre-existing in latently

infected cells. Our model offers a framework for predicting bNAb-based treatment proto-

cols that would preclude failure due to pre-existing resistance and maximally prolong

remission.

Introduction

Antiretroviral therapy (ART) for HIV-1 infection rapidly suppresses viremia to undetectable

levels and curtails disease progression but is unable to eradicate the virus [1]. Discontinuation

of ART, even long after viremic control is established, typically leads to rapid viral rebound,

often within days to weeks of discontinuation, and to progressive disease [2]. The rebound is

caused by a reservoir of latently infected cells [3] that is formed soon after infection [4]. The

reservoir is sustained by cell proliferation [5,6], which can continue even when ART has

stopped new infections, allowing the reservoir to exist long-term [7]. The reservoir can get

reactivated stochastically and reignite infection once ART is stopped [8,9]. ART must therefore

be administered lifelong. In a remarkable breakthrough, the VISCONTI study showed that

when ART is administered early in infection, some individuals can maintain viremic control

for many years after the cessation of ART [10]. This study has raised hopes of a functional

cure, or long-term remission, of HIV-1, where the viremic control once established by ART

can be maintained without lifelong treatment [11]. The success of ART in inducing post-treat-

ment control, however, is small: only ~5–15% of the patients treated achieve lasting post-treat-

ment control [12]. Enormous efforts are underway to improve this success rate [11].

One strategy that holds promise is to administer broadly neutralizing antibodies (bNAbs)

of HIV-1 for a short period post-ART, i.e., during an analytical treatment interruption (ATI)

[13,14]. bNAbs target diverse viral genomic variants [15,16], and are expected to suppress vire-

mia arising from the reactivation of latently infected cells [17,18]. Simultaneously, they may

engage the host immune system [19], potentiating it to maintain the viremic control long-

term [20,21]. Two recent clinical trials tested this strategy using the bNAb VRC01 [17].

VRC01 targets the CD4 binding site on the HIV-1 envelope with high breadth and potency

[15,22]. When it was administered to chronically infected patients who had achieved undetect-

able viremia with ART, the duration of viremic control was observed to increase only margin-

ally, by a median of ~2–4 weeks, beyond historical controls [17]. In the historical control

group, which was not treated post-ART, viral rebound occurred in ~2.6 weeks on average after

ART interruption [23]. Why VRC01 was ineffective in maintaining remission longer is
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unclear. Unravelling the causes of this ineffectiveness is important to optimizing VRC01

usage, which is also in large clinical trials for preventing the transmission of infection [24,25],

and to expose potential vulnerabilities of other bNAbs.

VRC01 exhibits potent antiviral activity in vivo [26], including at its trough levels in patients

[27]. Yet, in the trials above [17], viral rebound was observed in most patients when VRC01 levels

in circulation were significantly higher than its in vitro suppressive concentration (or IC50), impli-

cating the role of resistance. Mutations that confer resistance to bNAbs are well documented [28–

31]. Indeed, VRC01-resistant strains were detected in the breakthrough viral populations in the

trials above [17]. The rapid virological breakthrough during treatment, especially given the

absence of circulating virions at the time of ART cessation and the potent activity of VRC01

against the wild-type, suggests that VRC01 resistance might have existed before VRC01 therapy.

Here, we therefore hypothesized that pre-existing VRC01-resistant proviruses formed before ART

and contained in the latent reservoir could underlie the failure of VRC01 therapy. Minority viral

variants as well as latently infected cells are difficult to detect using current assays [32,33]. Testing

our hypothesis experimentally would require detecting minority variants ‘within’ latently infected

cells, highlighting the challenge involved. Current assays can rarely detect variants below a fre-

quency of ~1% [34], implying that, given the prevalent estimates of the latent reservoir size of

105–108 cells [4,35], variants present in as many as 103 latently infected cells may go undetected

and be responsible for therapy failure. Indeed, in many individuals who failed rapidly in the trials

above [17], viral genome sequencing could not detect VRC01 resistance pre-treatment [17,36]. As

an alternative approach, therefore, we resorted to mathematical modeling.

A number of mathematical models have been developed in recent years to describe latent

cell infection and dynamics and its role in the outcomes of treatments [37–48]. Models have

also been constructed, independently, for describing viral evolution and drug resistance, espe-

cially in the context of ART [49–53]. Describing the failure of VRC01 therapy required inte-

grating these two independent formalisms, of viral evolution and latent reservoir reactivation,

a task not accomplished so far because of the complexity involved. HIV-1 evolution involves

mutation, recombination, fitness selection, and random genetic drift, which together define

the timing and speed of the development of drug resistance during ART [51–55]. Latent cell

reactivation is an intrinsically stochastic process [8,45,46], following which the virions released

must establish lasting infection, which is not guaranteed [37,39,42], especially in the presence

of bNAbs. Here, we developed a framework that integrates these processes by recognizing that

the dynamics of viral evolution and latent cell reactivation could be decoupled in the context

of post-ART bNAb therapy. Viral evolution primarily occurs pre-ART, where viral and pro-

ductively infected cell populations are large and the contribution from latently infected cells to

the dynamics can be ignored. Latent cell reactivation leading to treatment failure occurs dur-

ing bNAb therapy, when active viral replication is small and so viral evolution can be ignored.

These processes are linked by VRC01 resistant strains, which are predominantly formed before

therapy and are harbored in latently infected cells and could get reactivated during therapy.

Developing a model with this strategy, we were able, for the first time, to capture data from

human clinical trials involving bNAb-based interventions quantitatively, offering an explana-

tion of the inadequate effectiveness of VRC01 in maintaining remission, and providing a

framework for rational treatment optimization.

Results

Mathematical model

We considered the scenario where chronically infected individuals with viremic control estab-

lished with long-term ART are administered VRC01 during an ATI, as in recent clinical trials
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[17]. We developed a model to predict the ensuing remission times based on the hypothesis

that viral strains resistant to VRC01 harbored in latently infected cells were responsible for

virological breakthrough (Fig 1). We provide an overview of the model here; details are in

Methods.

We first considered a single infected individual (Fig 1A). We estimated the diversity of the

viral population in the individual at ART initiation using a detailed model of viral dynamics

and evolution that considered target cells, free virions, and productively infected cells, and

included mutation, cellular superinfection, recombination, and fitness selection based on the

relative fitness of dominant VRC01 resistance mutations. From the diversity, we obtained the

frequencies of productively infected cells containing different mutant proviruses resistant to

VRC01. We let the latent reservoir harbor proviruses with the same frequencies, as has been

done previously [55]. We recognized that of the latter cells, those harboring the most frequent

mutant provirus were the most likely to re-establish infection. We employed a stochastic

model to estimate the waiting time for the reactivation of such latent cells and tracked the

ensuing dynamics during VRC01 therapy until the infection grew to detectable levels, at which

point the therapy was deemed to have failed. During the simulations, we let the efficacy of

VRC01 vary continuously with time based on its pharmacokinetic profile, which we estimated

from independent fits to data. The parameter values employed for estimating the proviral fre-

quencies and latent cell reactivation are listed in Tables 1 and 2, respectively.

Next, we constructed a large virtual patient population based on inter-patient variations in

the size of the latent reservoir and the fitness of mutant viral strains, to reflect variations in

host and viral factors, respectively, that could influence the outcomes of therapy (Fig 1B). We

applied our model above to each virtual patient and estimated the time of therapy failure.

From these simulations, we estimated the distribution of remission times in the population

and constructed Kaplan-Meier survival plots. We used data from one clinical trial to estimate

the parameters defining the inter-patient variations in the virtual patient population and used

them without adjustable parameters to predict the outcomes of another clinical trial, validating

our model and the parameter estimates.

Frequencies of VRC01-resistant mutants pre-existing in the latent reservoir

To estimate the frequencies of VRC01 resistant proviruses that may exist in the latent reservoir

and cause VRC01 failure, we considered viral evolution before the initiation of ART in a

chronically infected individual. During ART, viral replication is quickly halted [5,6], leaving

little scope for further viral diversification. We considered four mutations in the HIV-1 enve-

lope region reported to be highly resistant to VRC01: N279K, N280D, R456W and G458D

[28]. Resistance could come from strains carrying these mutations singly, in pairs, in triplets,

or all together. We considered all these strains in addition to the wild-type, or VRC01 sensitive,

strain in our model. The frequencies of the strains would depend on their relative fitness,

which, following previous studies [56–58], is defined in our model by two components: infec-

tivity and replicative ability. The relative infectivity of each of the strains involved has been

estimated in independent experiments [28], which we employed (S1 Table). The replicative

abilities can be estimated using competitive growth assays [59], which have been reported for

some of the strains [28]. From the assays, the two fittest single mutant strains, N279K and

N280D, appeared to have replicative fitness not significantly different from the wild-type [28].

We analysed data available from the assays for the other two single mutants, R456W and

G458D, and the quadruple mutant [28] using a previously developed formalism [59] and esti-

mated their replicative fitness (S1 Fig). For all the double (except N279K-R456W, which had

replicative fitness similar to the wild type [28]) and triple mutants, as an approximation, we set
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the replicative fitness to values predicted assuming zero epistasis. (This assumption is not criti-

cal to our findings, which, as we show below, depend primarily on the single mutant frequen-

cies.) The fitness values are in S1 Table. The fitness values were consistent with recent deep

mutational scanning analyses, which suggest that most mutations in the HIV-1 envelope are

under purifying selection [60]. With these fitness values and all other parameters representa-

tive of chronic HIV-1 infection (Table 1), we estimated the frequencies of productively

infected cells harbouring the different mutant proviral genomes (Fig 2).

Our model predicted that the fittest mutant strain, N279K, would exist at a frequency of

approximately 2.3×10−4, the highest among the different mutants (Fig 2A). Other single

mutants were at frequencies ~5-fold lower. The double mutants had frequencies of ~10−9 (Fig

2B), triple mutants of ~10−14 (Fig 2C), and the quadruple mutant of ~10−19 (S1 Table). These

frequencies are similar but not identical to those expected from the mutation-selection bal-

ance, where a strain with n mutations would exist at a frequency of ~(μ/a)n, with a the constant

per mutation fitness penalty and μ the mutation rate [49]. For N279K, for instance, where

a~0.14, considering both relative replicative fitness and relative infectivity (S1 Table), and with

μ~3×10−5 [52], the mutation-selection balance would yield a frequency of 2.14×10−4, slightly

lower than that predicted by our model.

Following previous models, where a constant fraction of infection events is assumed to lead

to latency [39,42,47], the frequencies of the mutants are expected to be similar in productively

and latently infected cells. The latent reservoir is not affected by ART directly, and even in the

absence of active viral replication, the latent reservoir would decrease in size extremely slowly,

taking years [7]. Thus, one could safely assume that the latent reservoir at the initiation of ART

would exist nearly intact post-ART and at the start of VRC01 therapy, as also suggested by

recent observations [61]. We do recognize that the latent reservoir can harbour genomes from

early in the infection [61], so that the estimate diversity in the plasma would be an upper

bound on the diversity in the latent reservoir. Current technologies have been unable to

Fig 1. Overview of the model. (A) Dynamics at the individual patient level. We used a model of within-host HIV-1 evolution to estimate

the pre-ART frequencies of wild-type and VRC01-resistant mutants (left), letting them be identical in productively and latently infected

cells. ART eliminates the former but not the latter cells (middle). We then used a stochastic model of latent cell reactivation and viral growth

to estimate the time of virological failure following VRC01 therapy (right) for a given size of the latent reservoir and the fitness of the VRC01

resistant strain. (B) Dynamics at the patient population level and the outcomes of clinical trials. We created a virtual patient population by

sampling the latent cell pool size and mutant viral fitness during VRC01 therapy from defined distributions (left). For each individual, we

performed stochastic simulations as in (A) and estimated the time to virological failure (middle), from which we obtained the distribution of

breakthrough times and Kaplan-Meier survival plots (right), which we compared with clinical data.

https://doi.org/10.1371/journal.pcbi.1008434.g001

Table 1. Parameter values used in the model (Eqs 1–10) for estimating mutant frequencies.

Parameter Description Value Source

λ Production rate of uninfected cells 105 cells/mL/day [52]

dT Per capita death rate of uninfected cells 0.1/day

k0 Infection rate constant for uninfected cells 2.4×10−8 mL/day

k1 Cellular superinfection rate constant 0.7k0

δ Per capita death rate of productively infected cells 1/day

p Viral production rate 4,792 virions/cell/day

c Virion clearance rate 23/day

μ Mutation rate 3×10−5 substitutions/site/replication

ρ Recombination rate 8.3×10−4 crossovers/site/replication

βi Relative infectivity Listed in S1 Table [28]

ξi Replicative fitness Listed in S1 Table S1 Fig

https://doi.org/10.1371/journal.pcbi.1008434.t001
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estimate the diversity in the latent reservoir comprehensively [36]. We therefore employ the

upper bound as a conservative estimate. Given the latent reservoir size, L0, of ~105–108 cells in

chronically infected individuals [35,39], the expected number of cells infected with the N279K

mutant proviruses would be ~23–23000. The corresponding numbers would be ~10–5000 for

the other single mutants (Fig 2). For the double and triple mutants, however, the numbers

would be<0.1 and<10−6, respectively. On average, thus, our calculations predicted that most

latently infected cells would carry wild-type, or VRC01-sensitive proviruses. A small number,

~10–104 cells, would carry single mutants resistant to VRC01. Cells carrying higher mutants

were unlikely to exist. The single mutants, too, may not be detectable in most cases, given cur-

rent assay limits (see Introduction).

With this description of the frequencies of VRC01 resistant proviruses in the latent cell res-

ervoir, we examined the dynamics of VRC01 failure due to latent cell reactivation.

Table 2. Parameters values used in the model of viral rebound (Eqs 11–20). Parameters not listed are in Table 1.

Parameter Description Value Source

L0 Initial latent reservoir size Log10(L0)~N(6.3,0.43) cells (lognormal distribution) S3 Fig

ρl Per capita proliferation rate of latently infected cells� 0.0042/day [39,41]

dl Per capita death rate of latently infected cells� 0.004/day [39]

ac Per capita activation rate of latently infected cells� 7.8×10−4/day [39,41]

f Fraction of new infections that lead to latency 10−6 [39]

k Infectivity$ 1.6×10−12/day [52]

p Viral production rate p~N(2100,200) virions/cell/day (normal distribution) [41,44]

U Uninfected cell population$ 1.5×1010 cells [52]

εART ART efficacy 0.99 Assumed

IC50,m 50% inhibitory concentration for the N279K mutant& 800 μg/mL S4 Fig

A1 Portion of VRC01 dose associated with first phase decay# 451 (320, 580) μg/mL Best-fit (Fig 4A inset)

A2 Portion of VRC01 dose associated with second phase decay# 1253 (910, 1596) μg/mL
η1 First phase decay rate# 0.093 (0.078, 0.109) /day

η2 Second phase decay rate# 1.374 (0.752, 1.995) /day

� ρl, ac, and dl together yield a half-life of ~40 months for the latent pool, consistent with experiments [7].
$Corresponding to 15 L of body fluid volume.
&Estimates indicate a value much larger than 50 μg/mL [25,28], but a precise value is lacking.
# 95% confidence limits are in brackets.

https://doi.org/10.1371/journal.pcbi.1008434.t002

Fig 2. Pre-existing frequencies of mutants. Frequencies of (A) single mutants, (B) double mutants, and (C) triple mutants resistant to VRC01 estimated by our model

(Methods). The frequencies, including of the wild-type and the quadruple mutant, not shown here, are listed in S1 Table.

https://doi.org/10.1371/journal.pcbi.1008434.g002
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de novo generation of mutants during VRC01 therapy

From the above estimates, the lower end of the spectrum of latent cell numbers carrying single

mutant proviruses, ~10 cells, is small enough that it is possible that in some individuals, due to

stochastic variations in the mutant frequencies and/or infected cell numbers, the latent reser-

voir contains no resistant proviruses. In such a scenario, de novo mutation after the reactiva-

tion of latent cells carrying VRC01 sensitive proviruses would have to give rise to resistance

during VRC01 therapy. Even in the presence of latent cells carrying single mutant proviruses,

the large majority of cells carrying VRC01 sensitive strains may result in de novo mutations fol-

lowing reactivation of latent cells carrying VRC01 sensitive proviruses being the predominant

mechanism of VRC01 failure. We developed a model to test this possibility (S1 Text) and

found that the estimated virological breakthrough times were far larger (over ~100 days) than

those observed clinically (~20 days) (S2 Fig). Although reactivation of such cells was more fre-

quent, given their larger numbers, than the cells carrying mutant proviruses, such reactivation

did not lead to lasting infection in our predictions because VRC01 successfully neutralized the

viruses produced. Mutations, being intrinsically rare, did not lead to rapid enough de novo
development of resistance. The VRC01 failure seen clinically was thus unlikely to be due to the

reactivation of latently infected cells carrying VRC01 sensitive proviruses. The more likely

mechanism therefore was the reactivation of latently infected cells carrying single mutant pro-

viruses resistant to VRC01. We estimated remission times based on the latter mechanism next.

Growth of pre-existing mutants during VRC01 therapy

We focussed on latently infected cells carrying proviruses with the N279K mutation, which,

with their 5-fold higher prevalence than other single mutants, were the most likely to be reacti-

vated. Stochastic simulations (Methods) with a constant VRC01 efficacy against the mutant,

indicated that the latent cell pool did not vary significantly over the durations considered (Fig

3A), consistent with experiments [36]. Reactivation leading to the growth of productively

infected cells carrying proviruses with the N279K mutation occurred over a duration of a few

days to weeks (Fig 3B). Detectable viremia, however, took longer given that the viral levels had

to rise to 20 copies/ml (Fig 3C). Defining the time for viremia to become detectable as the time

of the failure of VRC01 therapy, or the breakthrough time, the simulations yielded a distribu-

tion of breakthrough times ranging from 20–100 d when L0 was 106 cells (Fig 3D), consistent

with observations [17], suggesting that virological breakthrough was likely to be due to the

reactivation of cells infected latently with single mutant VRC01-resistant strains.

The breakthrough time depended on the time for latent cell reactivation as well as for the

subsequent establishment of successful infection. Thus, higher L0, which decreased reactiva-

tion times, led to earlier breakthrough (Fig 3E). Increasing the viral production rate (Fig 3F),

lowering drug efficacy ((Fig 3G) or increasing viral fitness (Fig 3H), which improved the

chances of establishment of successful infection after reactivation, all led to more rapid virolog-

ical breakthrough. These factors are likely to vary across individuals. We examined next how

their influence would manifest in clinical trials and whether our simulations could capture the

VRC01 failure seen in the trials.

Multimodal distribution of breakthrough times in a virtual patient

population

We focused here on the A5340 trial [17] where VRC01 therapy was initiated a week before the

end of ART on patients with well-controlled viremia. 3 doses of VRC01 were administered,

with a gap of 3 weeks between successive doses. Virological breakthrough was detected when
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the viral load crossed 20 copies/ml. To mimic the trials, it was necessary not only to account

for inter-patient variations but also to consider time-varying efficacies of drugs within an indi-

vidual, which can significantly affect the development of drug resistance [51,62]. We therefore

first considered VRC01 pharmacokinetics and fit a model of biphasic decay to data of the

VRC01 plasma concentration profile following a single intravenous dose [26] (Fig 4A inset).

Using the resulting best-fit parameters, we predicted the multiple dose pharmacokinetics for

the dosing protocol above and estimated the time-varying efficacy, εm (Fig 4A), which we

employed in our stochastic simulations.

Next, we created a virtual patient population to mimic inter-patient variations expected in

clinical trials. A number of host factors, including HLA types, are known to affect the ability of

individuals to control viremia [63]. Similarly, viral factors have also been argued to determine

the level of viremia in chronic infection [64]. A convolution of host and viral factors is

expected to determine clinical outcomes. The specific factors involved and how they vary

across individuals, however, is not fully established [46,63]. Here, we employed a parsimonious

approach where we let two parameters, one reflective of variations in host factors and the

other viral factors, define the inter-patient variations. We thus constructed a virtual patient

population with different initial latent pool sizes, L0, subsuming variations in all host-factors,

and viral production rates, p, subsuming variations in all viral factors. For each individual, we

sampled L0 and p independently from pre-defined distributions (Methods) and ran a stochas-

tic simulation to describe the ensuing dynamics.

The simulated dynamics showed virological breakthrough times varying from a few days to

a few months post cessation of ART across individuals (Fig 4B). Following breakthrough, the

viral load rose sharply. It was suppressed partially following the administration of a VRC01

dose, but then rose again once the VRC01 level fell. The patterns were similar to the viral load

Fig 3. Dynamics of VRC01 failure due to pre-existing resistance. Representative trajectories of (A) the latent cell pool harboring resistant proviruses, (B) activated

cells, and (C) VRC01-resistant viral load, obtained by our stochastic simulations (Methods). The different colors represent individual trajectories. Black dashed line

shows the detection limit, crossing which marks clinical rebound. (D) The distribution of rebound times obtained from 5000 realizations. Here, the initial population of

latently infected cells carrying the resistant mutants was set to 2.3×10−4×L0, where L0 = 106 cells, and the VRC01 efficacy against the mutant to εm = 0.3. Other

parameters used are in Tables 1 and 2. Variation of the distribution is shown with (E) initial latent pool, L0 (cells), (F) viral production rate (virions/cell/day), (G)

VRC01 efficacy, and (H) mutant fitness.

https://doi.org/10.1371/journal.pcbi.1008434.g003

PLOS COMPUTATIONAL BIOLOGY VRC01 therapy and HIV-1 remission

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008434 November 30, 2020 9 / 30

https://doi.org/10.1371/journal.pcbi.1008434.g003
https://doi.org/10.1371/journal.pcbi.1008434


PLOS COMPUTATIONAL BIOLOGY VRC01 therapy and HIV-1 remission

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008434 November 30, 2020 10 / 30

https://doi.org/10.1371/journal.pcbi.1008434


resurgence patterns seen in patients [17]. From the breakthrough data, we estimated the distri-

bution of virological breakthrough times in this virtual patient population (Fig 4C). We found

that the distribution was multimodal. Until a week or so following the cessation of ART, no

breakthrough was expected based on the distribution because of high VRC01 levels in circula-

tion. As the VRC01 concentration declined, breakthrough began. The distribution of break-

through times peaked when the VRC01 concentration was at its trough level, just before the

administration of the second VRC01 dose. Following dosing, the distribution dropped steeply,

and rose again as the VRC01 concentration waned. It then attained a peak that was smaller

than the first peak and began to fall subsequently. The smaller size of the peak and the subse-

quent fall was due to a convolution of the effect of VRC01 and the natural distribution of

breakthrough times in the absence of treatment. Post ART cessation, it has been shown that

the distribution of mean rebound times is unimodal and declines following its peak [41]. In

other words, after the peak, the population of individuals that suffers breakthrough decreases

with the breakthrough time. In our simulations, this decline is what explains the smaller sec-

ond peak compared to the first and the drop in the distribution after the second peak although

the VRC01 levels were low. Of course, with the third dose, the distribution dropped sharply

again due to the rise in the VRC01 level and then rose as the VRC01 level waned. The distribu-

tion attained a third peak that was even smaller than the second peak and ended in a long tail

representing the small fraction of individuals who experienced longer remission times than

studied in our simulations.

Based on the distribution, we constructed a Kaplan-Meier survival plot, which at each time

point marked the percentage of the virtual patient population that was still under remission,

defined as viremia <200 copies/mL [17]. The plot, as expected, indicated no failure for a short

period, ~1–2 weeks, after ART, then dropped sharply, reaching 50% failures in about 4 weeks,

and displayed a long tail with a small percentage, ~10%, maintaining remission for longer than

the duration of our simulations (100 days) (Fig 4D). We examined next whether these predic-

tions could recapitulate clinical observations.

Model calibration to recapitulate the A5340 trial

Comparing our simulations with data required knowledge of the distributions of L0 and p in

patients. We chose p to mimic viral growth rates after rebound. The growth rate can vary from

0.4–1.5/day [39,42]. We therefore chose the mean value of p to yield a growth rate of 1/day.

Further, we let p follow a normal distribution with a standard deviation that ensured positive

growth rate across two standard deviations from the mean. The resulting distribution of p is

Fig 4. Recapitulating VRC01 failure in the A5340 trial. (A) Fits of our model of single-dose plasma VRC01

pharmacokinetics (line) to data [26] (symbols) (Inset). Best-fit parameter estimates are in Table 2. Corresponding

multiple dose concentration profiles (blue) and the VRC01 efficacy against a mutant strain with IC50 = 800 μg/mL
(green) are shown. Black arrows indicate VRC01 infusions. (B) Stochastic realizations of the dynamics in a virtual

population of 10000 patients, manifesting as changes in plasma viremia. Each grey line represents a virtual patient.

Some randomly chosen trajectories are colored to aid visualization of the dynamics. Note that ART was continued

after the first infusion of VRC01 for 1 week. The detection limit of 20 copies/mL is marked as a red dashed line,

crossing which marks clinical viral rebound. (C) The corresponding distribution of rebound times (orange). Rebound

times of the participants in the A5340 trial with a 1-week uncertainty period, representing the gap between successive

viral load measurements, are also marked. (D) Kaplan-Meier plot for the A5340 trial based on the percentage of

patients with viremia�200 copies/mL. Each light purple line is a survival curve generated by randomly choosing 20

patients from the virtual population above. The dashed purple line is the mean of all these survival curves. Each light

green line is an analogous survival curve if the failure were to occur by the recrudescence of latently infected cells

infected by wild-type (VRC01 sensitive) proviruses. (IC50 for the wild-type was 1 μg/mL [25].) The green dashed line

represents the average of the latter survival curves. The blue dashed line marks the average survival curve due to

resistant strains alone. It is indistinguishable from the purple line until ~100 days, indicating that the predominant

mode of failure is via resistance. The data from the trial [17] is shown as a red solid line.

https://doi.org/10.1371/journal.pcbi.1008434.g004
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mentioned in Table 2. Although estimates of the variations in L0 exist [35,39], in our simula-

tions, they had to accurately mimic the variations in the pool carrying resistant proviruses,

which are not known. We therefore adopted the following approach. We decided to employ

data from the A5340 trial to estimate parameters characterizing the distributions of L0 and

then validate them using an independent trial, the NIH trial. Both the trials involved small

sample sizes, ~10–15 patients [17]. Non-linear mixed effects modeling, designed particularly

to estimate parameter distributions using clinical data from small sample sizes, works with

deterministic but not stochastic models [65,66]. Consequently, we adopted a heuristic

approach to estimate the distributions of L0. We recognized that the product acL0, with ac the

latency reactivation rate, determines the waiting time for viral recrudescence; the larger the

product, the earlier would be the reactivation of the latent reservoir. We fixed ac based on pre-

vious estimates [39,47]. (Note that previous studies report a wide range for ac [37,39,42].)

Through small test simulations, we identified approximate values of L0 that mimicked the

mean waiting times seen in patients in the A5340 trial. We then performed more detailed sim-

ulations by varying the distribution of L0 around the approximate parameters and identified

those distributions that best described the Kaplan-Meier survival data from the A5340 trial (S3

Fig). The resulting parameters are also in Table 2. Similarly, we explored the implications of

variations in the IC50 of VRC01 against the mutant and found that values�800 μg/mL cap-

tured the data well (S4 Fig). (We recognize that IC50 values of rebound virus in individual

patients were lower [17]. These could be due to differences between in vitro and in vivo esti-

mates [67], possible evolution post-breakthrough in response to autologous antibodies [36],

and/or inter-patient variations (S5 Fig).)

Simulations with the resulting distributions recapitulated data from the A5340 trial. We

found that 11 of the 12 patients who experienced treatment failure despite high concentrations

of VRC01 in circulation [17] had breakthrough times close to the peaks in the multimodal dis-

tribution of breakthrough times we predicted (Fig 4C). The number of patients with break-

through times associated with the different peaks was also proportional to the area under the

peaks. Note that the area under a peak is a measure of the probability, and hence the frequency,

of failure corresponding to the times associated with the peak. 6 patients failed during the

times associated with the first peak, 4 with the second peak, and one with the third peak. The

areas under the peaks from our simulations yielded failure percentages of ~35%, ~44%, and

~21%, respectively. The first two peaks, thus, appeared to have comparable failure percentages,

whereas the third was substantially smaller. Given the small sample size in the clinical trial, the

distribution of patients into the three peaks appeared to be consistent with the estimated fail-

ure percentages. One patient (A01) appeared to fail at the trough in the distribution after the

first peak, and this could be due to stochastic effects or variations not captured in our virtual

population.

Kaplan-Meier plots based on breakthrough times, i.e., times for the viral load to reach 200

copies/ml, from the virtual patient population also closely recapitulated the clinical data (Fig

4D). Here, to account for the small sample size in the trials, we chose many samples of 20 indi-

viduals each, selected randomly from our virtual patient population, and constructed Kaplan-

Meier curves for each sample. In addition to failure due to VRC01 resistant strains, for each

virtual patient we also estimated the breakthrough time due to the wild-type, or VRC01 sensi-

tive, strains (S1 Text), and set the breakthrough time of the individual to be the smaller of the

two. The clinical data fell within the ranges defined by these curves (purple lines in Fig 4D).

Further, the mean of these curves was in close agreement with the data. Accordingly, 50% of

the treated population exhibited a breakthrough time of>4 weeks from the end of ART (or 5

weeks from the start of VRC01 therapy), consistent with the clinical data. Importantly, the sim-

ulations predicted that the failure was predominantly due to VRC01 resistant strains. Ignoring
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failure due to the wild-type strains made little difference to the survival plot (compare blue and

purple lines in Fig 4D). The failure due to the wild-type strains became important only after

VRC01 levels had declined significantly (green lines in Fig 4D). The simulations tended to

marginally over-predict the clinical data for long remission times; whereas all the patients had

shown rebound by 80 d, the simulations predicted that ~10% patients would retain control

still and take much longer (up to ~120 d) to experience failure. We attributed this to the pres-

ence of individuals with strong immune responses and/or small latent cell populations, includ-

ing post-treatment controllers [63], who may not be seen in the small population of 13

individuals in the A5340 trial. Notwithstanding these deviations, our simulations closely reca-

pitulated the data from the A5340 trial.

Model validation with the NIH trial

To test and validate our model and the parameter estimates, we applied our simulations to

describe a second, independent clinical trial, the NIH trial [17], where 10 individuals were sub-

jected to VRC01 therapy during an ATI. Treatment commenced 3 days before ART cessation.

Subsequent doses were administered on weeks 2 and 4 and then every month until 6 months.

To describe the resulting breakthrough data, we created a virtual population exactly as above

and subjected it to therapy following the clinical protocol. VRC01 pharmacokinetics was pre-

dicted based on the corresponding dosing times (Fig 5A). All the parameters were kept the

same as those as in our simulations of the A5340 trial.

We found that viral rebound trajectories were similar to those in the A5340 trial, with sharp

rises in viral load following breakthrough and wide inter-patient variations (Fig 5B). The dis-

tribution of breakthrough times again followed a multimodal distribution with the peak widths

broadening progressively with each dose and culminating in a long tail (Fig 5C). Based on the

areas under the peaks, the percentages of failure at times corresponding to the four peaks

were~16%, ~39%, ~34%, and ~9%, respectively. Indeed, in agreement, 7 of the 10 patients

failed at times corresponding to the second and third peaks. 2 patients were associated with

the first peak and one with the last. More precise timing of failure of the patients was not possi-

ble given the much larger intervals between successive viral load measurements in the NIH

trial compared to the A5340 trial. Nonetheless, the agreement between our simulations and

the observations of the distribution of failure times between peaks, given the small sample size,

was remarkable. We also computed Kaplan-Meier survival plots, using samples of 20 virtual

patients from our virtual population, and considering failure due to VRC01 resistant strains.

(Failure due to the wild-type was unlikely, as observed above.) The Kaplan-Meier plots cap-

tured the clinical data quantitatively (Fig 5D), indicating that our simulations accurately mim-

icked the response of patients to VRC01 therapy in the NIH trial.

The difference between the A5340 trial and the NIH trial was in the dosing protocol alone.

Indeed, once our model was calibrated with data from the A5340 trail, it captured the data

from the NIH trial by simply changing the dosing protocol accordingly, and required no other

adjustments, thereby providing a strong test and validation of our model. The model may be

applied to predict the outcomes of other possible dosing protocols, which could involve chang-

ing dosages or half-lives (S6 Fig), providing a framework for rational therapy optimization.

Discussion

Passive immunization with HIV-1 bNAbs holds promise as a strategy to achieve long-term

remission of HIV-1 infection [20,68]. Following its success in macaques [20,21], enormous

efforts are underway to translate it to humans [69]. Trials with VRC01 administered to chroni-

cally infected patients following the cessation of successful ART saw rapid virological failure
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despite the presence of suppressive concentrations of VRC01 in circulation [17], signaling a

potential vulnerability of such bNAb therapies. Here, using mathematical modeling and analy-

sis of clinical data, we elucidated the likely cause of this rapid VRC01 failure. Model predic-

tions attribute this failure to the reactivation during therapy of cells latently infected with

VRC01 resistant proviruses before ART initiation. To arrive at this inference, we constructed a

mathematical model that integrated within-host viral evolution, latency reactivation, and viral

dynamics with VRC01 pharmacokinetics, and applied it to simulate the outcomes of therapy

in a virtual patient population. Our simulations recapitulated data from clinical trials [17], giv-

ing us confidence in the inference. Accounting for pre-existing resistant strains in the latent

reservoir would be important to the success of bNAb-based therapies.

That mutation-driven resistance can be an important cause of bNAb failure has been recog-

nized earlier [28–31]. Indeed, efforts are ongoing to identify bNAbs, including in the VRC01

class, that are less vulnerable to such resistance [70]. For bNAb therapies that target mainte-

nance of HIV remission post ART cessation during chronic infection, our study prescribes the

requisite genetic barrier to resistance, i.e., the number of mutations HIV-1 must accumulate to

develop significant resistance to the therapy. Using a detailed description of within-host HIV-

1 evolution, our study predicts that with the estimated latently infected reservoir size of 105–

108 cells in a chronically infected individual [35,39], proviral strains carrying single but not

more resistance mutations would pre-exist in the latent reservoir. Consequently, a genetic bar-

rier of 2 would be necessary to prevent pre-existing resistance from compromising therapy. A

bNAb with a genetic barrier of one, like VRC01, would be predestined to fail, as was observed

in clinical trials [17]. When used in combination with another bNAb, however, the overall bar-

rier would cross the threshold of 2, diminishing the chances of such failure. Resistance would

then have to develop by de novo mutation during therapy, which according to our model

would be unlikely as long as adequate bNAb concentrations exist in circulation and restrict the

replication of the wild-type virus. Further, by explicitly incorporating bNAb pharmacokinetics,

our model provides a framework with which optimal dosing protocols could be identified that

would ensure adequate bNAb concentrations throughout.

Early ART initiation has been argued to restrict the viral reservoir size and improve the

chances of post-treatment control [10,47]. Our study predicts an additional advantage of early

ART initiation: The chances of failure due to resistance are reduced. This reduction happens

in multiple ways. First, most HIV-1 infections involve a single founder virus, which gradually

evolves into the diverse quasispecies seen in chronic infection [54,71,72]. Thus, the frequency

of mutants at the time of ART initiation is expected to be smaller, the earlier the initiation

[54]. Second, given the limited viral diversity early in infection, the latent reservoir is likely to

have a much higher representation of bNAb-sensitive strains than estimated using our model

of chronic infection. Finally, if the reservoir size is restricted, due to early ART initiation, far

fewer mutant proviruses, or none at all, may exist in the latent reservoir. Together, thus, early

initiation of ART is expected to reduce the chances of bNAb failure. Indeed, in trials where

ART was initiated early, in the acute phase of infection, no genotypic resistance to VRC01 was

Fig 5. Recapitulating VRC01 failure in the NIH trial. (A) Multiple dose concentration profiles (blue) and the VRC01

efficacy against a mutant strain with IC50 = 800 μg/mL (green). Black arrows indicate VRC01 infusions. (B) Stochastic

realizations of the dynamics in a virtual population of 10000 patients, manifesting as changes in plasma viremia. Each

grey line represents a virtual patient. Some randomly chosen trajectories are colored to aid visualization of the

dynamics. ART was continued after the first infusion of VRC01 for 3 days (grey shaded region). The detection limit of

40 copies /mL is marked as a black dashed line, crossing which marks clinical viral rebound. (C) The corresponding

distribution of rebound times (orange). Rebound times of the participants in the NIH trial are marked along with their

uncertainties based on measurement frequencies. (D) Kaplan-Meier plot for the NIH trial. Each light blue line is a

survival curve generated by randomly choosing 20 patients from the virtual population above. The dashed blue line is

the mean of all these survival curves. The data from the trial is shown as a red solid line.

https://doi.org/10.1371/journal.pcbi.1008434.g005
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detected from sequence analysis of viral strains post failure [73]. Similarly, a combination of

two bNAbs, including one in the VRC01 class, administered early in infection saw no resis-

tance to therapy in SHIV-infected macaques [20]. Surprisingly, however, the breakthrough

times for VRC01 therapy following ART in acute infection were found to be similar to those

seen in the trials in chronic infection we studied [17,73]. Additional mechanisms that are not

predominant in the chronic phase thus appear to cause VRC01 therapy failure in individuals

treated with ART early. One possibility could be that CD8 T cell exhaustion is weaker and/or

more reversible in the acute phase than in the chronic phase because of the much longer dura-

tion of antigen exposure in the latter scenario [74,75]. The greater associated immune activa-

tion levels in the acute phase could imply more rapid reactivation of latently infected cells,

which could offset the advantage from the lower frequencies of mutants. To test this possibil-

ity, models that incorporate CD8 T cell exhaustion [39,76–79] would have to be integrated

with our model of stochastic latency reactivation, a promising avenue for future study.

An important question in HIV cure research is how early should ART be initiated to maxi-

mize post-treatment control [63]. While starting early would restrict the reservoir size and

improve the chances of post-treatment control, starting it too early would not allow enough

time for the development of an immune response, compromising post-treatment control. If

bNAb therapy were to be used post-ART to improve the chances of post-treatment control,

the development of resistance to bNAbs would have to be factored in along with the latter

trade-off between reservoir size and immune response strength to arrive at the optimal timing

of ART initiation. Our study provides a framework that could be used to test whether pre-

existing resistance in the latent reservoir would compromise therapies with other bNAbs, espe-

cially those belonging to the VRC01-class [80–82], which are under trial for both preventive

[24,83,84] and therapeutic [20] vaccination and are known to fail via diverse mutation-driven

resistance pathways [29].

A modeling study several years ago compared the likelihood of the failure of therapy due to

pre-existing resistance versus de novo generation of mutants in the context of ART and found

that ART was more likely to fail due to pre-existing resistance [50]. A more recent modeling

study examined the likelihood of the failure of different antiretroviral drug combinations and

explained how patient adherence influences such failure [55]. Our findings are consistent with

these studies and show that bNAbs too are vulnerable to pre-existing resistance, but the resis-

tance now is restricted to the latent reservoir. Because the reservoir is small compared to the

pool of infected cells pre-ART, the required genetic barrier for bNAb therapies is estimated to

be lower than for ART. Thus, a combination of 2 bNAbs is predicted to overcome resistance,

whereas first-line ART necessarily contains 3 drugs.

Previous studies have used either fully deterministic or fully stochastic frameworks to

describe treatment failure [50,51,55], making their predictions approximate or computation-

ally expensive, respectively. Here, we devised a strategy that retained both accuracy and

computational tractability. We used a deterministic framework to estimate the frequencies of

mutant proviral genomes in the latent reservoir pre-treatment and then a stochastic frame-

work to estimate latency reactivation and treatment failure times. The deterministic frame-

work was shown previously to agree well with stochastic population genetics-based

simulations [52], giving us confidence in the strategy. In the stochastic simulations, we consid-

ered only latently infected cells containing the dominant resistant provirus, which accurately

described the development of drug resistance without requiring expensive computations.

Indeed, we were able to capture clinical trials of VRC01 failure with this hybrid framework,

reiterating its applicability. Such hybrid deterministic-stochastic frameworks have been suc-

cessfully applied in other settings, such as in predicting the pre-existing frequency of hepatitis

C virus strains resistant to drugs [85], but not, to our knowledge, with HIV-1 infection.
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The sample sizes involved in the clinical trials we studied were small, ~10–15 patients each

[17]. Nonlinear mixed-effects models have been used in recent studies to infer the effects of

interventions by analyzing data from such trials [86–88]. For instance, bNAb therapy was

argued to improve immune responses 8-fold over controls and not to synergize with the

TLR7-agonist [86]. The strength of such an approach lies in its robust parameter estimation

and the ability to infer effects at the population level using data from small sample sizes. The

approach, however, does not work when the underlying model is stochastic, which is the case

in our study. Also, when the effects are explicitly parameterized, as is often done [86,88], their

quantitative estimates are restricted to the specific conditions studied. Thus, for instance, how

a change in the dosage or dosing protocol would alter the effect becomes difficult to predict.

Our approach, being fully mechanistic, is not similarly limited. Indeed, with the parameters

that captured the A5340 trial, by simply changing the dosing protocol, our model captured

data from the NIH trial without any adjustable parameters. Our model could therefore be used

potentially to comparatively evaluate alternative treatment protocols and suggest optimal ones.

We recognize that in the trials we considered [17], the dominant mutant seen post treat-

ment failure was not the same across individuals. The mutations, however, were all typically

concentrated in the same genomic regions [17], suggesting that structural or conformational

modifications that could drive VRC01 resistance could be produced by many mutations in the

same genomic region. While we have focused on the most frequent mutant, as it is the most

likely to have caused resistance, and as has been done in earlier studies [55], stochastic varia-

tions could result in latent cells carrying other mutants being reactivated and reestablishing

infection. The mutants selected could also differ based on inter-host variations and the genetic

backgrounds of the infecting strains. Our simulations must thus be viewed as reflecting ther-

apy failure arising from the dominant mutant which could differ across hosts and which in our

study is accounted for by the inter-host variation in viral fitness.

bNAbs are known to engage the immune system via multiple mechanisms [20,87,89–91].

The result could be heightened activation, which for HIV-1 infection, could mean greater sus-

ceptibility of target CD4 T cells. At the same time, it could imply greater reactivation rates of

latently infected cells. Indeed, the latency reactivation rates employed in our study were higher

than those estimated for historical controls, the latter based on viral recrudescence post ART

and in the absence of further intervention [39]. When bNAb therapy is administered post

ART, cells latently infected with wild-type strains, which would be in a vast majority, would

get frequently reactivated and produce virions but without causing sustained infection. The

virions produced, being bNAb sensitive, would get neutralized and cleared by the bNAbs. Pre-

vious studies have argued that in the process bNAbs can stimulate CD8 T cells [20,87], improv-

ing the overall immune activation status, possibly explaining the higher latency reactivation

rate we required to describe VRC01 failure than previously used to describe historical controls

[38]. Our parameters would thus tend to underpredict the remission times in the historical

controls. Previously, too, differences in the viral growth rates before and after ART have been

assumed in order to capture viral recrudescence accurately and have been attributed to differ-

ent strengths of the immune responses in the respective periods [39]. Mechanisms that could

explain the differences in these latency reactivation rates are yet to be identified. A unified

framework that describes remission both with and without bNAb therapy awaits future studies

that would quantify how bNAbs influence immune responses.

Non-nucleoside reverse transcriptase inhibitors (NNRTIs), administered as part of ART,

have been found to delay breakthrough post ART [23]. Patients administered NNRTIs were

excluded from the A5340 trial and were switched to an integrase-inhibitor based regimen 2

weeks before VRC01 therapy in the NIH trial to eliminate the confounding effects of NNRTIs.

We therefore did not consider the effect of NNRTIs in our study. A number of host [63] and
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viral [64] factors are thought to be involved in determining disease progression and treatment

outcomes. Our model subsumed inter-patient variations in these factors into variations in two

factors, the latent pool size and the viral production rate. Virtual patient populations that we

created based on variations in these minimal factors captured clinical data from clinical trials,

justifying the approximation, and suggesting that a small subset of factors may be adequate to

capture outcomes of such bNAb therapies. Future studies may consider the variations in other

factors explicitly to ascertain the validity of the approximation, especially for other kinds of

bNAb-based interventions.

In summary, our study presents an explanation of the failure of VRC01 therapy to sustain

HIV remission post ART, captures clinical data quantitatively, highlights the importance of

accounting for pre-existing resistance in designing effective bNAb-based therapies, and facili-

tates rational optimization of such therapies.

Methods

We considered the scenario where a chronically infected individual maintains viral suppres-

sion with ART and is then subjected to VRC01 therapy concomitantly with cessation of

ART. Because active viral replication is halted by successful ART, virological breakthrough

during VRC01 therapy must arise from the reactivation of latently infected cells. We devel-

oped a model to estimate the timing of the failure of VRC01 therapy via the growth of

resistant viral mutants pre-existing in the latent reservoir (Fig 1). Our approach was to esti-

mate the population of latently infected cells carrying the resistant strains and then to follow

their reactivation leading to successful infection. We then considered a virtual patient popu-

lation subjected to the same therapy and applied our model to recapitulate data from clinical

trials.

Mathematical model of virological breakthrough in a single infected

individual

Within-host HIV-1 evolution and the frequencies of pre-existing resistant strains. To

estimate the population of cells latently infected with VRC01-resistant proviral genomes, we

reasoned that the frequencies would be the same as in productively infected cells before treat-

ment initiation because the probability that a particular cell becomes latently infected is not

known to depend on the nucleotides at the VRC01 resistance loci. We estimated the frequen-

cies of VRC01-resistant strains in productively infected cells using an approach developed pre-

viously to quantify the pre-existence of resistance to antiretroviral drugs [52]. The approach

combines virus dynamics with evolution, incorporating mutation, cellular superinfection,

recombination, and fitness selection. We present details below.

Virus dynamics. We considered n = 4 positions in the env region where mutations with

high level resistance to VRC01 have been identified, namely N279K, N280D, R456W

and G458D [28]. The time evolution of the populations of cells and virions containing the dif-

ferent single, double, triple, and quadruple mutants were described using the following equa-

tions:

dU
dt
¼ l � dTU � k0U

XS

h¼j

XS

j¼0

bjhVjh ð1Þ

dTi

dt
¼ k0U

XS

h¼j

XS

j¼0

QiðjhÞbjhVjh � k1Ti

XS

h¼j

XS

j¼0

bjhVjh � dTi ð2Þ
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dTii

dt
¼ k1Ti

XS

m¼k

XS

k¼0

QiðkmÞbkmVkm � dTii ð3Þ

dTij

dt
¼ k1Ti

XS

m¼k

XS

k¼0

QjðkmÞbkmVkmþk1Tj

XS

m¼k

XS

k¼0

QiðkmÞbkmVkm � dTij ð4Þ

dVii

dt
¼ pxiðTi þ TiiÞ þ

p
2

Xi� 1

h¼0

x
2

i

xh þ xi
Thi þ

XS

h¼iþ1

x
2

i

xi þ xh
Tih

( )

� cVii ð5Þ

dVij

dt
¼ p

xixj

xj þ xi
Tij � cVij ð6Þ

Here, uninfected target CD4+ T cells, U, are produced from the thymus at the rate λ and

are lost at the per capita death rate dT. They are infected by virions Vjh containing genomes j and

h with the second order rate constant k0βjh, where k0 is the infectivity of wild-type virions and βjh
is the relative infectivity of virions Vjh. We assumed that βjh = (βj+βh)/2, where βj is the infectivity

of genome j relative to the wild-type. The indices j and h denoting viral genomes range from 0 to

S = 2n−1. Thus, S = 15 here, with the different genomes including the wild-type (or sensitive

strain), the 4 single mutants, 6 double mutants, 4 triple mutants, and the quadruple mutant,

amounting to a total of 16 types. We denoted the genomes serially, starting with ‘0’ for the wild-

type and ending with S for the quadruple mutant. Each viral particle contains two genomes, not

necessarily identical. The number of distinct viral particle types, Vjh, where j2{0,1,..,S} and h2{j,j
+1,..,S}, is thus (S+1)(S+2)/2, which here would be 136. (The range of values of h is to ensure that

virions V12 and V21, for instance, which are identical, are not counted separately.) Summing over

all these viral types yields the total rate of loss of U due to infections in Eq 1.

Following infection with a virion Vjh, reverse transcription, which includes mutation and

recombination, yields genome i with a probability Qi(jh), where i2{0,1,..,S}. On average, thus,

a fraction Qi(jh) of the infections with virions Vjh yield productively infected cells carrying sin-

gle proviruses i, which we denote Ti. Summing over all Vjh yields the total rate at which cells Ti

are produced. These cells die at the per capita rate δ. They can also be infected again, but with

a lower infectivity k1 because infected cells downregulate their CD4 receptors, rendering fur-

ther infections difficult [92,93]. The net effect of these processes defines the dynamics of cells

Ti in Eq 2.

Doubly infected cells Tii are produced when cells Ti are infected with virions Vjh, following

which reverse transcription again yields the provirus i. When a different provirus j(6¼i) is pro-

duced, the result is the doubly infected cell Tij carrying distinct proviruses i and j. Of course,

cells Tij can also be produced by the infections of cells Tj with another virion yielding the pro-

virus i. Doubly infected cells too die with the rate constant δ. These processes are contained in

Eqs 3 and 4. We neglected cells infected more than twice, following experiments that suggest a

rare occurrence of such cellular superinfection [94].

Cells Ti and Tii produce virions Vii at the per capita rate pξi, where p is the production rate

of wild-type virions and ξi the production rate of virions Vii relative the wild-type. ξi is thus the

relative replicative fitness of genome i. Cells Thi (h6¼i) can also produce virions Vii. We

assumed that viral RNA of the types h and i are present in cells Thi in proportion to ξh and ξi,
respectively, and that they are randomly assorted into pairs and packaged into progeny virions.

Thus, cells Thi produce virions Vii at the rate px2

i =2ðxh þ xiÞ, Vhh at the rate px2

h=2ðxh þ xiÞ,
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and Vih at the rate pξhξi/(ξh+ξi). Virions are cleared at the rate c. These processes determine the

dynamics of viral populations in Eqs 5 and 6.

Mutation and recombination. We next describe the formalism to compute the probability

Qi(jh). Following previous studies [51,52,95,96], we let Rk(jh) be the probability that genome k
is produced by the recombination of genomes j and h, and Pik the probability that genome k
mutates to genome i. Thus, PikRk(jh) is the probability that genome i is produced from

genomes j and h via the intermediate k. We recognize next that if genomes j and h differ in d
positions, then recombination could produce a total of 2d different genomes, depending on

whether at each of the d positions, the nucleotide chosen is either from genome j or genome h.

Summing over these different intermediates k yields the total probability of producing genome

i from genomes j and h during reverse transcription:

QiðjhÞ ¼
X2d � 1

k¼0

PikRkðjhÞ ð7Þ

To compute Rk(jh), we consider the desired path of the enzyme reverse transcriptase on the

two genomes so that the enzyme is on the appropriate genome, j or h, at each of the d distinc-

tive sites, so that the genome k is produced. We let the separation between the xth and x+1st dis-

tinctive sites be lx. If the enzyme has to be on the same genome (j or h) at both these sites, then

it must perform an even number of crossovers in the length lx. Else, it must perform an odd

number of crossovers. If the enzyme has a probability ρ of crossover per site, then the probabil-

ities of even and odd crossovers over a length l are Peven(l) = (1+(1−2ρ)l)/2 and Podd(l) = (1−(1

−2ρ)l)/2, assuming that the crossover at any position is independent of the others and all cross-

overs happen with the same probability [95]. If we write Pdes(x+1|x) as the probability that the

enzyme arrives on to the desired genome at the x+1st distinctive site given that it was on the

desired genome at the xth site, then depending on whether the associated crossovers must be

even or odd, we write Pdes(x+1|x) = Peven(lx) or Pdes(x+1|x) = Podd(lx). Note that Pdes(1) = 1/2

because the enzyme could be on either genome at the start of the reverse transcription process.

Thus, multiplying the probabilities over all the distinctive sites yields Rk(jh):

RkðjhÞ ¼
1

2

Yd� 1

x¼1

Pdesðxþ 1jxÞ ð8Þ

Next, we estimated the probability of producing genome i from genome k. If the two

genomes differ at u sites, then genome i is produced from genome k by mutating genome k at

the distinctive sites and nowhere else. Thus,

Pik ¼ m
uð1 � mÞ

n� u
ð9Þ

where μ is the per site mutation probability and n is the number of sites of interest.

Frequencies. Eqs 1–9 yield a model of viral dynamics that predicts the growth of the popula-

tions of different mutants. We solved the equations for their steady states and obtained the cor-

responding frequencies of all proviruses, ϕi, contained in productively infected cells:

�i ¼

Ti þ 2Tii þ
Xi� 1

j¼0

Tji þ
XS

j¼iþ1

Tij

XS

i¼0

Ti þ 2
XS

j¼i

XS

i¼0

Tij

�
Ti

XS

i¼0

Ti

ð10Þ
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The approximation in Eq 10 is justified by the small doubly infected cell population com-

pared to the singly infected cell population. The parameter values employed are in Table 1. ϕi

yield the frequencies of various VRC01-resistant mutants before the start of treatment. Previ-

ous studies have shown that this deterministic formalism yields mutant frequencies in agree-

ment with stochastic population genetics-based simulations of HIV evolution [52]. The

frequencies are expected to hold also for the proviruses in latently infected cells. Further, we

expect ART not to influence the latter frequencies; standard first-line ART drugs target HIV

reverse transcriptase and protease, whereas VRC01 targets the HIV envelope. We assumed

therefore that following ART, the frequencies of VRC01-resistant strains contained in the

latent reservoir are given by Eq 10.

We focused next on the reactivation of latently infected cells carrying the resistant

genomes.

Latency reactivation and viral rebound. We developed a stochastic framework to

describe the reactivation of latently infected cells carrying mutant proviruses resistant to

VRC01. Because reactivation is most likely of the cells carrying the fittest mutant, which are

the most prevalent, we considered cells Lm carrying the fittest mutant strain above. Previous

studies on ART resistance too have considered the dominant mutant alone [55]. The reactiva-

tion of these cells and the ensuing growth of mutant virions is then described by the following

events:

Lm!
rl Lm þ Lm ð11Þ

Lm!
dl
� ð12Þ

Lm!
ac Tm ð13Þ

Tm � � � � �!
Xmð1� f Þð1� εmÞð1� mÞ Tm þ Tm ð14Þ

Tm � � � � �!
Xmf ð1� εmÞð1� mÞ Lm þ Tm ð15Þ

Tm!
d
� ð16Þ

Here, cells Lm proliferate at the per capita rate ρl (Eq 11), die at the per capita rate dl (Eq 12),

and get activated to productively infected cells, Tm, at the per capita rate ac (Eq 13). Cells Tm

carry the mutant provirus and produce resistant virions, Vmm, at the per capita rate pξm, which

in turn infect uninfected cells, U, with the rate constant kβmm. Here, ξm and βmm are the rela-

tive replicative ability and infectivity, respectively, of the strain m. Free virions are cleared at

the per capita rate c. Viral production and clearance are typically rapid [97] compared to

changes in cell populations, so that following an approximation widely used (e.g., see [50]),

Vmm can be assumed to be in pseudo-state with Tm. Thus, Vnm�pξmTm/c. The rate, kβmmVU,

of the infection of U thus becomes kβmmpξmTmU/c. We recognized that U is not altered signifi-

cantly due to new infections, especially following ART when the viremia is small. We let a frac-

tion f of the new infections lead to latency and the remaining to productive infection. Further,

we let a VRC01-resistant strain mutate back to the wild-type with a probability μ, the point

mutation rate of HIV-1. The resulting description would capture scenarios where a single

mutation is adequate to develop resistance, as is the case with VRC01 [28]. Thus, the rate

kβmmpξmTmU(1−f)(1−μ)/c becomes the rate of the growth of Tm in the absence of therapy. If
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VRC01 were to block infections with efficacy εm, the rate would become XmTm(1−f)(1−μ)(1

−εm) with Xm = kβmmpξmU/c. Thus, we let Tm (effectively) double with the per capita rate Xm(1

−f)(1−μ)(1−εm) (Eq 14), and yield new latently infected cells at the per capita rate Xmf(1−μ)(1

−εm) (Eq 15). Cells Tm die with the rate constant δ. These events together describe the growth

of resistance to VRC01 and therapy failure.

We solved the model equations using the Gillespie algorithm [98] with parameter values

representative of HIV-1 infection in the presence of VRC01 therapy. The model was imple-

mented using a program written in MATLAB (S2 Text). The parameter estimates are listed in

Tables 1 and 2. The initial population of Lm was set by the frequencies of mutants estimated.

With each parameter setting, we performed 5000 realizations to examine the dynamics of

treatment failure.

Comparison with clinical data

We applied our model to predict the outcomes of trials with VRC01 [17]. For this, we explicitly

considered VRC01 pharmacokinetics. Further, we created a virtual patient population to

account for the inter-patient variations seen in the trials. In each patient, we performed sto-

chastic simulations and identified the VRC01 failure time following the model above. We com-

pared the resulting distribution of failure times with those observed in the trials. We describe

the methods we used here.

Data. We considered data of viral resurgence following VRC01 therapy during ATIs from

two clinical trials, the A5340 trial and the NIH trial [17]. In the A5340 trial, 14 adult chronic

HIV patients with a median ART duration of 4.7 years and viremia maintained below detec-

tion were administered 3 doses of VRC01 (40 mg/kg of body weight) intravenously, starting a

week before the cessation of ART and with 3 week intervals. Plasma viremia was measured

weekly to check for rebound (>20 copies/ml). Of the 14 participants, 1 participant stopped

ART before VRC01 administration and was not part of the trial data analysis. We considered

data from the remaining 13 patients. For each patient, we assumed the breakthrough time was

anywhere within the week from the last undetectable to the first detectable viral load

measurement.

The NIH trial had 10 participants with similar characteristics as the A5340 trial. The partici-

pants had been on ART much longer, however, with a median duration of 10 years, before

entry into the trial. ART was stopped 3 days after the first VRC01 administration. VRC01

doses, at the same dosage as above, were administered subsequently on days 14 and 28 post

ART cessation and once every month thereafter. Plasma viremia was measured every week for

1 month and then every 2 weeks until 6 months. The patients experienced virological break-

through between 2 and 12 weeks from the discontinuation of ART. We considered this time of

virological failure with uncertainties as defined above.

We note that both trials did not screen for pre-existing VRC01 resistance. While the pri-

mary endpoints of the trials were safety and tolerance, secondary endpoints were viral remis-

sion, based on which the trial data report Kaplan-Meier survival curves [17]. We considered

the latter data too in our analysis.

VRC01 pharmacokinetics and pharmacodynamics. We let the efficacy of VRC01 against

the drug-resistant mutant strain, εm, be related to its plasma concentration, A, by the Hill func-

tion [51,57,99],

εm ¼
AðtÞ

IC50;m þ AðtÞ
ð17Þ

where IC50,m is the value of A at which VRC01 is 50% efficacious. For simplicity, we set the
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Hill coefficient to 1. The antibody concentration has been observed to decline in a biphasic

manner upon dosing [26]. We therefore described the time course of the antibody concentra-

tion using the following expression when successive doses are administered at time points ω1,

ω2, and so on:

AðtÞ ¼
XW

i¼1

ðA1e
� Z1ðt� oiÞ þ A2e

� Z2ðt� oiÞÞ � H½t � oi� ð18Þ

Here, A1 and A2 are the portions of a dose that decay in the first and second phases, respec-

tively, with decay rates η1 and η2, and W is the total number of doses. We estimated the phar-

macokinetic parameters using fits of the above equation to data of VRC01 concentrations

following a single dose [26].

ART efficacy. For the duration that ART is used simultaneously with VRC01, we replaced

the term (1−εm) in Eqs 14 and 15 by 1−εcomb = (1−εm)(1−εART), where εART is the efficacy of

ART and εcomb is the combined efficacy of VRC01 and ART. We let εART be constant while on

ART and set it to zero thereafter.

Virtual patient population. To capture inter-patient variations in the response to bNAb

therapy, we constructed a virtual population of clinical trial participants as follows. For sim-

plicity, we considered variations in two factors, the initial latent pool size, L0, and the viral pro-

duction rate, p, across individuals. We assumed that variations in all host factors could be

subsumed in the variation in L0 and that variations in viral factors could be subsumed in p.

Introducing variations in other parameters did not affect our findings, as we found by varying

the IC50 of VRC01 across patients (S5 Fig), justifying the latter assumption. We let L0 vary log-

normally and p normally across individuals. Thus, the corresponding density functions were

fL0
ðlÞ ¼

1

lsl

ffiffiffiffiffiffi
2p
p exp �

lnl � ml

2s2
l

� �

ð19Þ

and

fpðZÞ ¼
1

sp

ffiffiffiffiffiffi
2p
p exp �

Z � mp

2s2
p

 !

ð20Þ

where μl and σl are the mean and standard deviation of lnL0, and μp and σp are the mean and

standard deviation of p, respectively. The parameters in the distributions were chosen based

on earlier studies or to fit the results of the A5340 trial. From the resulting distributions, we

sampled 10000 pairs of values of L0 and p, with each pair representing an individual. We thus

created a virtual patient population, which we then subjected to VRC01 therapy according to

the protocols in the respective trials. For each individual, we ran a stochastic simulation (Eqs

1–18) and examined the dynamics of virological breakthrough. From the resulting dynamics,

we constructed the distribution of breakthrough times and used it to build Kaplan-Meier sur-

vival plots sampling virtual patients mimicking the clinical trial protocols.

Supporting information

S1 Text. VRC01 therapy failure is unlikely to be due to de novo mutation.

(DOCX)

S2 Text. MATLAB program used for simulations.

(DOCX)
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S1 Table. Relative replicative fitness, relative infectivity, and pre-existing frequencies of

various mutants. Replicative fitness was estimated by analyzing competitive growth assays

where available (S1 Fig) and by assuming zero epistasis otherwise. For the N279K and N280D

mutants, competitive growth assays indicated replicative fitness indistinguishable from the

wild-type. The relative infectivity of each strain was calculated as the ratio of its % infectivity to

that of the wild type, reported elsewhere [28]. The frequencies were obtained using our model

(Eqs (1)–(10)).

(XLSX)

S1 Fig. Estimation of fitness using data from competitive growth assays. We applied a pre-

vious formalism [59] to analyze competitive growth assays, where the selective advantage, s, of

a mutant relative to the wild-type is given by s =ln[H(t)/H(0)]/ln[W(t)/W(0)]+δt], where W(t)/
W(0) is the fold expansion of wild type virus at time t; H(t)/H(0) is the fold change of the

mutant-to-wild type ratio at time t; and δ is the death rate of infected cells. Rewriting this equa-

tion as Y = sX, where Y = ln[H(t)/H(0)] and X = ln[W(t)/W(0)]+δt, we estimate s by fits (lines)

to corresponding data (symbols) [28] of Y vs. X for three mutants: (A) R456W, (B) G458D,

(C) N279K-N280D-R456W-G458D. The best-fit estimates (95%CI) of s are -0.568 (-0.6089,

-0.5272) for R456W; -0.5091 (-0.5662, -0.452) for G458D; and -0.5672 (-0.6075, -0.5269) for

N279K-N280D-R456W-G458D. The relative replicative fitness of the respective strains are

obtained as z = (1+s).
(TIF)

S2 Fig. VRC01 failure via de novo mutation. Predictions of stochastic simulations (Eqs.

S1-S11), showing (A) time-evolution of the latent cell pool, (B) distribution of the waiting time

for the reactivation from latency, (C) time-evolution of activated or productively infected cells,

and (D) distribution of the waiting time for the first productively infected cell carrying a

VRC01-resistant strain (bar graph). (In (A) and (C), the different lines represent different sto-

chastic realizations.) Variation of the latter distribution is shown with (E) initial latent cell

pool size (cells), (F) VRC01 efficacy, and (G) viral production rate (virions/cell/day). In (D)-

(G), the corresponding probability density function calculated using the deterministic formal-

ism (Eqs. S12-S17) is shown as solid lines. (H) Expected waiting time, τm, for the formation of

a productively infected cell carrying a VRC01-resistant provirus, calculated using the deter-

ministic formalism as a function of the initial latent pool size for the VRC01 efficacy indicated,

which is the efficacy against the wild-type averaged over the dosing interval.

(TIF)

S3 Fig. Estimation of inter-patient variation in latent pool size. Model predictions similar

to those in (A) Fig 4C and (B) Fig 4D with virtual patient populations created by sampling L0

(cells) from the different distributions indicated. The red line in (B) is data from the A5340

trial.

(TIF)

S4 Fig. Sensitivity to VRC01 IC50. Model predictions similar to those in (A) Fig 4C and (B)

Fig 4D with different values of the IC50 (μg/mL) indicated. The red line in (B) is data from the

A5340 trial.

(TIF)

S5 Fig. Effect of inter-patient variation of VRC01 IC50. Model predictions similar to those in

(A) Fig 4C and (B) Fig 4D but with the IC50 (instead of p) in each virtual patient drawn from a

log-normal distribution (Log10IC50~N(2.86, 0.35)) (Inset). The red line in (B) is data from the
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A5340 trial.

(TIF)

S6 Fig. Maximizing remission with VRC01. Heat map showing the median rebound time,

corresponding to the detection limit of 20 copies/mL, for different VRC01 dosages and half-

lives. For each parameter combination, a virtual population of 10000 individuals was employed

following the dosing schedule in the A5340 schedule, as in Fig 4. Note that the modified bNAb

VRC01LS has a >4-fold longer half-life than VRC01, and has been tested in healthy and unin-

fected adults for safety and pharmacokinetics [100]. The terminal half-life, η1, has been varied

accordingly. The initial total antibody concentration (A1+A2) has been varied while keeping

the ratioA1/A2 fixed, with the maximum (A1+A2) (in μg/mL) corresponding to the 40 mg/kg

dosage of VRC01 (fitted from data [26]), which appears to be the maximum dosage of VRC01

reported. The other parameters are the same as in Fig 4.

(TIF)
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normal approximation of the posterior in models with random effects based on ordinary differential

equations. Comput Methods Programs Biomed. 2013; 111:447–458. https://doi.org/10.1016/j.cmpb.

2013.04.014 PMID: 23764196

66. Lavielle M. Mixed Effects Models for the Population Approach. Chapman and Hall/CRC; 2014. https://

doi.org/10.1201/b17203

67. van Gils MJ, Sanders RW. In vivo protection by broadly neutralizing HIV antibodies. Trends Microbiol.

2014; 22:550–551. https://doi.org/10.1016/j.tim.2014.08.006 PMID: 25169020

68. de Bree GJ, Sanders RW. Broadly neutralising antibodies in post-treatment control. Lancet HIV. 2019;

6:e271–e272. https://doi.org/10.1016/S2352-3018(19)30075-X PMID: 31000478

69. Haynes BF, Burton DR, Mascola JR. Multiple roles for HIV broadly neutralizing antibodies. Sci Transl

Med. 2019; 11:eaaz2686. https://doi.org/10.1126/scitranslmed.aaz2686 PMID: 31666399

70. Schommers P, Gruell H, Abernathy ME, Tran M-K, Dingens AS, Gristick HB, et al. Restriction of HIV-1

escape by a highly broad and potent neutralizing antibody. Cell. 2020; 180:471–489.e22. https://doi.

org/10.1016/j.cell.2020.01.010 PMID: 32004464

PLOS COMPUTATIONAL BIOLOGY VRC01 therapy and HIV-1 remission

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008434 November 30, 2020 28 / 30

https://doi.org/10.1097/00002030-199805000-00006
http://www.ncbi.nlm.nih.gov/pubmed/9543443
https://doi.org/10.1073/pnas.97.14.7681
http://www.ncbi.nlm.nih.gov/pubmed/10884399
https://doi.org/10.1371/journal.pcbi.1000305
http://www.ncbi.nlm.nih.gov/pubmed/19282958
https://doi.org/10.1128/JVI.01010-10
http://www.ncbi.nlm.nih.gov/pubmed/20668070
https://doi.org/10.1371/journal.pcbi.1002527
http://www.ncbi.nlm.nih.gov/pubmed/22685388
https://doi.org/10.1371/journal.pcbi.1002684
https://doi.org/10.1371/journal.pcbi.1002684
http://www.ncbi.nlm.nih.gov/pubmed/23028282
https://doi.org/10.1038/nm.2892
https://doi.org/10.1038/nm.2892
http://www.ncbi.nlm.nih.gov/pubmed/22941277
https://doi.org/10.1038/ng.795
https://doi.org/10.1038/ng.795
http://www.ncbi.nlm.nih.gov/pubmed/21441930
https://doi.org/10.1371/journal.ppat.1006313
http://www.ncbi.nlm.nih.gov/pubmed/28472201
https://doi.org/10.1097/QAI.0000000000001101
https://doi.org/10.1097/QAI.0000000000001101
http://www.ncbi.nlm.nih.gov/pubmed/27273158
https://doi.org/10.1128/jvi.74.23.11067-11072.2000
http://www.ncbi.nlm.nih.gov/pubmed/11070001
https://doi.org/10.1371/journal.ppat.1006114
https://doi.org/10.1371/journal.ppat.1006114
http://www.ncbi.nlm.nih.gov/pubmed/27959955
https://doi.org/10.1371/journal.ppat.1008378
https://doi.org/10.1371/journal.ppat.1008378
http://www.ncbi.nlm.nih.gov/pubmed/32492044
https://doi.org/10.1073/pnas.95.20.11514
http://www.ncbi.nlm.nih.gov/pubmed/9751697
https://doi.org/10.1371/journal.ppat.1007222
http://www.ncbi.nlm.nih.gov/pubmed/30383857
https://doi.org/10.1126/science.1243727
http://www.ncbi.nlm.nih.gov/pubmed/24653038
https://doi.org/10.1016/j.cmpb.2013.04.014
https://doi.org/10.1016/j.cmpb.2013.04.014
http://www.ncbi.nlm.nih.gov/pubmed/23764196
https://doi.org/10.1201/b17203
https://doi.org/10.1201/b17203
https://doi.org/10.1016/j.tim.2014.08.006
http://www.ncbi.nlm.nih.gov/pubmed/25169020
https://doi.org/10.1016/S2352-3018%2819%2930075-X
http://www.ncbi.nlm.nih.gov/pubmed/31000478
https://doi.org/10.1126/scitranslmed.aaz2686
http://www.ncbi.nlm.nih.gov/pubmed/31666399
https://doi.org/10.1016/j.cell.2020.01.010
https://doi.org/10.1016/j.cell.2020.01.010
http://www.ncbi.nlm.nih.gov/pubmed/32004464
https://doi.org/10.1371/journal.pcbi.1008434


71. Keele BF, Giorgi EE, Salazar-Gonzalez JF, Decker JM, Pham KT, Salazar MG, et al. Identification

and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection. Proc

Natl Acad Sci. 2008; 105:7552–7557. https://doi.org/10.1073/pnas.0802203105 PMID: 18490657

72. Shankarappa R, Margolick JB, Gange SJ, Rodrigo AG, Upchurch D, Farzadegan H, et al. Consistent

viral evolutionary changes associated with the progression of human immunodeficiency virus type 1

infection. J Virol. 1999; 73:10489–10502. https://doi.org/10.1128/JVI.73.12.10489-10502.1999 PMID:

10559367

73. Crowell TA, Colby DJ, Pinyakorn S, Sacdalan C, Pagliuzza A, Intasan J, et al. Safety and efficacy of

VRC01 broadly neutralising antibodies in adults with acutely treated HIV (RV397): a phase 2, rando-

mised, double-blind, placebo-controlled trial. Lancet HIV. 2019; 6:e297–e306. https://doi.org/10.1016/

S2352-3018(19)30053-0 PMID: 31000477

74. Hashimoto M, Kamphorst AO, Im SJ, Kissick HT, Pillai RN, Ramalingam SS, et al. CD8 T cell exhaus-

tion in chronic infection and cancer: Opportunities for interventions. Annu Rev Med. 2018; 69:301–

318. https://doi.org/10.1146/annurev-med-012017-043208 PMID: 29414259

75. McLane LM, Abdel-Hakeem MS, Wherry EJ. CD8 T cell exhaustion during chronic viral infection and

cancer. Annu Rev Immunol. 2019; 37:457–495. https://doi.org/10.1146/annurev-immunol-041015-

055318 PMID: 30676822

76. Johnson PLF, Kochin BF, McAfee MS, Stromnes IM, Regoes RR, Ahmed R, et al. Vaccination alters

the balance between protective immunity, exhaustion, escape, and death in chronic infections. J Virol.

2011. https://doi.org/10.1128/jvi.00166-11 PMID: 21411537

77. Baral S, Roy R, Dixit NM. Modeling how reversal of immune exhaustion elicits cure of chronic hepatitis

C after the end of treatment with direct-acting antiviral agents. Immunol Cell Biol. 2018; 96:969–980.

https://doi.org/10.1111/imcb.12161 PMID: 29744934

78. Baral S, Antia R, Dixit NM. A dynamical motif comprising the interactions between antigens and CD8 T

cells may underlie the outcomes of viral infections. Proc Natl Acad Sci. 2019; 116:17393–17398.

https://doi.org/10.1073/pnas.1902178116 PMID: 31413198

79. Baral S, Raja R, Sen P, Dixit NM. Towards multiscale modeling of the CD8 + T cell response to viral

infections. Wiley Interdiscip Rev Syst Biol Med. 2019; 11:e1446. https://doi.org/10.1002/wsbm.1446

PMID: 30811096

80. Wu X, Zhou T, Zhu J, Zhang B, Georgiev I, Wang C, et al. Focused evolution of HIV-1 neutralizing anti-

bodies revealed by structures and deep sequencing. Science. 2011; 333:1593–1602. https://doi.org/

10.1126/science.1207532 PMID: 21835983

81. Wu X, Zhang Z, Schramm CA, Joyce MG, Do Kwon Y, Zhou T, et al. Maturation and diversity of the

VRC01-antibody lineage over 15 years of chronic HIV-1 infection. Cell. 2015; 161:470–485. https://

doi.org/10.1016/j.cell.2015.03.004 PMID: 25865483

82. Scheid JF, Mouquet H, Ueberheide B, Diskin R, Klein F, Oliveira TYK, et al. Sequence and structural

convergence of broad and potent HIV antibodies that mimic CD4 binding. Science. 2011; 333:1633–

1637. https://doi.org/10.1126/science.1207227 PMID: 21764753

83. Gilbert PB, Juraska M, DeCamp AC, Karuna S, Edupuganti S, Mgodi N, et al. Basis and statistical

design of the passive HIV-1 antibody mediated prevention (AMP) test-of-concept efficacy trials. Stat

Commun Infect Dis. 2017; 9. https://doi.org/10.1515/scid-2016-0001 PMID: 29218117

84. Huang Y, Karuna S, Carpp LN, Reeves D, Pegu A, Seaton K, et al. Modeling cumulative overall pre-

vention efficacy for the VRC01 phase 2b efficacy trials. Hum Vaccines Immunother. 2018; 14:2116–

2127. https://doi.org/10.1080/21645515.2018.1462640 PMID: 29683765

85. Raja R, Pareek A, Newar K, Dixit NM. Mutational pathway maps and founder effects define the within-

host spectrum of hepatitis C virus mutants resistant to drugs. PLoS Pathog. 2019; 15:e1007701.

https://doi.org/10.1371/journal.ppat.1007701 PMID: 30934020

86. Prague M, Gerold JM, Balelli I, Pasin C, Li JZ, Barouch DH, et al. Viral rebound kinetics following single

and combination immunotherapy for HIV / SIV. bioRxiv. 2019; 1–72. https://doi.org/10.1101/700401

87. Desikan R, Raja R, Dixit NM. Early exposure to broadly neutralizing antibodies may trigger a dynam-

ical switch from progressive disease to lasting control of SHIV infection. PLoS Comput Biol. 2020; 16:

e1008064. https://doi.org/10.1371/journal.pcbi.1008064 PMID: 32817614

88. Cardozo EF, Andrade A, Mellors JW, Kuritzkes DR, Perelson AS, Ribeiro RM. Treatment with inte-

grase inhibitor suggests a new interpretation of HIV RNA decay curves that reveals a subset of cells

with slow integration. PLoS Pathog. 2017; 13:e1006478. https://doi.org/10.1371/journal.ppat.1006478

PMID: 28678879

89. Schoofs T, Klein F, Braunschweig M, Kreider EF, Feldmann A, Nogueira L, et al. HIV-1 therapy with

monoclonal antibody 3BNC117 elicits host immune responses against HIV-1. Science. 2016;

352:997–1001. https://doi.org/10.1126/science.aaf0972 PMID: 27199429

PLOS COMPUTATIONAL BIOLOGY VRC01 therapy and HIV-1 remission

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008434 November 30, 2020 29 / 30

https://doi.org/10.1073/pnas.0802203105
http://www.ncbi.nlm.nih.gov/pubmed/18490657
https://doi.org/10.1128/JVI.73.12.10489-10502.1999
http://www.ncbi.nlm.nih.gov/pubmed/10559367
https://doi.org/10.1016/S2352-3018%2819%2930053-0
https://doi.org/10.1016/S2352-3018%2819%2930053-0
http://www.ncbi.nlm.nih.gov/pubmed/31000477
https://doi.org/10.1146/annurev-med-012017-043208
http://www.ncbi.nlm.nih.gov/pubmed/29414259
https://doi.org/10.1146/annurev-immunol-041015-055318
https://doi.org/10.1146/annurev-immunol-041015-055318
http://www.ncbi.nlm.nih.gov/pubmed/30676822
https://doi.org/10.1128/jvi.00166-11
http://www.ncbi.nlm.nih.gov/pubmed/21411537
https://doi.org/10.1111/imcb.12161
http://www.ncbi.nlm.nih.gov/pubmed/29744934
https://doi.org/10.1073/pnas.1902178116
http://www.ncbi.nlm.nih.gov/pubmed/31413198
https://doi.org/10.1002/wsbm.1446
http://www.ncbi.nlm.nih.gov/pubmed/30811096
https://doi.org/10.1126/science.1207532
https://doi.org/10.1126/science.1207532
http://www.ncbi.nlm.nih.gov/pubmed/21835983
https://doi.org/10.1016/j.cell.2015.03.004
https://doi.org/10.1016/j.cell.2015.03.004
http://www.ncbi.nlm.nih.gov/pubmed/25865483
https://doi.org/10.1126/science.1207227
http://www.ncbi.nlm.nih.gov/pubmed/21764753
https://doi.org/10.1515/scid-2016-0001
http://www.ncbi.nlm.nih.gov/pubmed/29218117
https://doi.org/10.1080/21645515.2018.1462640
http://www.ncbi.nlm.nih.gov/pubmed/29683765
https://doi.org/10.1371/journal.ppat.1007701
http://www.ncbi.nlm.nih.gov/pubmed/30934020
https://doi.org/10.1101/700401
https://doi.org/10.1371/journal.pcbi.1008064
http://www.ncbi.nlm.nih.gov/pubmed/32817614
https://doi.org/10.1371/journal.ppat.1006478
http://www.ncbi.nlm.nih.gov/pubmed/28678879
https://doi.org/10.1126/science.aaf0972
http://www.ncbi.nlm.nih.gov/pubmed/27199429
https://doi.org/10.1371/journal.pcbi.1008434


90. Garg AK, Desikan R, Dixit NM. Preferential presentation of high-affinity immune complexes in germinal

centers can explain how passive immunization improves the humoral response. Cell Rep. 2019;

29:3946–3957.e5. https://doi.org/10.1016/j.celrep.2019.11.030 PMID: 31851925

91. DiLillo DJ, Ravetch J V. Differential Fc-Receptor Engagement Drives an Anti-tumor Vaccinal Effect.

Cell. 2015; 161:1035–1045. https://doi.org/10.1016/j.cell.2015.04.016 PMID: 25976835

92. Chen BK, Gandhi RT, Baltimore D. CD4 down-modulation during infection of human T cells with

human immunodeficiency virus type 1 involves independent activities of vpu, env, and nef. J Virol.

1996.

93. Dixit NM, Perelson AS. HIV dynamics with multiple infections of target cells. Proc Natl Acad Sci. 2005;

102:8198–8203. https://doi.org/10.1073/pnas.0407498102 PMID: 15928092

94. Josefsson L, King MS, Makitalo B, Brannstrom J, Shao W, Maldarelli F, et al. Majority of CD4+ T cells

from peripheral blood of HIV-1-infected individuals contain only one HIV DNA molecule. Proc Natl

Acad Sci. 2011; 108:11199–11204. https://doi.org/10.1073/pnas.1107729108 PMID: 21690402

95. Nagaraja P, Alexander HK, Bonhoeffer S, Dixit NM. Influence of recombination on acquisition and

reversion of immune escape and compensatory mutations in HIV-1. Epidemics. 2016; 14:11–25.

https://doi.org/10.1016/j.epidem.2015.09.001 PMID: 26972510

96. Suryavanshi GW, Dixit NM. Emergence of recombinant forms of HIV: Dynamics and scaling. PLoS

Comput Biol. 2007; 3:e205. https://doi.org/10.1371/journal.pcbi.0030205 PMID: 17967052

97. Ramratnam B, Bonhoeffer S, Binley J, Hurley A, Zhang L, Mittler JE, et al. Rapid production and clear-

ance of HIV-1 and hepatitis C virus assessed by large volume plasma apheresis. Lancet. 1999;

354:1782–1785. https://doi.org/10.1016/S0140-6736(99)02035-8 PMID: 10577640

98. Gillespie DT. Exact stochastic simulation of coupled chemical reactions. J Phys Chem. 1977;

81:2340–2361. https://doi.org/10.1021/j100540a008

99. Dixit NM, Perelson AS. Complex patterns of viral load decay under antiretroviral therapy: influence of

pharmacokinetics and intracellular delay. J Theor Biol. 2004; 226:95–109. https://doi.org/10.1016/j.

jtbi.2003.09.002 PMID: 14637059

100. Gaudinski MR, Coates EE, Houser K V., Chen GL, Yamshchikov G, Saunders JG, et al. Safety and

pharmacokinetics of the Fc-modified HIV-1 human monoclonal antibody VRC01LS: A Phase 1 open-

label clinical trial in healthy adults. PLoS Med. 2018; 15:e1002493. https://doi.org/10.1371/journal.

pmed.1002493 PMID: 29364886

PLOS COMPUTATIONAL BIOLOGY VRC01 therapy and HIV-1 remission

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008434 November 30, 2020 30 / 30

https://doi.org/10.1016/j.celrep.2019.11.030
http://www.ncbi.nlm.nih.gov/pubmed/31851925
https://doi.org/10.1016/j.cell.2015.04.016
http://www.ncbi.nlm.nih.gov/pubmed/25976835
https://doi.org/10.1073/pnas.0407498102
http://www.ncbi.nlm.nih.gov/pubmed/15928092
https://doi.org/10.1073/pnas.1107729108
http://www.ncbi.nlm.nih.gov/pubmed/21690402
https://doi.org/10.1016/j.epidem.2015.09.001
http://www.ncbi.nlm.nih.gov/pubmed/26972510
https://doi.org/10.1371/journal.pcbi.0030205
http://www.ncbi.nlm.nih.gov/pubmed/17967052
https://doi.org/10.1016/S0140-6736%2899%2902035-8
http://www.ncbi.nlm.nih.gov/pubmed/10577640
https://doi.org/10.1021/j100540a008
https://doi.org/10.1016/j.jtbi.2003.09.002
https://doi.org/10.1016/j.jtbi.2003.09.002
http://www.ncbi.nlm.nih.gov/pubmed/14637059
https://doi.org/10.1371/journal.pmed.1002493
https://doi.org/10.1371/journal.pmed.1002493
http://www.ncbi.nlm.nih.gov/pubmed/29364886
https://doi.org/10.1371/journal.pcbi.1008434

