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Understanding the emergence and subsequent spread of human infectious

diseases is a critical global challenge, especially for high-impact zoonotic

and vector-borne diseases. Global climate and land-use change are likely

to alter host and vector distributions, but understanding the impact of

these changes on the burden of infectious diseases is difficult. Here, we

use a Bayesian spatial model to investigate environmental drivers of one

of the most important diseases in Africa, Rift Valley fever (RVF). The

model uses a hierarchical approach to determine how environmental drivers

vary both spatially and seasonally, and incorporates the effects of key cli-

matic oscillations, to produce a continental risk map of RVF in livestock

(as a proxy for human RVF risk). We find RVF risk has a distinct seasonal

spatial pattern influenced by climatic variation, with the majority of cases

occurring in South Africa and Kenya in the first half of an El Niño year.

Irrigation, rainfall and human population density were the main drivers of

RVF cases, independent of seasonal, climatic or spatial variation. By account-

ing more subtly for the patterns in RVF data, we better determine the

importance of underlying environmental drivers, and also make space-

and time-sensitive predictions to better direct future surveillance resources.

This article is part of the themed issue ‘One Health for a changing world:

zoonoses, ecosystems and human well-being’.
1. Introduction
Emerging infectious diseases (EIDs) are a significant threat to global economies

and human health [1]. They pose particularly severe healthcare challenges for

resource-limited countries, and frequently place substantial economic burdens

on the most vulnerable [2]. Understanding the emergence and subsequent

spread of EIDs is a critical global challenge, especially for high-impact zoonotic

(diseases with an animal origin) and vector-borne diseases (e.g. Ebola, Zika).

Although global climate and land-use change are likely to alter reservoir host

and vector distributions, understanding the impact of these changes on future dis-

ease risk is challenging [3]. This is largely because of a lack of a detailed

mechanistic understanding of how reservoir host or vectors respond to environ-

mental changes for many EIDs, or how humans and host or vector populations

subsequently come into contact within a changing environment [3,4].

http://crossmark.crossref.org/dialog/?doi=10.1098/rstb.2016.0165&domain=pdf&date_stamp=2017-06-05
http://dx.doi.org/10.1098/rstb/372/1725
http://dx.doi.org/10.1098/rstb/372/1725
http://dx.doi.org/10.1098/rstb/372/1725
mailto:dwredding@gmail.com
mailto:kate.e.jones@ucl.ac.uk
https://dx.doi.org/10.6084/m9.figshare.c.3749951
https://dx.doi.org/10.6084/m9.figshare.c.3749951
http://orcid.org/
http://orcid.org/0000-0001-8615-1798
http://orcid.org/0000-0002-1967-6436
http://orcid.org/0000-0002-6150-2843
http://orcid.org/0000-0001-9376-2941
http://orcid.org/0000-0001-5231-3293
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

372:20160165

2
One approach to understanding disease risk across

environments is to use non-mechanistic correlative methods,

e.g. landscape epidemiology [5]. In these studies, correlative

patterns between disease cases and a suite of likely environ-

mental covariates are modelled, using methods such as

MaxEnt [6] or Boosted Regression Trees (BRT) [7]. This

approach can give insight into both the underlying causal

environmental drivers of the disease and, by using covariate-

based interpolation, the likely risk across the landscape (e.g.

[8–11]). However, these types of correlative approaches

ignore the underlying mechanisms of disease emergence and

transmission, and may be impacted by data sampling bias,

sparse and patchily distributed data—situations that are

common with disease case data [3,12]. Building complexity

into a correlative approach has recently become more tractable

using methods such as Bayesian hierarchical spatial models

solved using Integrated Laplace Approximations (INLA) [13].

This approach uses a flexible additive modelling structure to

explicitly incorporate a wide variety of fixed and random

effects, such as spatial and temporal autocorrelation. Currently,

there have been few studies that include complex hierarchical

spatial models in correlative infectious disease analyses (e.g.

[14]), partially because of the previous difficulties of

implementation.

A Bayesian hierarchical spatial modelling approach there-

fore is likely to be particularly suited for EIDs due to patchy

data coverage and complex emergence and transmission pat-

terns. One such disease, Rift Valley fever (RVF) has become

one of the most important zoonoses of sub-Saharan Africa

over the last century, causing devastating health and econ-

omic impacts on domestic ruminants and humans [15], and

more recently causing serious epizootics outside Africa

(Saudi Arabia and Yemen [16]). RVF is also a potential

threat for Europe and the USA [17]. Most RVF epidemics

are believed to be triggered by the emergence of unusually

large numbers of adult mosquitoes transmitting RVF virus

(RVFV, Family Bunyaviridae), especially of the genus Aedes
and Culex [18]. Mosquito distribution and emergence, in turn,

is strongly linked to ecological and climatic conditions, such

as heavy rainfall and flooding [19], and to human activities

that increase standing water, such as irrigation and dam

building [16]. Social activities, such as human and animal gath-

ering during the Eid al Adha religious feast, also appear to

contribute to the transmission and dispersal of the disease [20].

How RVFV is maintained during inter-epidemic periods is less

clear. The most commonly accepted theory is that RVFV can

be maintained over several years by vertical transmission

in floodwater Aedes mosquitoes during dry periods, and at

animal watering sites by horizontal transmission between live-

stock and mosquitoes during rainy periods [21]. Additionally,

high levels of RVF seropositivity have been noted in buffalo

populations (Syncerus caffer), and it has been suggested that

RVFV could circulate long term in wild animals, providing a

persistent source of reinfection of cattle populations [21,22].

A number of studies have developed RVF monitoring and

risk mapping with correlative approaches using a variety of

environmental measurements, including surface tempera-

tures, rainfall, soil type and vegetation density (NDVI)

[23–25], with a strong emphasis on capturing the environ-

mental conditions that suit the vectors. Such approaches

have been used successfully to forecast outbreaks and have

proven useful in the allocation of surveillance efforts

[23,26]. However, these studies have tended to focus on
particular African regions (e.g. Kenya and South Africa)

and understanding the risk of RVF across other areas is con-

founded by lack of dedicated resources and under-reporting

[27,28]. Fitting a single model across the entire endemic

region to capture RVF’s complex disease transmission pro-

cesses is problematic [29] and spatially invariant models are

unlikely to capture the range of environmental–disease inter-

actions for such a geographically widespread disease. For

instance, key drivers in temperate regions are likely to

differ from those that are important in tropical monsoon cli-

mates. Furthermore, when testing spatially invariant models

under different climatic oscillation scenarios (e.g. El Niño-

Southern Oscillation, ENSO), the impacts are unlikely to be

spatially and temporally heterogeneous. For instance, strong

El Niño events cause high rainfall in the Horn of Africa

while simultaneously generating lower than average rainfall

in Malawi and South Africa [30].

Here, we improve on previous attempts and construct a

spatial and temporal risk map for continental Africa by employ-

ing a flexible Bayesian hierarchical modelling approach (using

INLA), to better understand the different drivers of spatial

risk in RVF outbreaks. By accounting for spatial and temporal

heterogeneity, we determine the importance of underlying dri-

vers, and also make space- and time-sensitive predictions to

better direct surveillance resources at the continental level.
2. Material and methods
(a) Rift Valley fever occurrence data
Owing to a lack of data, we modelled the risk of RVF to livestock

rather than the risk directly to humans. A major source of infection

for humans is through slaughtering infected livestock [15], and

high-risk conditions for animals will confer a higher risk to

people. Additionally, we are, in most part, modelling the environ-

mental conditions suitable for the disease-carrying vectors.

Therefore, if there are infected vectors present, then the RVF risk

to farm workers and other local people is likely intensified. RVF

livestock occurrence records were collated from the Global

Animal Disease Information System (EMPRES-i; http://empres-

i.fao.org) from 2004 to 2016 (electronic supplementary material,

table S1). We collated the following information from each RVF

occurrence contained in the database: latitude and longitude

(DEC), the observation date, the reporting date (observation date

was used in preference to reporting date) and the predicted

number of animals at risk at the locality. The coordinates for

each record represented the exact location for small outbreaks,

the centroid of the districts/counties affected for large outbreaks

or, for outbreaks where exact location is not known, the centroid

of general area of occurrence. For non-exact coordinates, environ-

mental covariates extracted at the estimated location may not

represent the value at the unknown true location. However, this

is unlikely to be a problem at this analysis scale, as the covariates

in our models are relatively invariant over small areas. Obser-

vations were reported from Botswana, Kenya, Madagascar,

Mauritania, Namibia, Senegal, South Africa, Sudan and Swazi-

land, with by far the majority (90%) coming from South Africa

(electronic supplementary material, table S1). EMPRES-i records

that were clearly duplicates, or recorded as ‘Denied’, were

removed, and records were then manually checked for incorrect

coordinates by verifying that the given location matched the

country recorded in the ‘Country’ column of the dataset. The

final dataset contained 976 outbreak records.

http://empres-i.fao.org
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Table 1. Number of RVF occurrence records from 2004 to 2016 split by country, seasonally and by climatic oscillation type. Quarters represent four seasonal
periods: quarter 1, January – March; quarter 2, April – June; quarter 3, July – September; and quarter 4, October – December. ENSO groups were based on the
Oceanic Ninõ Index: LA, La Niña (cases occurring during months with an ONI score less than 21); NE, no event (cases occurring during months with an ONI
score between 21 and 1); and EN, El Niño (cases occurring during months with an ONI score greater than 1). RVF livestock occurrence records (n ¼ 976) were
collated from RVF data from the Global Animal Disease Information System (EMPRES-i; http://empres-i.fao.org) (electronic supplementary material, table S1).

season and ENSO event type

quarter 1 quarter 2 quarter 3 quarter 4

country LA NE EN LA NE EN LA NE EN LA NE EN

Algeria 0 0 0 1 0 0 0 0 0 0 0 0

Botswana 0 0 0 0 0 1 0 2 0 0 0 0

Chad 0 1 0 0 0 0 0 0 0 0 0 0

Comoros 0 0 0 0 0 0 0 3 0 0 0 0

Egypt 1 0 0 0 0 0 0 0 0 0 0 0

Kenya 0 0 27 0 1 0 0 3 0 0 0 31

Madagascar 4 0 1 8 1 0 1 5 0 0 12 0

Mali 0 0 0 0 0 0 1 3 0 0 0 0

Mauritania 0 0 0 0 0 0 0 35 1 3 11 4

Mayotte 0 0 0 0 0 0 1 0 0 0 0 0

Mozambique 6 0 0 0 0 0 4 0 0 0 0 0

Namibia 0 0 0 2 5 8 0 0 0 0 0 0

Senegal 0 1 1 0 0 0 0 14 0 0 6 6

Somalia 0 0 1 0 0 0 0 0 0 0 0 0

South Africa 100 0 314 73 13 169 0 4 0 1 18 1

South Sudan 0 0 0 0 0 0 0 0 0 0 1 0

Sudan 0 0 1 0 0 0 0 0 0 1 2 0

Swaziland 0 0 0 1 0 0 0 1 0 0 0 0

Uganda 0 26 4 0 0 0 0 0 0 0 0 0

Tanzania 0 0 24 1 6 0 0 0 0 0 0 1

Western Sahara 0 0 0 6 0 0 0 0 0 0 0 0

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

372:20160165

3

(b) Spatial environmental and habitat data
We collated spatial environmental and habitat variables for con-

tinental Africa (electronic supplementary material, table S2), and

used those spatial variables linked to RVF outbreaks, or those

that are thought to explain higher incidence or severity. For

instance, the development and survival rates of mosquito vectors

are known to be highly dependent on temperature, and as mos-

quitoes require water bodies for larval development, rainfall, soil

type, presence of irrigation and previous history of flooding can

all be employed to capture the likelihood of a grid cell containing

standing water [31]. All of these variables represented synoptic

data and, therefore, outbreaks occurring at the same locations

had the same values irrespective of date of outbreak. We chose

this approach as using data corresponding to the date of the out-

break would only have been possible for a few of the variables,

reducing the available covariates. Furthermore, it is not clear

over what time frame to summarize the input variables, as

there may be complex interactions at play, such as flooding

being caused by either consistent rain in a clay soil area or

sudden rain in more porous location. Out of the initial set of vari-

ables, we retained 24 of the most orthogonal (less than 75%

correlation), to give a final dataset consisting of: (i) bioclimatic

variables from Hijmans et al. [32]: (a) BioClim BIO1 annual
mean temperature; (b) BioClim BIO5 maximum temperature of

warmest month; (c) BioClim BIO6 minimum temperature of

coldest month; (d) BioClim BIO7 temperature annual range; (e)

BioClim BIO12 annual precipitation; (f ) BioClim BIO13 precipi-

tation of wettest month; (g) BioClim BIO14 precipitation of

driest month; and (h) altitude (m a.s.l.); (ii) rain event variables

from Dartmouth Flood Observatory [33]: number of extreme

rain events and number of major floods from 1998 to 2009;

(iii) gridded livestock of the world variables from Robinson

et al. [34]: sheep and cattle density calculated as the number of

sheep or cattle per grid cell; (iv) proportion of cultivated land

from harmonized land use [35]; (v) presence of irrigation from

HarvestChoice [36]; (vi) human population density (2010) from

the Gridded population of the world v. 3 [37]; (vii) percentage

land cover from MODIS [38], where we aggregated 16 MODIS

land-cover categories into seven broad habitat classes: forest

(MODIS categories 1–5), shrubland (MODIS 6–7), savannah

(MODIS 8–9), grassland (MODIS 10), wetland (MODIS 11),

anthropogenic (MODIS 12–14) and bare (MODIS 15–16); (viii)

soil and vegetation variables from the World Soil Database [39]:

% clay, organic carbon, silt, and gravel, soil pH and Leaf Area

Index; (ix) total number of animals at risk of RVF (collected at

each record locality to account for sample size; EMPRES-i); and

http://empres-i.fao.org
http://empres-i.fao.org


Table 2. Slope values from a minimum Bayesian additive regression model for RVF occurrence records from 2004 to 2016 independent of spatial, seasonal and
climatic oscillation effects estimated using INLA. Percentage land-use classes are aggregated from 16 MODIS [38] habitat classes (see Material and methods).
Mean and s.d. represent the mean and standard deviation of the slope values; 0.025, 0.5, 0.975 represent quantiles of the distribution (see electronic
supplementary material, figure S1 for slope distributions). Italics denotes variable had a slope mean value that was significantly greater than zero.

variable mean s.d. 0.025 0.5 0.975

intercept 20.0865 11.182 222.0406 20.0868 21.8493

ann. precipitation 0.1571 0.09 20.0202 0.1573 0.3334

ann. precipitation2 20.0206 0.0089 20.0381 20.0206 20.0031

ann. mean temp. 0.0021 0.0045 20.0067 0.0021 0.011

ann. mean temp.2 0 0 0 0 0

no. of observed floods 0.0059 0.0093 20.0126 0.0059 0.0243

sheep density 0.0146 0.0206 20.0258 0.0146 0.0548

cattle density 20.0033 0.0125 20.0283 20.0031 0.0209

prop. of cultivated land 20.439 0.2335 20.8975 20.439 0.019

prop. of cultivated land2 1.6028 0.6198 0.3854 1.6029 2.8183

presence of irrigation 0.0473 0.0076 0.0328 0.0472 0.0627

human popn density 0.0169 0.0079 0.0015 0.0169 0.0326

% forest 0.0059 11.1761 221.9365 0.0056 21.93

% shrubland 20.0465 11.176 221.9888 20.0469 21.8774

% savannah 0.0199 11.176 221.9223 0.0196 21.9438

% grassland 0.0576 11.176 221.8846 0.0573 21.9815

% wetland 20.1453 11.1769 222.0894 20.1456 21.7804

% anthro. 0.0654 11.176 221.8768 0.0651 21.9893

% bare 20.0467 11.176 221.989 20.047 21.8773

no. of animals at risk 20.0197 0.0148 20.0531 20.0176 0.0056
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(x) probability of occurrence of buffalo (S. caffer) calculated by a

species distribution model from Tiedt [40], using data from the

Global Biodiversity Information Facility [41] and calculated with

a BRT model [7]. For analysis, all variables were reduced in latitu-

dinal extent to 378 N 40.58 S and longitudinal extent to 548 E 188 W

and resampled to a 0.04168 grid cell size using a World Geodetic

System 84 projection using ‘raster’ [42].

(c) Statistical analyses
The RVF data were likely to contain spatial biases as the majority

of cases were reported from South Africa (electronic supplemen-

tary material, table S1) and none from known infected countries

(e.g. Zambia, Zimbabwe). To reduce the impact of spatial biases

on the slope estimates on the covariates, we used a Stochastic

Partial Differential Equations approach [43] to fit a Gaussian

random field to account for the effects of sampling different

locations with different intensities. We included this random

field as a spatially structured random effect using a Matérn

covariance function, in a Bayesian additive regression model.

We tested several different versions of the spatial mesh, choosing

the appropriate complexity using Watanabe-AIC (wAIC) [44] to

estimate the optimal complexity of the spatial term versus the

time taken to compute the model. To sample the widest range

of possible environmental conditions with minimum number

of points, we sampled approximately every four latitudinal or

longitudinal degrees across Africa and used these 1040 points

as pseudo-absence points, with a year and month randomly

assigned from uniform distributions (runif, [45]). We used a pres-

ence-background model because simulations using input data
with a similar degree of clumping as our input dataset show

that this type of model performs well [46]. Modelling using

Gaussian point processes offers an exciting alternative method

[47] and can also be inferred using an INLA Bayesian approach,

but these have yet to be evaluated against presence-background

methods using very clumped input data. We repeated the analy-

sis with approximately 58 and 38 grids and with different year

and month designations, but as this made no qualitative

differences to the results, we use the 48 grid hereafter.

Model inference was undertaken using INLA in R (R-INLA,

[13]). INLA was chosen as it represents an analytical short cut to

estimate Bayesian regression parameters [13], without the need

to employ, for instance, computationally expensive Markov

Chain Monte Carlo algorithms [48]. INLA also has been shown

to perform well with potentially very clumped and biased data

compared with other common inference methods such as BRT

or MaxEnt [46]. We predicted the presence/absence of RVF

cases using all 24 of the most orthogonal environmental and

habitat covariates, fitting both linear and square terms, so that

nonlinear relationships between the dependent and independent

variables were available for selection. Simple terms rather than,

for instance, Bayesian splines, were chosen due to computational

cost and also so that the resulting slope estimates would be easy

to interpret. We used a binomial ‘error family’ for the dependent

variable (presence/absence RVF). We evaluated the fit of the

model using a three-pronged approach. First, we used the con-

ditional predictive ordinate (CPO) measure of fit, which gives

the probability of each individual data point given the model.

CPO ranges from 0 in the case of poor fit, to N (the sample

size) in the case of perfect fit for each data point [49]. Second,
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Figure 1. Spatial distribution of RVF risk for years without an ENSO event for (a) quarter 1, January – March; (b) quarter 2, April – June; (c) quarter 3, July –
September; and (d ) quarter 4, October – December. Risk was estimated from occurrence records from 2004 to 2016 with a Bayesian additive regression model
using INLA. Risk probability per 18 grid cell is represented on a linear colour scale from 1 to 0, where red is most suitable given the environmental conditions
and dark blue unsuitable. Axis labels indicate degrees, in a World Geodetic System 84 projection. Filled black circles represent locations of historic RVF outbreaks (see
electronic supplementary material, table S1).
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the probability integral transform, a diagnostic method used to

assess whether a data variable comes from a specified

distribution, in this case binomial (analogous to Q–Q plot com-

parison), which has an ideal result of uniform distribution of

values across the range of dependent variable [49].

RVF cases were modelled within four periods across the year:

quarter 1 (January–March), quarter 2 (April–June), quarter 3

(July–September) and quarter 4 (October–December), with

these periods selected to capture discrete differences in rainfall

and temperature throughout Africa. Cases were also modelled

within three climatic oscillation groups determined by the Oceanic

Niño Index (ONI; http://www.cpc.ncep.noaa.gov/products/

analysis_monitoring/ensostuff/ensoyears.shtml): La Niña—

cases occurring during months with an ONI score less than 21;

no event—cases occurring during months with an ONI score

between 21 and 1; and El Niño—cases occurring during

months with an ONI score greater than 1. There were four major

ENSO oscillations from 2004 to 2016. We note that some outbreaks

were reported well after they were thought to have occurred, so

these may have some recall bias, though this was not explicitly

modelled here due to computational constraints. We then created

a nested structure of 12 possible states by combining these four

seasonal and three climatic oscillation groupings (table 1). These

12 groups were modelled simultaneously using an ‘iid’ term for

both the intercept and slope parameters [50] which allowed us

to specify a group-specific slope and intercept parameter using
exchangeable hyper-priors, specified with a log-gamma distri-

bution. We used a forward stepwise procedure to select a

minimum model to aid interpretation of the remaining variables,

using bespoke code (https://github.com/timcdlucas/INLAutils/

blob/master/R/stepINLA.R). The univariate model with the

lowest wAIC value was used as the starting model, with each

‘next best’ predictor added in turn. We used an information-theor-

etic approach to compare models using wAIC [44]. This algorithm

avoids the model over-fitting by penalizing terms that explain

little variance [51]. Using this approach, we made full Bayesian

predictions at 4160 points in a 18 grid across Africa for 12 different

seasonal and climatological scenarios.
3. Results
(a) Seasonal and climatic spatial patterns of Rift Valley

fever cases
We find that RVF risk has distinct seasonal and climatic

spatial patterns. Across the four seasonal periods, there

were marked differences in the numbers of RVF cases

recorded, where quarters 1 and 2 (January–June) contained

the majority of all cases (82%; table 1). Numbers of RVF

cases were higher overall in years with either strong El

http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml
http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml
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Figure 2. Spatial distribution of RVF risk for years with a strong El Niño event for (a) quarter 1, January – March; (b) quarter 2, April – June; (c) quarter 3, July –
September; and (d ) quarter 4, October – December. Risk was estimated from occurrence records from 2004 to 2016 with a Bayesian additive regression model using
INLA. Risk probability per 18 grid cell is represented on a linear colour scale from 1 to 0, where red is most suitable given the environmental conditions and dark
blue unsuitable. Axis labels indicate degrees, in a World Geodetic System 84 projection. Filled black circles represent locations of historic RVF outbreaks (see electronic
supplementary material, table S1).
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Niño or La Niña oscillations. The majority of cases occurring

in strong El Niño event years were located in South Africa or

Kenya. In comparison, in strong La Niña event years, while

RVF cases were again predominately in South Africa (173

of 215), they were also recorded in North African countries

(Western Sahara, Algeria, Egypt) in smaller numbers (eight

recorded cases; table 1).
(b) Drivers of Rift Valley fever risk
We find that RVF risk increased with the presence of irriga-

tion, a larger proportion of land under cultivation and a

higher human population density (INLA regression model,

n ¼ 976, wAIC ¼ 776.18). The mean annual rainfall had a

negative impact on RVF risk (table 2; electronic supplemen-

tary material, figure S1). Our cross-validation showed the

INLA model fitted with a right-skewed CPO histogram (elec-

tronic supplementary material, figure S2), indicating that

most of the values had high probability when systematically

removed from the data [47]. Models that contained the spatial

autocorrelation always had a lower wAIC score than those

without (wAIC ¼ 1091.75–981.13), validating the inclusion

of a spatial term.
(c) Spatial predictions of Rift Valley fever risk
Spatial predictions of RVF risk using the best model varied

seasonally and within climatic oscillations (figures 1–3). Years

with no designated climatic oscillations show patterns of low

risk in quarters 1 and 2 (January–June), but high and wide-

spread risk in western Africa (distinct peaks in Chad and

Niger), though these peaks occur in areas with likely lower

predictive confidence (electronic supplementary material,

figure S3), and southern areas of Sudan in quarters 3 and 4

(July–December), and high risk in both South Africa and

Madagascar in quarter 4 (figure 1). By contrast, for both

strong El Niño and La Niña event years, quarters 3 and 4 are

predicted low risk, while quarters 1 and 2 have many high-

risk areas, including the endemic areas (figures 2 and 3). For

strong El Niño event years, quarter 1 had especially high-risk

areas, as expected, especially in South Africa, and in Kenya–

Tanzania–Uganda due to the high numbers of recorded cases

there (figure 2). For both strong El Niño and La Niña event

years, there were similar spatial patterns of RVF risk except

for Madagascar and western Africa which had higher expected

risk in La Niña event years, and the Chad–Niger–Sudan risk

peaks which were higher in quarter 3 in La Niña event years

(figure 3).
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Figure 3. Spatial distribution of RVF risk for years with a strong La Niña event for (a) quarter 1, January – March; (b) quarter 2, April – June; (c) quarter 3, July –
September; and (d ) quarter 4, October – December. Risk was estimated from occurrence records from 2004 to 2016 with a Bayesian additive regression model using
INLA. Risk probability per 18 grid cell is represented on a linear colour scale from 1 to 0, where red is most suitable given the environmental conditions and dark
blue unsuitable. Axis labels indicate degrees, in a World Geodetic System 84 projection. Filled black circles represent locations of historic RVF outbreaks (see electronic
supplementary material, table S1).
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4. Discussion
Irrespective of the location where an outbreak occurred or the

time of year that it happened, the presence of agricultural irri-

gation in the local area remains strongly linked to an

increased risk of RVF. This is understandable as irrigation

is known to directly benefit mosquitoes by increasing the

habitat availability for larvae [52]. Given concerted attempts

to increase irrigation (e.g. NEPAD’s Irrigation Programme,

http://www.nepad-caadp.net) [53], there will be future

trade-offs between increases in crop production, with the

concomitant increases in food availability and income, and

the negative effects of increased disease burden on humans,

cattle and other livestock. Similar processes are likely under-

lying the positive relationship seen with higher RVF risk and

cultivation, with the water needed even for non-irrigated

lands providing good habitat for larval development. The

increasing risk associated with greater numbers of people

most likely reflects locations with more farming, more local

irrigation and more local water resources for people and live-

stock to use as a daily water source. The surprising negative

relationship between RVF risk and rainfall may be caused by

the interaction of increased agricultural land-use and high

human populations occurring in historically grassland areas
with lower rainfall. Areas with higher rainfall, principally

forested areas of Africa, have yet to be converted in earnest

into agriculture.

The overall higher risk seen in strong ENSO event years

(ONI . 1 or ONI , 21) is worrying, given a predicted dou-

bling in the rate of ENSO events in the near future [54].

Understanding, for instance, why there is increased risk in

South Africa in both El Niño and La Niña event years will

be key, with the clear differences in areas that are at risk

given opposing ONI scores. In strong La Niña event years,

with commonly cooler and wetter climates, outbreaks

appear to occur in the Karoo biomes, whereas in the dryer

and warmer El Niño years, larger outbreaks occur in the cen-

tral grassland biomes of South Africa. If increasing events do

occur in the future, further research into these subtleties will

be key in taking sound preventive measures.

Indeed, future models could explicitly incorporate

expected global changes. Previous attempts with simple

disease transmission models have approximated how host

species are likely to change their distribution with upcoming

climate and land-use change [3]. The ENSO modelling here

suggests that both ‘warmer and drier’ or ‘cooler and wetter’

options have the potential to increase RVF cases, providing tes-

table hypotheses about how predicted climate might impact

http://www.nepad-caadp.net
http://www.nepad-caadp.net
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future cases. Our results show that the risk of RVF varies as an

interaction between space and time. There appears a limited

need to undertake surveillance in, for instance, South Africa

other than between December and March. It would appear

prudent to prioritize monitoring in western Africa in non-cate-

gorized event (non-ENSO) years, South Africa, Kenya,

Tanzania and Uganda in strong El Niño event years, and

South Africa and Madagascar in strong La Niña event years.

We highlight three areas that are potentially at high RVF risk

but have historically very low reporting rates, namely south-

western Niger, western Chad and in the southeast of Sudan,

especially in non-ENSO event and La Niña years. These

countries have a history of political instability and low govern-

ance scores [55], and there may have been RVF cases present

but limited infrastructure to diagnose and report them. These

areas correspond to predicted areas of higher than expected

sero-prevalence [56] and should be explored as possible risk

locations for future outbreaks.

By understanding more about the structure of the data

underlying RVF and accounting for spatial–temporal dynamics

we have demonstrated an interpretable approach that could be

applied to other diseases [12]. This might be especially useful to

those at early stages of research such as the many neglected tro-

pical diseases in Africa, southeast Asia and South America

where detailed survey data are not available. As implemented
in R-INLA package, INLA-based Bayesian models are fast, flex-

ible and more interpretable for non-experts to implement [48].

More detailed risk models, such as the one we present here

for RVF, can aid health planning to offset the impacts of debil-

itating diseases that disproportionately affect some of the

poorest communities in the world.
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