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Background: Viral diversity seems to predict treatment outcomes in certain viral infections. 

The aim of this study was to evaluate the association between baseline intra-patient viral diver-

sity and hepatitis B surface antigen (HBsAg) decline following PEGylated interferon-alpha 

(Peg-IFN-α) therapy.

Patients and methods: Twenty-six HBeAg-positive patients who were treated with Peg-

IFN-α were enrolled. Nested polymerase chain reaction (PCR), cloning, and sequencing of the 

hepatitis B virus S gene were performed on baseline samples, and normalized Shannon entropy 

(Sn) was calculated as a measure of small hepatitis B surface protein (SHBs) diversity. Multiple 

regression analysis was used to estimate the association between baseline Sn and HBsAg decline.

Results: Of the 26 patients enrolled in the study, 65.4% were male and 61.5% were infected 

with hepatitis B virus genotype B. The median HBsAg level at baseline was 4.5 log
10

 IU/mL 

(interquartile range: 4.1–4.9) and declined to 3.0 log
10

 IU/mL (interquartile range: 1.7–3.9) after 

48 weeks of Peg-IFN-α treatment. In models adjusted for baseline alanine aminotransferase 

(ALT) and HBsAg, the adjusted coefficients (95% CI) for ΔHBsAg and relative percentage 

HBsAg decrease were −1.3 (−2.5, −0.2) log
10

 IU/mL for higher SHBs diversity (Sn≥0.58) patients 

and −26.4% (−50.2%, −2.5%) for lower diversity (Sn<0.58) patients. Further analysis showed 

that the “a” determinant upstream flanking region and the first loop of the “a” determinant 

(nucleotides 341–359, 371–389, and 381–399) were the main sources of higher SHBs diversity.

Conclusion: Baseline intra-patient SHBs diversity was inverse to HBsAg decline in HBeAg-

positive chronic hepatitis B (CHB) patients receiving Peg-IFN-α monotherapy. Also, more 

sequence variations within the “a” determinant upstream flanking region and the first loop of 

the “a” determinant were the main sources of the higher SHBs diversity.
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Introduction
Chronic hepatitis B (CHB) is a serious infectious disease affecting ~250,000,000 

people and resulting in an estimated 800,000 deaths annually worldwide.1 Current 

CHB treatment guidelines recommend nucleot(s)ide analogs (NAs) or PEGylated 

interferon (Peg-IFN) therapy for CHB patients; highlighted hepatitis B surface antigen 

(HBsAg) loss is the ideal end point of treatment.2–4 However, the HBsAg loss is rare 

with either NAs or Peg-IFN therapy.

Significantly different treatment-induced HBsAg outcomes can be found in CHB 

patients with the same disease status.5,6 A number of studies have demonstrated that 
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certain clinical and patient factors are associated with serum 

HBsAg decline during antiviral therapy, such as HBeAg 

status, early pronounced HBsAg decline (>1 log
10

 decline 

by week 12 or 24), high pretreatment serum interleukin-23 

levels, and genotype.7–9 Patients with genotypes A and D had 

more pronounced HBsAg decline and higher proportions 

of HBsAg loss than those with genotypes B and C during 

NA treatment.6,10–13 In addition to these aforementioned fac-

tors, the nature of small hepatitis B surface protein (SHBs), 

which is a part of HBsAg, has a significant impact on serum 

HBsAg levels.14,15 Xiang et al found that SHBs mutations 

were negatively correlated with serum HBsAg levels both in 

vivo and in vitro.16 Recently, a global ultra-deep sequencing-

based genotyping study revealed that mutations in SHBs 

have an extremely high prevalence and that the majority of 

these amino acid mutations are found in the hepatitis B virus 

(HBV) B and C genotype population.17

Viral diversity within patients can be assessed using 

the measurement normalized Shannon entropy (Sn), which 

takes into account the diversity and frequency of amino acid 

substitutions at different genomic positions.18 Previous stud-

ies have reported that baseline viral diversity was associated 

with virological outcomes in hepatitis C virus (HCV),18–22 

human immunodeficiency virus,23–25 human papillomavirus,26 

cytomegalovirus,27 and hepatitis B e antigen seroconversion 

in CHB.18,28 Although these studies differ in pathogenic 

agents, medications, and clinical end points, there appears to 

be a universal feature present in all of the study results: high 

baseline intra-patient viral diversity is associated with poor 

treatment outcomes. Therefore, a hypothesis that baseline 

SHBs diversity may affect HBsAg decline during Peg-IFN 

therapy was proposed.

To date, little is known about the relationship between 

baseline SHBs diversity and serum HBsAg level. Thus, the 

aim of this study was to investigate whether baseline SHBs 

diversity affects HBsAg decline following Peg-IFN-α mono-

therapy in HBeAg-positive CHB patients.

Patients and methods
Patients
This was a longitudinal study conducted using prospectively 

collected serum samples from 26 eligible patients who were 

HBeAg-positive and treated with Peg-IFN-α monotherapy 

(180 μg per week) for 48 weeks between May and December 

2013 at the outpatient service of the Second Affiliated Hos-

pital, Chongqing Medical University. The inclusion criteria 

were as follows: age 18–65 years; serum HBsAg-positive 

for at least 6 months; not been previously treated with NAs 

or interferon (including conventional or Peg-IFN-a) within 

6 months prior to Peg-IFN-α therapy; and completed full 

therapy course. The exclusion criteria included coinfection 

with hepatitis A virus, HCV, hepatitis D virus, hepatitis E 

virus, or HIV; liver cirrhosis, hepatocellular carcinoma; or 

a history of antiviral therapy within 6 months. This study 

was approved by the ethical committee of the Second Affili-

ated Hospital of Chongqing Medical University, and written 

informed consent was obtained from each study participant.

Variables
HBsAg quantification
Serum HBsAg levels were quantified using the electroche-

miluminescence immunoassay Elecsys® HBsAgII (Roche 

Diagnostic, Mannheim, Germany) according to the manu-

facturer’s instructions. The dynamic range of quantification 

of this assay is 0.05–52,000 IU/mL. In highly concentrated 

samples above the upper limit, a further dilution step was 

necessary to achieve results within the measuring range; 

these results were later multiplied by the dilution factor. 

HBsAg loss was defined as HBsAg-positive at baseline and 

HBsAg-negative at the end of treatment (EOT).

HBV DNA load, HBV markers, and biochemical 
index
Serum HBV DNA levels were measured using the Roche 

COBAS® AmpliPrep/COBAS TaqMan HBV test v2.0 (Roche 

Molecular Diagnostics, Pleasanton, CA, USA). The results 

were expressed in international units per milliliter (IU/

mL). The lower limit of detection of the assay is 20 IU/mL. 

Serum HBe status was determined using commercial enzyme 

immunoassays (Roche Diagnostics, Mannheim, Germany) 

and were expressed as ratios of signal OD to cutoff. Serum 

levels of alanine aminotransferase (ALT) and aspartate ami-

notransferase were detected using an Automatic Biochemistry 

Analyzer (Beckman LX-20, Beckman, Brea, CA, USA), with 

a normal range of 0–40 U/L and 0–50 U/L, respectively.

SHBs diversity
SHBs diversity was assessed at baseline using clone-based 

sequencing (25–30 clones per patient) and was determined 

by calculating the Sn using the following formula: Sn=
−∑ ( ln ) / lnpi pi N

i
, where pi is the frequency of each 

species, and N is the total number of clones analyzed within 

each subject. The process and performance of this assay 

was described in detail in our previous study.29 Briefly, after 

the extraction of viral DNA from 200 μL of serum using 

the QIAamp Ultrasens Virus Kit (Qiagen NV, Venlo, the 
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Netherlands), a nested polymerase chain reaction (PCR) was 

used to amplify the entire S gene fragment. PCR products 

were then cloned into the pEASY-T5 zero vectors (TransGen 

Biotech, Beijing, China) and transformed into Escherichia 

coli JM109 competent cells growing on ampicillin plates. 

Finally, ~25–30 individual clones per sample were randomly 

chosen for further sequencing. The protein sequences were 

analyzed using BioEdit 7.2.5 (http://www.mbio.ncsu.edu/

bioedit/bioedit.html) and MEGA 7.0.30

Viral genotype
The HBV genotypes were determined using the National 

Center for Biotechnology Information (NCBI) viral genotyp-

ing tool (http://www.ncbi.nlm.nih.gov/projects/genotyping/

formpage.cgi).

Study outcomes
The outcomes of this study were ΔHBsAg and relative 

percentage HBsAg decrease. ΔHBsAg was defined as the 

difference in HBsAg between baseline and EOT. Relative 

percentage HBsAg decrease was defined as ΔHBsAg divided 

by baseline HBsAg.

Statistical analysis
Data are presented as mean ± SD or median (interquartile 

range [IQR]) for continuous variables and proportions for 

categorical variables. Continuous variables were compared 

using Student’s t-test. Categorical variables were compared 

using Fisher’s exact test. Baseline SHBs diversity (Sn) was 

tested as both a continuous and a binary variable stratified 

by the turning point (0.58) obtained through piecewise 

regression. The kinetics of HBsAg decline was then assessed 

using mixed models with a random intercept and a random 

slope per subject and with a covariance structure depending 

on the different degree of baseline Sn (<0.58 or ≥0.58). To 

further explore the independent association of baseline Sn 

and HBsAg decline, multiple linear regression was used to 

estimate coefficients (95% CIs) with adjustment for baseline 

level of ALT and HBsAg. Statistical analyses were performed 

using EmpowerStats (http://www.empowerstats.com, X&Y 

Solutions, Inc., Boston, MA, USA) and R (http://www.R-

project.org, The R Foundation). A 2-sided significance level 

of 0.05 was used to evaluate statistical significance.

Results
Patient characteristics
Twenty-six HBV-infected HBeAg-positive patients receiving 

a 48-week course of antiviral therapy with Peg-IFN-α were 

included in the study. Subjects’ characteristics are presented 

in Table 1. Of the 26 patients evaluated, 17 (65.4%) were 

male and 9 were female, and the mean (SD) age and body 

mass index were 37.3 years (5.6) and 21.2 kg/m2 (2.5), 

respectively. At baseline, the median HBV DNA level was 

8.1 log
10

 IU/mL (IQR: 7.8–8.5 log
10

 IU/mL), and the median 

HBsAg level was 4.5 log
10

 IU/mL (IQR: 4.1–4.9 log
10

 IU/

mL). At the EOT, the median HBsAg level was 3.0 log
10 

IU/

mL (IQR: 1.7–3.9 log
10

 IU/mL). Of the entire study popu-

lation at baseline, 14 patients (53.8%) achieved a >1 log
10

 

IU/mL decline of HBsAg, and 2 (7.7%) achieved HBsAg 

loss at EOT. After 2 years of follow-up, 2 patients were lost 

to follow-up and 4 received new treatment regimens. The 

follow-up of remaining patients was well documented. At 

2 years of follow-up, the median HBsAg level was 3.2 log
10

 

IU/mL (IQR: 1.7–3.9 log
10

 IU/mL), the ΔHBsAg was 1.5 

log
10

 IU/mL (IQR: 0.5–2.6 log
10

 IU/mL), and the relative 

percentage of HBsAg decrease at 2 years of follow-up was 

Table 1 Demographic, biochemical and virological characteristics 
of the study population

Characteristics Total (N=26)

Baseline
Male, n (%) 17 (65.4)
Age, years, mean (SD) 27.2 (5.6)
BMI, kg/m2, mean (SD) 21.2 (2.5)
ALT, U/L, median (IQR) 119 (88–167)
AST, U/L, median (IQR) 65 (45–97)
HBV DNA, log10 IU/mL, median (IQR) 8.1 (7.8–8.5)
HBsAg, log10 IU/mL, median (IQR) 4.5 (4.1–4.9)

Genotype
B 16 (61.5)
C 10 (38.5)
Cirrhosis,a n (%) 0

Fibrosis-4 score, n (%)
<1.45 21 (80.8)
1.45–3.25 5 (19.2)

End of treatment (EOT)
HBsAg, log10 IU/mL, median (IQR) 3.0 (1.7–3.9)
ΔHBsAg,b log10 IU/mL, median (IQR) 1.9 (0.5–2.8)
Relative percentage HBsAg decrease,c % 40.0 (10.8–62.9)
HBsAg loss, n (%) 2 (7.7)

Follow-upd (2 years)
HBsAg, log10 IU/mL, median (IQR) 3.2 (1.2–3.8)
ΔHBsAg,b log10 IU/mL, median (IQR) 1.5 (0.5–2.6)
Relative percentage HBsAg decrease,c % 32.1 (12.0–69.5)

Notes: aCirrhosis was diagnosed by an ultrasound of the liver. bΔHBsAg = HBsAg 
at baseline – HBsAg at EOT. cRelative percentage of HBsAg decrease = ΔHBsAg/
HBsAg at baseline. dTwenty patients were included in analysis. The 2 patients who 
were lost of follow-up and 4 who received new treatment regimens were not 
included.
Abbreviations: ALT, alanine aminotransferase; AST, aspartate aminotransferase; 
BMI, body mass index; HBV, hepatitis B virus; HBsAg, hepatitis B surface antigen; 
IQR, interquartile range.
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32.1% (IQR: 12.0%–69.5%). Of the entire study population 

at 2 years of follow-up, 2 patients achieved HBsAg loss and 

1 obtained HBsAg seroconversion.

Non-linear negative relationship between 
baseline SHBs diversity (Sn) with HBsAg 
decline at EOT
There was a non-linear negative relationship between baseline 

SHBs diversity and ΔHBsAg at EOT (Figure 1A). Similar to 

ΔHBsAg, this relationship was also found between baseline 

Sn and the relative percentage of HBsAg decrease at EOT 

(Figure 1B). Next, we took advantage of piecewise regression 

to examine the threshold effect of baseline SHBs diversity on 

HBsAg decline. The HBsAg decline degree decreased with 

the baseline SHBs diversity levels up to the turning point 

(0.58) (p<0.01 for both ΔHBsAg and relative percentage 

HBsAg decrease). When the SHBs diversity level was ≥0.58, 

it was not associated with ΔHBsAg and relative percentage 

HBsAg decrease at EOT (both p>0.05). These results indicate 

that intra-patient SHBs diversity might have different effects 

on HBsAg decline in patients treated with Peg-IFN-α.

Kinetics of HBsAg decline differ between 
patients with higher and lower baseline 
SHBs diversity (Sn)
We further analyzed the change in HBsAg kinetics in patients 

with different SHBs diversity. The decline in serum HBsAg 

levels during 48 weeks of treatment with Peg-IFN-α in 

HBeAg-positive patients is displayed in Figure 2. Both the 

magnitude of HBsAg decline (mean decline 2.44 versus 1.03 

log
10

 IU/mL, p=0.02, Figure 2A) and relative percentage of 

HBsAg decrease (mean decline 51.6% versus 23.6%, p=0.03, 

Figure 2B) were larger in the patients who had lower SHBs 

diversity (Sn<0.58) compared with patients who had higher 

diversity (Sn≥0.58) at EOT. During the Peg-IFN-α treatment, 

the kinetics of HBsAg decline was also significantly stronger 

in the lower diversity patients than in higher diversity patients 

(p<0.001 for comparison of the slope of HBsAg decline; 

Figure 2C). At 2 years of follow-up, the median of serum 

HBsAg level rose slightly in both groups with higher (n=9) 

and lower (n=11) baseline SHBs diversity. However, the mag-

nitude of HBsAg decline (mean decline 2.14 versus 0.80 log
10

 

IU/mL) and relative percentage of HBsAg decrease (mean 

decline 47.9% versus 18.7%) were still markedly stronger in 

the patients who had lower SHBs diversity compared with 

patients who had higher diversity.

Multiple linear regression reveals that 
baseline SHBs diversity affects HBsAg 
decline
In the crude model, the estimated coefficients of ΔHBsAg and 

relative percentage of HBsAg decrease comparing subjects 

with higher baseline Sn to those with lower Sn were −1.4 

(−2.5, −0.3) and −28.0 (−51.5, −4.5), respectively (Table 2). 

The negative association was virtually unchanged in multiple 

linear regression models after adjusting for baseline ALT and 

baseline HBsAg (β=−1.3, 95% CI [−2.5 to −0.2], p=0.04 

for ΔHBsAg; β=−26.4, 95% CI [−50.2 to −2.5], p=0.04 for 

Figure 1 The non-linear negative relationship between baseline SHBs diversity (Sn) and ΔHBsAg (A), relative percentage of HBsAg decrease (B).
Notes: The black solid line represents the fitted line and the black dotted line represents the 95% CI of the fitted line.
Abbreviations: HBsAg, hepatitis B surface antigen; SHBs, small hepatitis B surface protein; Sn, normalized Shannon entropy.

0.2

0
0

20

40

R
el

at
iv

e 
pe

rc
en

ta
ge

 H
B

sA
g 

de
cr

ea
se

 (%
)

60

80

100

120

2

4

∆H
B

sA
g 

(lo
g 1

0 
IU

/m
L)

6

A B

0.3 0.4 0.5 0.6
Sn

0.7 0.8 0.2 0.3 0.4 0.5 0.6
Sn

0.7 0.8

www.dovepress.com
www.dovepress.com
www.dovepress.com


Infection and Drug Resistance  2018:11 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

675

Baseline viral diversity and treatment-induced HBsAg decline

relative percentage HBsAg decrease; Table 2). Our results 

suggest that baseline Sn appears to be an independent deter-

minant of the decrease in HBsAg level following Peg-IFN-α 

therapy.

Sliding window analysis reveals multiple 
areas account for the differences in 
baseline Sn
As the aforementioned results demonstrated that SHBs 

diversity contributed to differences in HBsAg outcomes for 

Peg-IFN-α therapy, we carried out a sliding window analysis 

to determine if the Sn difference was driven by specific sub-

regions (Figure 3). The sliding window analysis was used 

with a window size of 19 base pair (bp) nucleotide length 

segments migrating every 10 bp spanning the entire small 

HBs gene (678 bp) as described previously.14 In this analy-

sis, 70.6% (48/68) of the 19-bp segments across the small 

HBs gene had lower mean SHBs diversity in the lower Sn 

group (<0.58) compared with those in the higher Sn group 

(≥0.58). Interestingly, differences in mean Sn between the 

2 groups exceeded the significant threshold in only 3 regions, 

nucleotides 341–359, 371–389, and 381–399, corresponding 

to the “a” determinant upstream flanking region and the first 

loop of the “a” determinant (Figure 3). In contrast, trans-

membrane regions (nucleotides 21–84, 240–291, 510–573, 

and 606–669) were relatively conservative in the 2 groups.

In addition, previous studies reported the significant cor-

relation between amino acid substitutions in HBV surface 

protein and lower HBsAg synthesis and/or secretion both in 

vitro and in vivo.16,31 We conducted a detailed and system-

atic inventory of the published literature (Table S1). Among 

these patients, at least 1 related mutation was detected in 16 

(61.5%) patients (Figure 4; Table S2). In 14 of 16 (87.5%) 

patients, the related mutations occurred with an intra-patient 

prevalence of <35% (mean: 10.3%, range: 3.6%–33.3%; 

Figure 4), suggesting their fixation in the viral population 

as a non-predominant species. As expected, the influence 

on HBsAg decline was not significantly different (Figure 5A 

and B). The related mutation of sL98V and sT126S was 

detected in the remaining 2 patients who belonged to dif-

Figure 2 The change in HBsAg kinetics in patients with different degrees of SHBs diversity (Sn <0.58 versus ≥0.58).
Notes: Comparison of HBsAg decline (A) and relative percentage HBsAg decrease (B) between the Sn <0.58 (n=14) and ≥0.58 (n=12) groups at EOT. (C). The serum level 
of HBsAg in every patient in the Sn <0.58 (n=14) and the Sn ≥0.58 (n=12) groups during Peg-IFN-α treatment. Patients with Sn <0.58 tended to have a steeper HBsAg decline 
than patients with Sn ≥0.58 (p<0.001 for the comparison of the slope of HBsAg decline determined using a linear mixed model).
Abbreviations: EOT, end of treatment; HBsAg, hepatitis B surface antigen; Peg-IFN, PEGylated interferon; SHBs, small hepatitis B surface protein; Sn, normalized Shannon 
entropy.
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Table 2 Multiple linear regression models examining the impact of baseline SHBs diversity (Sn) on HBsAg decline following Peg-IFN-a 
therapy

Variables Crude model Model I Model II

ΔHBsAg
Sn<0.58 Reference Reference Reference

Sn≥0.58 −1.4 (−2.5 to −0.3) 0.02 −1.4 (−2.5 to −0.2) 0.03 −1.3 (−2.5 to −0.2) 0.04
Relative percentage HBsAg decrease

Sn<0.58 Reference Reference Reference

Sn≥0.58 −28.0 (−51.5 to −4.5) 0.03 −26.7 (−50.5 to −3.2) 0.04 −26.4 (−50.2 to −2.5) 0.04

Notes: Data are presented as β, 95% CI, and p-values. The crude model did not adjust for any variables; Model I adjusted for baseline ALT; and Model II adjusted for Model I 
+ baseline HBsAg.
Abbreviations: ALT, alanine aminotransferase; HBsAg, hepatitis B surface antigen; Peg-IFN, PEGylated interferon; SHBs, small hepatitis B surface protein; Sn, normalized 
Shannon entropy.
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Figure 3 A sliding window analysis with overlapping 19-nucleotide segments migrating every 10 nucleotides for the small HBs gene.
Notes: The gray line represents the Sn <0.58 group, and the black line represents the Sn ≥0.58 group. Grayed out segments correspond to statistically significant differences.
Abbreviations: HBs, hepatitis B surface; SHBs, small hepatitis B surface protein; Sn, normalized Shannon entropy.
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ferent 2 groups, with an intra-patient prevalence of ≥50% 

(94.4% and 50%, respectively). Although the 2 mutations 

were characterized by a high HBsAg decline (2.04 log
10

 IU/

mL and 2.83 log
10

 IU/mL), the Sn did not change if left out 

these 2 mutations. It seems unlikely that HBsAg-related 

mutation is the main source of the differences in baseline Sn.

Discussion
In this study, we evaluated the relationship between base-

line SHBs diversity and HBsAg decline in HBeAg-positive 

patients treated with Peg-IFN-α. Our results show that the 

presence of higher baseline SHBs diversity was associated 

with lower HBsAg reduction in response to Peg-IFN-α 

therapy. Moreover, the differences in the “a” determinant 

upstream flanking region and the first loop of the “a” deter-

minant (nucleotides 341–359, 371–389, and 381–399) were 

the main source for the higher baseline SHBs diversity.

Charuworn et al examined baseline interpatient hepatitis 

B viral diversity using mean genetic distance in tenofovir-

treated patients who lost HBsAg and compared it with that 

of control patients with high HBsAg levels.14 Their results 

suggested that patients with HBsAg loss have less interpatient 

viral diversity within the HBs gene. Although we used Sn in 

the present study, we also obtained the similar result that the 

patients with lower baseline SHBs diversity has more HBsAg 

decline compared with those with higher baseline SHBs 

diversity in Peg-IFN-α therapy. Both the mean genetic dis-

tances and Sn are ways to evaluate viral diversity. In previous 

studies, we evaluated the HBV diversity using both methods 

and found that the results were consistent. This demonstrates 

that the bias from the evaluation method is minimal and 

can be ignored. In addition, similar results have also been 

demonstrated in patients infected with HCV in Peg-IFN-a 

Figure 5 Effect of HBs-specific mutations on the ΔHBsAg (A) and the relative percentage of HBsAg decrease (B) both in the Sn <0.58 and ≥0.58 groups.
Abbreviations: HBs, hepatitis B surface; HBsAg, hepatitis B surface antigen; Sn, normalized Shannon entropy.
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therapy.21,22 These results suggest that the high viral diversity 

of pretreatment was associated with poor treatment outcomes, 

although studies did differ in pathogenic agents (HBV and 

HCV), medications (NA and Peg-IFN-α), and clinical end 

points (degree of HBsAg decline and virological response).

However, several studies reported the distinct results that 

increased viral diversity within the HBV X/pre-core/core 

regions contributes to HBeAg seroconversion in genotypes 

B and C patients during Peg-IFN or NA therapy.18,28 This 

discrepancy might be because of several differences between 

those studies and ours. First, in the aforementioned studies, 

the X/pre-core/core regions were analyzed, whereas the SHBs 

region was evaluated in our study. There is no doubt that the 

patterns of HBV genetic variability are significantly differ-

ent between different regions, particularly those that locate 

in structural-coding areas with rich immune epitopes.32,33 

Indeed, Charuworn et al confirmed that HBV X and pre-core/

core regions generally displayed higher viral diversity than 

other regions.14,32 Second, only 10 clones per sample were 

used to evaluate viral diversity, whereas this study used 25–30 

clones per sample. The number of clones is too small to well 

reflect the complexity of the intra-patient virus population 

and can, therefore, cause bias when calculating viral diversity.

Our data revealed that the “a” determinant upstream flank-

ing region and the first loop of the “a” determinant (nucleo-

tides 341–359, 371–389, and 381–399) were the main sources 

for higher baseline SHBs diversity. These regions included 

critical epitopes for humoral and cellular immunity.34 A 

possible explanation was that more sequence variations 

within these regions perturb host immune control, resulting 

in the survival of more viral variants. Finally, HBsAg levels 

declined more slowly in these patients.35 Further studies are 

needed to confirm this hypothesis.
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There were certain limitations to this study. First, the 

HBsAg decline was chosen as the study outcome but not hard 

end points, including HBsAg loss or seroconversion. How-

ever, HBsAg loss or seroconversion, whether spontaneous or 

treatment-induced, is still a rare event in CHB patients. From 

this point of view, it seems more reasonable to choose HBsAg 

decline as the end point in the current study. In addition, con-

sidering the individual differences in baseline HBsAg levels, 

we included the ΔHBsAg and the relative percentage HBsAg 

decrease in the HBsAg decline as study end points. Second, 

the sample size for the study was small, and all participants 

were HBeAg-positive. Thus, the generalizability of the study 

results is constrained to HBeAg-positive patients for those 

receiving Peg-IFN-a therapy.

Conclusion
This study showed that the higher baseline SHBs diversity 

was associated with lower HBsAg reduction in response to 

48-week Peg-IFN-α therapy. Moreover, more sequence varia-

tions within the “a” determinant upstream flanking region and 

the first loop of the “a” determinant were the main sources for 

the higher of baseline SHBs diversity. The evaluation of SHBs 

diversity at baseline could be used to guide patient screening 

and inform both patients and clinicians of the likelihood of 

HBsAg reduction in the setting of Peg-IFN-α therapy. Whether 

this observation extends to an HBeAg-negative population and 

other treatment strategies remains to be determined in further 

studies. However, our findings suggest that consideration 

should be given to the SHBs diversity at the time of therapy 

initiation, especially when we seek to achieve functional HBV 

cure (HBsAg loss) in the setting of CHB therapy.
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Supplementary materials

Table S1 Summary of known mutations associated with lower HBsAg synthesis/secretion in vivo and in vitro

Mutation Source Intracellular HBsAg Extracellular HBsAg

E2G CHB HepG2 ↓ ↓
C69* CHB HepG2 ↓ ↓
W74* CHB Huh7 ↓ ↓
L95W CHB HepG2 ↓ ↓
L98V CHB HepG2 ↓ ↓
G119R OBI Huh7/mice ↑ ↓
T125A CHB Huh7 − ↓
I/T126S OBI Huh7/mice ↑ ↓
Q129R OBI Huh7/mice ↑ ↓
S136P OBI Huh7/mice ↑ ↓
T140I OBI Huh7/mice ↑ ↓
K141E OBI Huh7/mice ↑ ↓
D144A/G OBI Huh7/mice ↑ ↓
G145R/A OBI Huh7/HepG2/mice ↓ ↓
W182* CHB HepG2 ↓ ↓
M103I+G145A OBI Huh7/HepG2 ↓ ↓
R122K+G145A OBI Huh7/HepG2 ↓ ↓
M103I+R122K+G145A OBI Huh7/HepG2 ↓ ↓

Notes: *Stop codon mutation. ↑, increase; ↓, decrease.
Abbreviations: CHB, chronic hepatitis B; HBsAg, hepatitis B surface antigen; OBI, occult hepatitis B infection.

Table S2 Intra-patient prevalence of mutations associated with lower HBsAg synthesis/secretion in this study

Group Patient C69* L95W L98V G119R T/I126S Q129R T140I G145R W182*

1 2 0 0 94.4 0 0 0 0 0 0
1 3 4 4 0 0 0 0 0 0 0
1 8 0 0 0 0 18.2 0 0 22.7 0
1 9 0 0 0 8.7 0 0 0 0 0
1 14 0 12.5 4.2 0 0 0 0 0 0
1 16 0 0 12.5 0 0 0 0 0 0
1 18 0 0 5.9 0 5.9 0 0 0 5.9
2 6 0 0 0 0 0 20.7 6.9 0 0
2 7 0 6.3 0 0 0 0 0 0 0
2 10 0 0 0 0 0 0 9.9 0 0
2 11 0 8.7 8.7 0 0 0 0 0 0
2 12 0 0 0 0 33.3 0 0 0 0
2 13 0 0 0 0 0 0 0 9.5 0
2 15 0 0 0 0 0 0 10 0 0
2 22 0 0 0 0 50 0 0 0 0
2 25 0 0 3.6 0 0 0 0 3.6 0

Notes: Data are presented as percentage (%). Group 1: Sn <0.58; Group 2: Sn ≥0.58. *Indicates the stop codon.
Abbreviations: HBsAg, hepatitis B surface antigen; Sn, normalized Shannon entropy.
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