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Abstract
Monocytes and macrophages are targets of HIV-1 infection and play critical roles in multiple aspects of viral 
pathogenesis. HIV-1 can replicate in blood monocytes, although only a minor proportion of circulating monocytes 
harbor viral DNA. Resident macrophages in tissues can be infected and function as viral reservoirs. However, their 
susceptibility to infection, and their capacity to actively replicate the virus, varies greatly depending on the tissue 
localization and cytokine environment. The susceptibility of monocytes to HIV-1 infection in vitro depends on their 
differentiation status. Monocytes are refractory to infection and become permissive upon differentiation into 
macrophages. In addition, the capacity of monocyte-derived macrophages to sustain viral replication varies between 
individuals. Host determinants regulate HIV-1 replication in monocytes and macrophages, limiting several steps of the 
viral life-cycle, from viral entry to virus release. Some host factors responsible for HIV-1 restriction are shared with T 
lymphocytes, but several anti-viral mechanisms are specific to either monocytes or macrophages. Whilst a number of 
these mechanisms have been identified in monocytes or in monocyte-derived macrophages in vitro, some of them 
have also been implicated in the regulation of HIV-1 infection in vivo, in particular in the brain and the lung where 
macrophages are the main cell type infected by HIV-1. This review focuses on cellular factors that have been reported 
to interfere with HIV-1 infection in monocytes and macrophages, and examines the evidences supporting their role in 
vivo, highlighting unique aspects of HIV-1 restriction in these two cell types.

Introduction
Bone marrow-derived monocytes (Mos) are released into
the blood where they circulate for a few days (the half-life
of circulating Mos in normal healthy individuals is 71 h
[1]) before subsequent extravasation into the lungs, gas-
trointestinal tract, kidney, primary and secondary lym-
phoid organs and the central nervous system (CNS). In
tissues, Mos undergo differentiation into tissue-specific
macrophages (Mφ) and dendritic cells (DC). HIV-
infected mononuclear phagocytes (bone marrow (BM)
and blood Mo, tissue Mφ, microglia, and DC) can thus
serve as vehicles for dissemination and reservoirs of HIV-
1 infection [2]. In the macaque model, the blood Mo
count increases during the first few days following SIV
infection [3], and high Mo turnover during SIV infection
is a predictive marker for AIDS progression [4]. Subsets
of activated Mo that express CD16 and/or CD163 are
expanded both in HIV-infected individuals and in SIV-

infected macaques [5]. During acute infection, activated
Mos migrate into different tissues, including the CNS
([3]and accompanying review by G. Gras and M. Kaul).
Relatively few Mos in the blood bear HIV-1 DNA (<0.1%)
[6], reviewed in [7], whereas Mφ vary greatly in their per-
missivity to HIV-1 infection depending on their tissue
localization [8]. Viral replication in tissue Mφ is probably
governed not only by the cytokine network, but also by
other environmental factors. In vitro, Mφ differentiated
from blood Mos (Mo-derived macrophages, MDMs) dis-
play a great heterogeneity in their capacities to replicate
HIV-1, depending on the donor (up to a 3 log difference
in viral production between donors) [9-11]. In contrast,
HIV-1 replication kinetics were similar in MDM from
pairs of identical twins [9]. These observations strongly
argue in favor of the influence of the genetic background
on viral replication in Mo/Mφ [12], as has also been sug-
gested for CD4+ T cells [13]. Indeed, the CCR5Δ32 geno-
type has been associated with a restricted infection of
MDM and CD4+ T cells by HIV-1 strains that use the
CCR5 co-receptor (R5 HIV-1) [11,14,15]. Thus both con-
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stitutive and environmental factors appear to regulate
HIV-1 replication in Mo/Mφ. Due to the difficulty of
assessing HIV-1 infection in resident tissue Mφ, most
studies have addressed the regulation of HIV-1 infection
in Mo/Mφ in the MDM model. Methodological differ-
ences in the purification and differentiation of Mos there-
fore add further variability to the heterogeneity of these
cells with respect to infection by the virus. Several recent
reviews have addressed the influence of cytokines and
other endogenous and exogenous stimuli on HIV-1 infec-
tion of Mo/Mφ [16-18](see also the accompanying review
by G. Herbein and A. Varin). This review will focus on the
mechanisms of HIV-1 restriction in Mo and Mφ. In vitro
data will be discussed for their potential relevance in the
light of our knowledge concerning the in vivo infection of
these cells.

Molecular shields against HIV-1 replication in 
monocytes
Although infectious virus can be recovered from periph-
eral blood Mos taken from HIV-1-infected patients (see
below), freshly isolated Mos are highly resistant to HIV-1
infection in vitro [19-21]. There are divergent reports on
the level of refractivity of freshly isolated quiescent Mos,
in vitro, to HIV-1 infection, varying from absolute to rela-
tive. Methodological parameters including the viral strain
and infectious dose, the time of Mo infection after their
isolation from blood (immediately or following some
hours of culture), the Mo condition at the time of infec-
tion (fresh or thawed), and the time lapse of monitoring
viral replication after infection, may explain the reported
differences in refractivity to HIV-1 replication [22-26]. In
addition, the markers used to evaluate Mo differentiation
differ depending on the study [24,27,28], and may not
completely reflect phenotypic changes associated with
maturation. Even when cultured in the absence of human
serum or exogenous cytokines such as M-CSF or GM-
CSF, Mos may undergo partial differentiation that could
modify their capacity to support viral replication [29,30].
Indeed, permissiveness to HIV-1 infection in vitro
increases with Mo differentiation to Mφ [19,28,31]. The
association of Mo maturation with an enhancement of
viral replication appears to be a conserved phenomenon
among the lentiviruses, as it has also been described for
non-primate lentiviruses such as the caprine arthritis-
encephalitis virus and maedi-visna virus (MVV) [32,33].
However, while MVV replication in monocytes appears
to be restricted at transcriptional level [34,35], distinct
mechanisms of restriction contribute to render Mo resis-
tant to HIV-1 infection, at least in vitro (Fig. 1A). The rel-
ative weight of the restrictions affecting different steps of
viral replication is still subject of debate, although pre-
integrative blocks appear to play a determinant role.

Restrictions at early steps of HIV-1 replication in monocytes
The early events of viral entry are represented by the
engagement between CD4 receptors at the membrane of
target cells and the viral envelope proteins gp120-gp41.
The consequent conformational changes in the structure
of gp120 allow the interaction with the CXCR4 or CCR5
co-receptors, the latter being the primary co-receptor
used by macrophage-tropic HIV-1 strains. Increasing
susceptibility of maturing Mos to R5 HIV-1 infection has
been associated with an increasing expression of CCR5 at
the cell surface that enhances viral entry into the cells
[28,36]. However, HIV-1 restriction in Mos does not
appear to be due to limiting amounts of HIV-1 co-recep-
tors, and has been attributed to post-entry blocks.
Indeed, Mos do not support transduction with HIV-1-
based vectors pseudotyped with the VSV-G or MLV-A
envelopes, that mediate viral entry by pathways indepen-
dent of the HIV-1 receptor and co-receptors [27,29], indi-
cating that the block to HIV-1 infection is independent of
the route of viral entry. Furthermore, efficient entry of
HIV-1 pseudoviruses has been directly demonstrated
using a β-lactamase entry assay [27]. Post-entry blocks in
infected Mos have been localized either prior to or at the
reverse transcription (RT) step of viral replication [26,27]
or at the level of nuclear translocation of viral cDNA [29].

A recent study challenges these conclusions, claiming
that the relative HIV-1 restriction in Mos, in comparison
with Mφ and HeLa-P4 cells, is related to a defect in viral
entry followed by a delay in the preintegrative steps [24].
In this work, the inhibition of viral entry into Mos was
measured using a fusion assay and was found to be inde-
pendent of HIV-1 Env, since it also affected VSV-G
pseudotyped viruses. Subsequent post-entry steps, RT
and integration were not totally blocked, although they
proceeded with very slow kinetics (tIN50% = 7-8 days) [24].
Neither the nature of the entry block in Mos nor the
potential impact of different endocytic/phagocytic capac-
ities of Mos and Mφ with respect to entry of viral parti-
cles into cells was addressed in this study.

Using VSV-G pseudotyped HIV-1 and qPCR, Triques
and Stevenson showed that reverse transcription is
restricted in Mos, and they suggested that the absence of
reverse transcription-favouring cellular cofactors is the
limiting circumstance [27]. It has been suggested that the
defect in reverse transcription observed in Mos, as well as
the slow reverse transcription seen in MDMs, is due to a
limited availability of nucleotide precursors in these non-
dividing cells [37,38]. In particular, Mos contain very low
levels of deoxythymidine triphosphate (dTTP), associated
with low levels of thymidine phosphorylase, the enzyme
that converts thymine into thymidine [27]. Both dTTP
and thymidine phosphorylase levels increase during mat-
uration to Mφ. However, D-thymidine supplementation
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of Mo cultures increased the dTTP levels but did not
relieve the reverse transcription block [27], suggesting
that other factors are involved in the restriction. In addi-
tion, reverse transcriptase from lentiviruses have been
shown to be able to efficiently catalyze DNA synthesis
even at low dNTP concentrations, in contrast to the RT
of gammaretroviruses, which are unable to replicate in
non-dividing cells [39].

In contrast to the hypothesis that links Mo resistance to
HIV-1 with a lack of cellular cofactors needed for viral
replication, Peng et al. proposed that viral replication in
Mos is restricted because of factors belonging to the
APOBEC3 cytidine deaminase family [40]. The best-
characterized member of this family concerning its anti-
retroviral activity, including HIV-1 restriction, is
APOBEC3G [41-44]. APOBEC3G is incorporated into
HIV-1 virions and deaminates dC to dU in minus single-
strand nascent cDNA within newly infected cells; result-
ing in lethal G-to-A hypermutations in the single
stranded viral intermediates. This antiviral activity is
counteracted by the Vif protein, that induces degradation

of APOBEC3G and prevents its incorporation into viri-
ons (recently reviewed in [45]). A deaminase-indepen-
dent anti-viral activity, not counteracted by Vif, has also
been described that affects the accumulation of reverse
transcripts in infected cells [46,47]. Several mechanisms
have been proposed for such antiviral activity, including
the inhibition of viral cDNA synthesis by a block in the
translocation of reverse transcriptase along the template
RNA genome and the destabilization of viral core mor-
phology and stability during virion assembly [47],
reviewed in [48]. The APOBEC3G non-enzymatic activ-
ity has been proposed to account for the post-entry HIV-
1 restrictions in quiescent resting CD4+ T cells [49] and
in DC [50], although its role in quiescent CD4+ T-cells
has been recently contested [51,52]. The expression of
APOBEC3G, and of another member of the same family
APOBEC3A, has been shown to be down-regulated dur-
ing Mo differentiation to Mφ [40]. siRNA-mediated
silencing of each of the two genes allowed HIV-1 replica-
tion in Mos, whereas induction of APOBEC3A and 3G by
IFNs was associated with the inhibition of HIV-1 replica-

Figure 1 Schematic representation of host restriction factors in human Mos and Mφ. On the left, low levels of CD4 and CCR5 may limit viral entry 
in monocytes. Low expression of thymidine phosphorylase associated with a limited stock of dTTP reduces RT rate. APOBEC3A and 3G may interfere 
with HIV-1 RT in Mos. HIV-2/SIV Vpx antagonizes the restriction of HIV-1 in Mos and Mφ by counteracting an unidentified host factor. Cellular miRNAs 
have been proposed to target the 3'UTR of HIV-1 transcripts. miR-198 may repress CycT1 expression that contributes to Tat transactivation. On the 
right, the CCR5Δ32 mutation restricts viral entry of R5 HIV-1 in Mφ. LPS targets the early phases of the HIV-1 cycle in Mφ, through the down-regulation 
of CCR5 expression and the LTR-driven transcription by IL-10/IFN-β-induced expression of 16 kDa C/EBPβ. p21Waf1 interferes with both RT and integra-
tion and is induced by FcγR engagement. CTIP2 and TRIM22 have been implicated in the inhibition of HIV-1 transcription. Urokinase-type plasminogen 
activator (uPA) blocks the release of viral particles from intracellular vacuoles.
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tion in Mφ [40]. However, the way in which APOBEC3A
and 3G interfere with HIV-1 replication in Mos remains
to be determined.

Experiments of transduction of heterokaryons formed
by the fusion of Mos and permissive HeLa cells with HIV-
1 vectors showed that the heterokaryons were refractory
to transduction, suggesting the presence of a dominant
restriction factor in the parental Mos [53]. HIV-1 restric-
tion in Mo/HeLa heterokaryons could be alleviated by
providing the Vpx protein from SIV, either in trans or
packaged into HIV-1 virions [53]. Vpx has been shown to
be required for the replication of HIV-2 and SIV in Mφ,
and it has been hypothesized that it diverts a cullin-ubiq-
uitine ligase complex to inactivate a factor that restricts
HIV-2 and SIV infection. Vpx expression also enhanced
HIV-1 transduction of Mφ, pointing to a common mech-
anism of restriction [53]. The role of Vpx and the mecha-
nisms underlying its activity in overcoming a retroviral
restriction in myeloid cells [54] is discussed in an accom-
panying review (Ayinde D. et al.).

Restriction of transcription and later events in HIV-1 
replication in monocytes
Besides restrictions at early post-entry steps of viral repli-
cation, transcriptional restriction has also been reported
to contribute to Mo resistance to HIV-1 [55]. The 5' LTR
of integrated provirus contains several cis-regulatory ele-
ments necessary for the binding of cellular transcription
factors (NFκB sites, C/EBP sites, Sp1 sites and a TATA
cassette) and is recognized by the RNA polymerase II as a
promoter. The viral Tat protein is recruited to the 5' LTR
sequence, interacts with a 59-nucleotide structure called
the transactivation response (TAR) element and acts as a
stimulator of transcriptional elongation soon after the
generation of short terminated transcripts. Tat interacts
with the host cyclin T1 protein (CycT1), which recruits
the cyclin-dependent kinase 9 (CDK9) to the TAR ele-
ment. The complex formed by CycT1 and CDK9 is called
P-TEFb (for positive transcription elongation factor b).
The cooperation of Tat and P-TEFb at the TAR sequence
produces a hyperphosphorylation of the C-terminus of
RNA polymerase II, stimulating the elongation of viral
RNA. After transfection of the HIV-1 genome or of an
LTR-reporter construction, neither viral production nor
Tat transactivation were detected in undifferentiated Mo
[25]. Heterokaryons between Mo and 293 T cells restored
the Tat transactivation function of the LTR, suggesting
that Mo lack factors required for transactivation. The
level of the CycT1 P-TEFb component required for Tat
transactivation was below the detection threshold in
Mos, in agreement with previous reports [56,57]. The
regulation of CycT1 seems to occur at a post-transcrip-
tional level and is likely to involve proteasome-mediated
proteolysis [58]. Interestingly, lack of CycT1 expression in

Mos has recently been linked to a translational repression
by the miR-198 microRNA [59]. It has been proposed
that miR-198 contributes to HIV-1 restriction in Mos by
repressing CycT1 expression, while miR-198 is down-reg-
ulated during Mo differentiation to Mφ [59]. However,
transient expression of CycT1 did not rescue Tat transac-
tivation in Mos [25], suggesting that this is not sufficient
to relieve HIV-1 transcriptional restriction. Increased
permissivity to HIV-1 infection during Mo differentiation
to Mφ was associated with both increased expression of
CycT1 [25,57] and phosphorylation of the CycT1 P-TEFb
partner, CDK9 [25]. It has therefore been suggested that
the transcriptional restriction of HIV-1 in Mos may
involve regulation of P-TEFb function [25].

Some recent reports have suggested the implication of
cellular microRNA (miRNA) in Mo resistance to HIV-1
infection. Wang et al. showed that four miRNA, previ-
ously shown to target the 3'UTR of HIV-1 transcripts
[60,61], are down-regulated during Mo differentiation to
Mφ [62]. This rather preliminary report does not go fur-
ther into the analysis of miRNA effect on HIV-1 replica-
tion. miRNA might target HIV-1 directly or indirectly by
side effects on the cell biology [63]. An indirect effect of
an miRNA on HIV-1 replication that targets the RNA
polymerase II positive transcription elongation factor P-
TEFb has indeed been described (see below) [59].

When HIV-1 meets monocytes in vivo ...
In spite of the resistance to HIV-1 infection exhibited by
Mos in vitro, circulating peripheral blood Mos from HIV-
1 infected individuals harbor HIV-1 DNA, although at a
low frequency (<0.1%) [64,65]. Replication competent
virus could be recovered from circulating Mos, even
those of patients receiving HAART and with a viral load
below detectable levels that would indicate their role as a
viral reservoir [66-68]. Compelling evidence for active
replication in Mos in vivo is supplied by the detection of
unintegrated circularized forms of viral DNA (2-LTR cir-
cles) and multiply spliced HIV mRNA species in freshly
isolated blood Mos [64,68,69], and by markers of com-
partmentalization and viral evolution in this compart-
ment [70-73].

How can observations pertaining to the in vitro and in
vivo contexts be reconciled? It has been suggested that
Mos may be infected before leaving the bone marrow
(BM) at the stage of precursors, and that they then
migrate to other organs, including secondary lymphoid
organs, lungs and brain, where they differentiate into Mφ
[74] (Fig. 2A). Viral replication will then be reactivated
and probably lead to the dissemination of infection to
neighboring cells [75] (Fig. 2A). A similar scenario has
been hypothesized for MVV infection: infected mono-
cytes carrying the viral genome without expressing viral
proteins can enter the organs by a "Trojan Horse" mecha-
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nism, avoiding immune surveillance [76,77]. Otherwise,
Mo refractivity to HIV-1 may simply not be absolute, and
Mo subsets may be permissive to infection. Mos may
become permissive to infection after being activated in
the BM or in the blood of HIV-1 infected patients, owing
to the inflammatory environment and immune activation
[78]. Considering the extraordinary plasticity of Mo/Mφ
[79], it may also be hypothesized that infected Mos can
transmigrate back to the blood [80] after meeting either
the virus or infected cells in inflamed tissues (Fig 2A). In
support of this possibility, recent evidence has been pro-
vided for Mos recirculation from tissues to the BM in a
murine model (reviewed in [81]). A subset of circulating
Mos that displays pro-inflammatory characteristics is
actually expanded in HIV-infected individuals. One
minor subset of Mos that expresses the CD16 (FcγRIII)

molecule, and represents 5%-15% of circulating Mos in
healthy individuals, is expanded in HIV-1 patients and
may reach up to 40% of the total circulating Mo popula-
tion during the progression to AIDS [82]. This Mo subset
expresses the CX3CR1 receptor, and its members migrate
into tissues that express CXC3CL1, produce pro-inflam-
matory cytokines (including TNF and IL-1), and can acti-
vate resting T-cells by producing CCR3 and CCR4
ligands [83-86]. CD16+ Mos exhibit some characteristics
of tissue Mφ and display a transcriptional profile closer to
Mφ and DC profiles than to that of CD16- Mos [87-89].
The CD16+ subset of circulating Mos have been shown
to be preferentially infected by HIV-1 in vivo [90,91] and
in vitro [90] (Fig 2). Increased susceptibility to R5 HIV-1
was associated with a higher level of CCR5 expression in
this cell subset, compared to the CD14highCD16- Mos,

Figure 2 Schematic model of infection of monocytes and macrophages. A) Hypothetical ways to infect monocytes. Mo precursors may be 
infected before leaving the bone marrow (1) and then migrate to peripheral tissues where they differentiate into Mφ (2). Viral replication will then be 
reactivated leading to viral production and infection of neighboring cells (3). Alternatively, Mo subsets may become permissive to infection after being 
activated in the bone marrow or in the blood, owing to the inflammatory environment (4). Mos may be infected after encountering the virus or in-
fected cells in inflamed tissues (5), where they then differentiate to Mφ. However, infected Mos might also transmigrate back to the blood (6). A Mo 
subset expressing CD16 that displays pro-inflammatory characteristics appears to be preferentially infected by HIV-1. B) Dissemination and control 
of HIV-1 infection in tissue macrophages. Infected Mos migrate to peripheral tissues such as brain, lungs and gastrointestinal tract where they dif-
ferentiate and disseminate infection to resident microglial cells, alveolar Mφ or mucosal Mφ. The CD16+ subset has an enhanced capacity to transmi-
grate into tissues. Various factors that may control HIV-1 replication are present in peripheral compartments. Mφ from the mucosa of the 
gastrointestinal tract, where exposure to LPS is frequent, do not express CCR5 and are resistant to HIV-1 infection. An increased expression of the in-
hibitory C/EBPβ may suppress viral transcription in Mφ in brain and lungs, contributing to viral latency. Transcriptional silencing of the HIV-1 LTR by 
CTIP2 may contribute to HIV-1 latency in the CNS. uPA is also involved in the control of HIV-1 replication in the CNS and is sequestered by the soluble 
receptor suPAR in CNS disease.
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and to a shift in the APOBEC3G distribution towards
high molecular mass forms [90]. Whether the CD16+
Mos represent a higher level of Mo differentiation and
may thus reconcile the findings of Mo restriction to HIV-
1 infection in vitro and the presence of a fraction of
infected Mos in vivo remains to be clarified.

Limits to macrophage permissivity to HIV-1 
infection
Mo differentiation to Mφ is accompanied by an increased
permissivity to HIV-1 infection, both in vitro and in vivo
(see above). Nevertheless, a great heterogeneity in the
capacity to sustain viral replication is observed in MDM
from different donors, and HIV-1 infection of resident
Mφ varies depending on their tissue localization. In addi-
tion, only a fraction of MDM, which varies in size
depending on the blood donor, is able to replicate the
virus. Some studies suggest that only Mφ which maintain
their capacity to proliferate can support a productive
HIV-1 infection [31,92]. However, this fact cannot
account for differences in the capacity of MDM to repli-
cate HIV-1, since the percentage of cells capable of DNA
synthesis is far lower than the percentage of HIV-1-
infected cells in MDM cultures [29,93]. Therefore, it
appears that HIV-1 replication in Mφ is also regulated by
host factors, at the level of both single cells and the indi-
vidual. Variability in MDM permissivity to HIV-1 infec-
tion among individuals has been attributed to host
genetic factors that mainly influence pre-reverse tran-
scription steps [12]. The reverse transcription process
appears to be the main limiting step of HIV-1 replication,
not only in Mo (see above) but also in MDM
[10,38,53,94]. However, several other steps of the HIV-1
life cycle that can be restricted in MDM have been
described.

Restrictions at early steps of HIV-1 replication in 
macrophages
CCR5 co-receptor expression levels at the cell surface are
an important determinant for MDM susceptibility to
HIV-1 infection. A lack of expression of the CCR5 mole-
cule at the cell surface, linked to a homozygous CCR5Δ32
mutation, blocks the entry of R5 HIV-1 into both CD4+ T
cells and MDM [15,95,96]. The heterozygous CCR5Δ32
genotype has also been associated with a decreased sus-
ceptibility of MDM to R5 HIV-1 infection [11,14]. A
strong and sustained down-regulation of CCR5 expres-
sion, independent of ex novo protein synthesis but rather
due to an altered recycling of chemokine receptors, is
induced by exposure of Mφ to lipopolysaccharide (LPS)
[97]. This and other mechanisms that underlie LPS-
induced restriction of HIV-1 replication in Mφ have been
reviewed elsewhere and will not be described here [98].
However, it is worth mentioning that LPS, a major con-

stituent of the cell wall of Gram-negative bacteria, is one
of the main stimuli for human Mφ activation and a potent
HIV-1 inhibitory factor in these cells that express a wide
number of Toll-like receptors (TLRs) and the GPI-
anchored CD14 receptor that is responsible for LPS bind-
ing. Exposure of Mφ to LPS in physiological conditions
might limit viral replication in these cells. In fact, Mφ iso-
lated from the mucosa of the gastrointestinal tract, where
exposure to gram-negative bacteria and subsequently to
LPS is enhanced, do not express CCR5 at their surface
and are resistant to HIV-1 infection [99] (Fig 2B). In addi-
tion to the CD4/CCR5 mediated entry of HIV-1 into the
cell by membrane fusion, an alternative route of infection
has been described in Mφ that involves the uptake of the
virus via macropinocytosis [100,101]. This process
requires an intact lipid raft, and notably the correct
amount and distribution of cholesterol molecules. Cho-
lesterol is a structural component of biological mem-
branes that forms ordered lipid assemblies called lipid
rafts, essential for the fluidity of membranes and for the
mobility of proteins at the cell surface. Cholesterol may
be considered a limiting molecule that can modulate
infection by different enveloped viruses, including vac-
cinia virus, SV40, and herpes simplex virus [102-104].
Chemical cholesterol depletion of target cells has been
shown to disrupt HIV-1 entry into primary T lympho-
cytes and T cell lines as well as into MDM, possibly by
reducing the fusion capacity with the HIV-1 envelope and
CCR5-mediated CCR5 signaling [105-107].

Mo and Mφ express receptors for the Fc portion of G
immunoglobulins (IgG), called FcγR [108]. FcγR mole-
cules form a family of integral membrane proteins that
can either activate or inhibit cell functions. The activating
receptors expressed on Mφ are the high affinity receptor
for monomeric IgG FcγRI (CD64) and two low affinity
receptors that only bind the Ag-Ab immune complexes
(ICs) FcγRIIA/C (CD32) and FcγRIIIA (CD16). The
aggregation of FcγR after binding of IC induces the phos-
phorylation of their ITAM (immunoglobulin tyrosine
activating motif ) intracellular activating portion and trig-
gers major responses to pathogens (endocytosis, phago-
cytosis and cytokine production). FcγRIIB is the
inhibitory receptor containing an ITIM (immunoglobulin
tyrosine inhibitory motif ) in its intracytoplasmic tail,
which negatively regulates cell functions induced by the
activating FcγR. The stimulation of MDM by IC immobi-
lized on culture plates through activating FcγRs strongly
inhibits HIV-1 replication independently of the use of the
CXCR4 or CCR5 co-receptors [109,110]. Using one cycle
infections, we showed that HIV-1 entry and post-integra-
tion steps of the viral replication are not affected in IC-
activated MDM, whereas levels of reverse transcription
products and integrated proviruses are strongly
decreased [110]. Remarkably, other lentiviruses, such as
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HIV-2, SIVmac and SIVagm, are affected by FcγR engage-
ment, suggesting that the restriction targets either a pro-
tein conserved among these viruses or a common
function. Recent work showed that the cyclin-dependent
kinase inhibitor p21Cip1/Waf1 (p21) knock-down rescues
the replication of HIV-1, SIVmac and HIV-2 restoring the
levels of reverse transcription products and integrated
proviruses in IC-activated MDM [111]. Moreover, p21
silencing also increased HIV-1 replication in unstimu-
lated MDM by enhancing reverse transcription and inte-
gration. These results suggest that p21 whose expression
is enhanced by FcγR engagement acts as an inhibitory
factor of lentiviral infection in macrophages. First
described as a cell cycle inhibitor, that blocks cell cycling
at the G1/S interface and plays a critical role in the con-
trol of cell growth, p21 is also involved in the regulation
of apoptosis and differentiation [112-114]. Controversial
data have been published in the last few years concerning
p21 effects on HIV-1 replication in Mφ and in other cell
types. Vazquez et al. reported that p21 enhances HIV-1
infection in Mφ 12-14 days after challenge with the R5
BaL viral strain, and proposed that an increased p21
expression after HIV-1 infection was linked to an accu-
mulation of Vpr in infected cells [30]. The reasons for the
contrasting findings reported by Vazquez and by our-
selves are unclear. They might underlie a dual role for p21
in HIV-1 infection depending on the time after infection:
a block of preintegrative steps of HIV-1 replication in
acute infection, or an activation of HIV-1 gene expres-
sion, synergistically with Vpr, in chronic infection [115].
In T lymphocytes, HIV-1 infection was associated with a
loss of p21 expression [116], and 9-aminoacridine (9AA),
that induces p21 expression via p53-dependent pathways,
significantly inhibits HIV-1 replication in activated
PBMCs [117]. p21 was described as a unique molecular
barrier for HIV-1 replication in primitive hematopoietic
cells that are normally resistant to HIV-1 infection [118].
p21 knockdown in bone marrow CD34+ cells resulted in
a strong increase in HIV-1 infection by alleviating a
nuclear block to viral genome integration [118]. Zhang et
al. showed that p21 was associated with HIV-1 PIC and
proposed that the antiviral activity of p21 depends on its
ability to interact with HIV-1 integrase (IN). We did not
detect interactions between p21 and HIV-1 proteins,
including IN, in yeast two-hybrid, pull down or co-immu-
noprecipitation assays, suggesting that p21 may affect
viral replication independently of a specific interaction
with an HIV-1 component [111]. Further investigations
are needed to precisely determine the interplay between
p21 and HIV-1 (see also data reported in the accompany-
ing review by Le Doucet V. et al).

The genetic expression of members of the APOBEC
family of cellular polynucleotide cytidine deaminases that
have been involved in Mo resistance to HIV-1 infection,

including APOBEC3G and APOBEC3A, is down-regu-
lated in Mφ [40]. Besides the species-specific restriction
factor TRIM5α [119], an increasing number of TRIM
proteins have been found to inhibit several viral infec-
tions, including HIV-1 [120]. For instance, TRIM22
(Staf50) has been shown to inhibit HIV-1 replication in
MDMs, although its mechanism of action and the step at
which the block occurs remain unclear, other than that it
appears to affect late steps of HIV-1 replication. Using
cell lines, the block has been localized either at the step of
viral transcription from the LTR or at that of viral assem-
bly and release [121-123]. TRIM25 participates in RIG-I-
mediated antiviral activity through its E3 ubiquitin ligase
activity [124]. Although the relevance of antiviral effects
of members of the TRIM family has not yet been docu-
mented in human Mφ, several TRIM proteins are
expressed in these cells and are modulated by external
stimuli [125]. Therefore it may be worthwhile to investi-
gate the potential of TRIM proteins for antiretroviral
activity. A recent systematic analysis of TRIM gene
expression levels in primary human PBMCs and MDM in
response to interferons and FcγR engagement may be a
helpful tool for further functional studies in this direction
[126].

It has been suggested that lentiviruses, unlike other ret-
roviruses, can infect non-dividing cells such as resting T
lymphocytes, DC and Mφ, due to the capacity of their
cDNA to enter the nuclei through an intact nuclear mem-
brane. A number of mechanisms underlying the interac-
tion of the lentiviral PIC with the cell nuclear import
machinery have been proposed to account for this prop-
erty [127], as reviewed in [128]. In particular, it was pro-
posed that the reduced ability of Vpr-deficient HIV-1 to
replicate in MDM reflects the relevance of Vpr-depen-
dent nuclear import in these cells [129]. However, the role
of Vpr in the nuclear transport of HIV-1 and in HIV-1
replication in Mφ remains unclear (see accompanying
review, Ayinde D. et al.). Several studies show redundant
nucleophilic determinants in HIV-1 proteins that inde-
pendently allow the nuclear localization of viral DNA and
virus replication in MDM [130-132]. However, a recent
study reported that the deletion of all the nuclear local-
ization signals described in HIV-1 proteins did not abro-
gate HIV-1 infection of resting CD4+ T cells and Mφ
[133]. The authors proposed that the limiting step that
determines the capacity of HIV-1 and MLV to infect non-
dividing cells is the uncoating of the entering viral parti-
cles, independently of nuclear entry. In the same vein,
recent studies concerning HIV-1 and HIV-2 infection of
Mφ led to the conclusion that nuclear entry may not be
the limiting step for HIV-1 infection, but that the restric-
tions affect earlier steps before or during reverse tran-
scription [27,134-137].
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After passing the nuclear membrane barrier, HIV-1
cDNA is oriented to chromosome targets where viral
integrase (IN) catalyzes integration into the host genome
[138]. A network of intermediate filament proteins, called
lamins, expressed on the inner nuclear membrane
ensures the close association between the nuclear enve-
lope and chromatin. The barrier to autointegration factor
(BAF), a small DNA-binding protein, is a component of
the HIV-1 PIC that promotes integration of the viral
cDNA into cell chromosomes and prevents intramolecu-
lar integrations. BAF interacts with LEM domain pro-
teins of the inner nuclear membrane (lamina-associated
polypeptide 2 (LAP2), emerin, manin). One of its binding
partners is emerin, an integral inner-nuclear-envelope
protein that participates in chromatin organization and
bridges the interface between the inner nuclear envelope
and chromosomes. The group of Stevenson proposed
that emerin, as well as LAP2α, was required for HIV-1
infection in Mφ to assist the targeting of HIV DNA to the
chromatin [139]. The binding of emerin and LAP2α to
the viral genome was found to be indirect, and LEM-
mediated interaction with BAF was essential to promote
integration through the association of these proteins and
the viral cDNA. In Mφ that lack emerin or BAF, HIV-1
cDNA entered the nuclear compartment, but was rapidly
converted into non-functional episomal DNA that accu-
mulated in the nuclear matrix. Integration into the host
genome was therefore dramatically impaired. These
results were shortly contradicted by the observation of
HIV-1 infection of HeLa-P4 cells following potent down-
regulation of emerin, BAF or LAP2α with specific siRNAs
[140]. To clarify these conflicting data based on RNA
interference-mediated gene knockdown, which were
therefore highly dependent on the silencing efficiency,
another group demonstrated that HIV-1 efficiently
infects embryonic fibroblasts taken from emerin knock-
out, LAP2α knockout or emerin-LAP2α double knockout
mice [141]. The same results were found in Mφ from
wild-type and knockout mice transduced with HIV-1,
indicating that emerin and LAP2α are dispensable for
HIV-1 infection in mouse/human dividing/non-dividing
cells. A third experimental approach based on the use of
dominant negative emerin molecules presenting muta-
tions in the LEM domain confirmed that HIV-1 infec-
tions occur even in the presence of high levels of mutant
proteins [141]. Future studies of the role of BAF and its
associated nuclear lamin proteins in vivo during HIV-1
infection could possibly add further clarification to the
interaction of PIC with the nuclear membrane.

Transcriptional control of HIV-1 in macrophages
Transcriptional regulation has been involved in viral
latency of integrated HIV-1 and the formation of viral
reservoirs in Mos (see above) and in Mφ. LPS acts as a

potent modulator of HIV-1 transcription, displaying
opposite effects on Mos and Mφ. Early reports showed
that LPS potently stimulates HIV-1 LTR expression in
monocytic cell lines by induction of NFκB [142] and
through the activation of PU.1 Ets proteins [143]. LPS
induces the phosphorylation of PU.1, which allows its
interaction with the LTR promoter [143] and with the
NFκB transcription factor bound to the downstream
binding site. The ability of LPS to induce or suppress
transcription from the HIV LTR is linked to the matura-
tion state of monocytic cells. In freshly isolated Mos,
LTR-driven gene transcription is enhanced by LPS stimu-
lation, whereas it is suppressed in MDM [144]. A factor
contributing to this dichotomy could be the different
expression of CycT1, required for Tat transactivation,
that is undetectable in Mos, but is induced during the dif-
ferentiation to Mφ [57] (see above). Although CycT1 is
later down-regulated in differentiated MDM, its expres-
sion is enhanced by HIV-1 infection [58].

Further insight pertaining to the dual effect of LPS on
HIV-1 gene expression came from the observation that
LPS modulates the expression of the CCAAT enhancer
binding protein β (C/EBPβ) transcription factors differ-
ently in Mos and in Mφ [145,146]. C/EBPβ is a member of
the C/EBP transcription factor family that is associated
with myelomonocytic differentiation [147]. C/EBP bind-
ing sites are required for the control of viral replication in
Mo/Mφ but not in T lymphocytes [148,149]. Three C/
EBP binding sites are localized upstream of the transcrip-
tional start site within the HIV-1 LTR [150]. The C/EBPβ
gene has no introns. However, two different proteins can
originate from the same mRNA: a large isoform of 30-37
kDa that stimulates gene transcription, and a small iso-
form of 16-21 kDa that has repressive activity [151,152].
The small inhibitory form of the protein is produced
when an internal ribosome entry site is used by ribo-
somes to start translation [151]. The 16 kDa C/EBPβ pro-
tein can be considered to be a dominant negative
transcription factor since it blocks DNA transcription
even when it is expressed at relatively low levels (20%)
compared to the 37 kDa activating isoform [151]. The
complex regulation pattern of HIV-1 gene expression by
C/EBPβ in Mos and Mφ has been addressed in a series of
studies by M. Weiden et al. concerning HIV-1 replication
in lung Mφ during pulmonary tuberculosis [145,153-
155]. In HIV-1 infected patients, alveolar Mφ (AM) do
not show active viral replication, whereas they represent
a major source of virus in pulmonary tuberculosis [156].
The inhibitory 16 kDa C/EBPβ isoform is highly
expressed in resting AM of healthy individuals, and may
be responsible for viral latency in these cells after HIV-1
infection, but it is strongly suppressed after M. tuberculo-
sis infection [153]. However, in vitro infection with M.
tuberculosis or stimulation of PMA-differentiated THP-1
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monocytic cells and primary Mφ with LPS did not
enhance HIV-1 infection, and even suppressed viral repli-
cation [145]. In contrast, M. tuberculosis and LPS
enhanced HIV-1 replication in undifferentiated THP-1
monocytic cells. These opposing effects were reflected by
significant changes in the C/EBPβ isoform balance upon
exposure to M. tuberculosis and LPS in Mos and Mφ: a
high amount of activating C/EBPβ transcription factor
was induced in Mos, whereas a strong expression of the
inhibitory 16 kDa form was induced in Mφ. It turned out
that the production of the dominant negative C/EBPβ
isoform is mediated by IFNβ in Mφ but not in Mos [145].
LPS and M. tuberculosis trigger IFNβ production in both
Mo and Mφ. However, while in Mφ IFNβ induces inhibi-
tory C/EBPβ gene expression by stimulating the nuclear
translocation and the DNA binding of ISGF-3 (a het-
erotrimeric complex formed by the interferon regulatory
factor IRF-9, STAT-1 and STAT-2), these two stimuli are
not sufficient to activate ISGF-3 in Mos [145]. LPS or M.
tuberculosis-derived lipoarabinomannan induction of IL-
10 can also trigger the production of the inhibitory C/
EBPβ in differentiated THP-1 Mφ, but not in undifferen-
tiated Mos, through STAT-3 signaling [155]. Thus, differ-
entiation-induced post-translational regulations govern
the production of inhibitory C/EBPβ in response to either
IFNβ or IL-10 in Mφ. An explanation for the apparent
discrepancy between the M. tuberculosis-mediated HIV-
1 suppression in Mφ in vitro and the enhancement of
HIV-1 replication in AM in vivo was proposed in another
study by the same group [154]. The addition of activated
T lymphocytes to AM reduced inhibitory C/EBPβ and
activated the NF-κB pathway, leading to activation of the
HIV-1 LTR and increased viral replication. Down-regula-
tion of inhibitory C/EBPβ expression and subsequent de-
repression of the HIV-1 LTR were mediated by the inter-
action of T cell-expressed co-stimulatory molecules,
including CD40L, VLA-4 and CD28, and the cognate
macrophage-expressed ligands. The induction of NF-κB
was mediated by cytokines secreted from activated T-cell,
including TNFβ, IL-1β and IL-6 [154]. Erythromycin A
derivatives counteract the positive effect of CD4+ T cells
on HIV-1 replication in resistant Mφ by blocking MAPK
activation and C/EBPβ induction [157]. Moreover, eryth-
romycin A derivatives render tissue Mφ resistant to HIV-
1 infection by inducing the inhibitory C/EBPβ isoform
and by down-regulating the activity of hematopoietic cell
kinase (Hck) [157]. Recently, IFNβ was shown to induce
the truncated inhibitory C/EBPβ isoform and to suppress
SIV replication in primary Mφ of rhesus macaques [158].
A downstream effector of class I IFNs, CUGBP1 (CUG-
repeat RNA-binding protein 1), was shown to induce the
expression of the inhibitory C/EBPβ form by alternative
translation of its mRNA [158]. Indeed, the inhibition of
SIV replication and the increase of 16 kDa C/EBPβ by

IFNβ were associated with and dependent on the phos-
phorylation of CUGBP1 and the formation of CUGBP1-
C/EBPβ mRNA complexes.

A distinct mechanism of HIV-1 transcriptional repres-
sion was described in a human microglial cell line. A co-
repressor known as the COUP-TF interacting protein 2
(CTIP2) potently inhibited Tat transactivation, and over-
expression of CTIP2 disrupted Tat nuclear localization
and its recruitment to CTIP2-induced nuclear structures
[159]. The authors proposed that Tat inactivation occurs
through subnuclear relocalization within inactive regions
of the chromosomes [159]. CTIP2 inhibited Sp1- and
COUP-TF-mediated activation of HIV-1 gene transcrip-
tion in microglial nuclei [159]. Indeed, CTIP2 was
recruited to the HIV-1 LTR promoter via its interaction
with Sp1 bound to the GC-box sequences. CTIP2 co-
localized with Sp1, COUP-TF and the heterochromatin-
associated protein HP1α that is normally detected in
transcriptionally repressed heterochromatic regions
[160]. In addition, HDAC1, HDAC2 and the histone
methyltransferase SUV39H1 were recruited to the chro-
matin by CTIP2 and promoted the association of HP1 to
the HIV LTR region, thereby silencing viral gene tran-
scription. CTIP2 thus induces HIV-1 gene silencing by
forcing the transcriptionally repressed environment onto
the LTR promoter [160](see also the accompanying review
by Le Douce V. et al.).

Restriction of late events in HIV-1 replication in 
macrophages
HIV-1 assembly in infected Mφ occurs within intracellu-
lar compartments associated with the tetraspanin pro-
teins CD63, CD81, CD9 and CD53 [161]. The nature of
these vesicular structures is uncertain, some authors
claiming that they belong to the system of late endo-
somes/multivesicular bodies (LE/MVB), others that they
represent deep invaginations of the plasma membrane
(reviewed in [107], see also the accompanying review by
Benaroch P. et al.). Virions that have accumulated in these
vesicles can be released into the extracellular fluid either
directly or after fusion with the plasma membrane,
depending on the hypothesis invoked. Urokinase-type
plasminogen activator (uPA) signaling has been shown to
inhibit a post-translational step of HIV-1 replication in
MDM by promoting the sequestration of HIV-1 particles
in intracellular vacuoles, possibly related to MVB, which
affects the maturation and release of HIV-1 from infected
cells [162,163]. uPA is a serine protease that interacts
with a specific GPI-anchored receptor, uPAR (CD87), at
the cell surface [164]. uPAR is expressed by inflammatory
cells including T cells, Mos and Mφ, and regulates cellu-
lar functions such as adhesion, proliferation and activa-
tion. The interest in the uPA/uPAR system in AIDS has
risen from the observation that in a cohort of HIV-1
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infected patients, the serum level of the suPAR soluble
receptor was closely correlated to the mortality rate
before anti-retroviral treatment and was an independent
predictor of survival [165]. uPAR expression is up-regu-
lated in vivo and in vitro by HIV-1 infection [166,167]. In
2001 an HIV-1 suppressor factor was identified from the
culture supernatants of an immortalized CD8+ T cell
clone [163]. This factor corresponded to the amino-ter-
minal fragment (ATF) of uPA. Urokinase can be found as
two enzymatically active isoforms, a high molecular
weight form (HMW-uPA) and a low molecular weight
form (LMW-uPA) that lacks 135 amino acids of the N-
terminus tail of the HMW-uPA. The 135 amino acid pep-
tide, which is naturally cleaved during the processing of
HMW-uPA, corresponds to ATF and is catalytically inac-
tive. Late steps of viral replication, such as budding or
viral particle assembly, are affected by ATF [163,168].
Similarly, uPA inhibits HIV-1 replication in primary
MDM, lymphocytes and monocytic cell lines. The
uncleaved inactive precursor of uPA, pro-uPA, which
interacts with the same membrane receptor, also inhibits
the replication of HIV-1 in MDM, activated PBMCs and
ex vivo cultures of lymphoid tissue that have been
infected in vitro [162,168]. The uPA-uPAR interaction
interferes with late events of HIV-1 replication in MDM
and U937 pro-monocytic cells, as well as in PMA- and
TNFα-differentiated U1 cells, inhibiting the release of
virions from cells [162,163,168]. The association of the
receptor with other signaling competent receptors was
required for this inhibitory activity. In particular, the
engagement of β1 and β2 integrins, as well as Mac-1 inte-
grin bound to fibrinogen, was identified as mediator of
the uPA antiviral effect [168]. Interestingly, cross-linking
of Mac-1 also inhibited viral replication. Signaling from
uPA/uPAR interaction and assembly of Mac-1 are thus
able to interfere with virion assembly and release in Mφ
independently of uPAR [168]. The interaction of uPAR
and integrins may occur at the level of lipid rafts of the
plasma membrane that have been previously described to
be a limiting factor for viral entry and budding (see
above) suggesting an additional role of these structures in
the accumulation/release of viral particles from infected
cells.

Regulation of HIV-1 infection in tissue macrophages
Resident Mφ in tissues are heterogeneous in terms of phe-
notype, morphology and function [169]. Their characteris-
tics probably depend on the specific tissue
microenvironment, as well as on the conditions of inflam-
mation during infections. Accordingly, Mφ from different
tissues, such as lung, brain, gastrointestinal and genital
tracts, while comprising many HIV reservoirs, display dif-
ferent susceptibilities to HIV infection (Fig. 2B).

Two reports concerning the use of cervical and vaginal
explants and purified cell populations from vaginal
mucosa provided evidence that subepithelial Mφ are sus-
ceptible to infection with monocytotropic R5 HIV-1
strains, and suggested that these cells may represent the
main target for HIV infection in the female genital tract
[8,170]. In contrast, jejunum intestinal Mφ did not sup-
port viral replication [8]. The basis for this differential
permissiveness to HIV-1 infection was related to differ-
ences in the expression of the CCR5 co-receptor. Mφ
from the vaginal mucosa display a similar phenotypic
profile to that of blood Mos, and express CD4 and CCR5,
whereas Mφ from the jejunum intestinal mucosa express
a distinct phenotype, with very low levels of CD4 and vir-
tually no CCR5 [8,171,172]. Therefore the latter cells
could resist HIV-1 infection by restricting viral entry due
to a lack of the CCR5 co-receptor or to an inappropriate
CCR5/CD4 stochiometry [28,173] (Fig. 2B). Susceptibil-
ity of Mφ in the intestinal mucosa to HIV-1 infection may
however vary depending on their localization at different
sites of the intestinal tract, for example in the jejunum
versus in the rectum, as well as according to the level of
local inflammation. Indeed, HIV-1 and SIV infected
CD68+ Mφ are found in the colon mucosa of HIV-
infected patients or SIV-infected macaques respectively
[174,175].

The main cells infected by HIV-1 in the CNS are
perivascular Mφ and resident microglial cells, and in the
lung are AM [19,156,176-182] (Fig. 2B). However,
although HIV-1 entry into the CNS occurs during acute
infection [183,184], viral RNA is almost undetectable
during the asymptomatic phase of infection. Few AM in
bronchoalveolar lavages (BAL) from HIV-1 infected
patients harbor viral DNA, and low genetic variability in
viral sequences argues against active viral replication
[185]. However, in spite of low or undetectable HIV-1
RNA levels in AM in infected patients, viral replication
could be reactivated by stimulation of AM from BAL in
vitro with granulocyte/macrophage colony-stimulating
factor (GM-CSF) and TNF-α, or with M. tuberculosis and
its purified protein derivative [186,187]. More impor-
tantly, reactivation of latent HIV-1 replication in AM
occurs during co-infections, including those with oppor-
tunistic pathogens such as M. avium and Pneumocystis
carinii [156]. Longitudinal studies showed that SIV infec-
tion is established in brain and lungs of infected
macaques already in acute infection, but HIV-1 replica-
tion is then rapidly controlled, and viral RNA becomes
undetectable [188,189]. These data suggest that HIV/SIV
infection of Mφ in brain and lung is mostly latent before
the onset of symptomatic disease, due to the suppression
of viral replication. A unifying hypothesis that accounts
for the suppression of viral replication in brain and lung
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has been proposed by Clements et al. Acute HIV/SIV
infection induces the production of IFN-β in brain and
lung tissues. IFN-β in turn is proposed to induce alterna-
tive translation of C/EBPβ mRNA, switching the balance
between activating and inhibitory C/EBPβ isoforms in
favor of the inhibitory form that suppresses LTR-driven
transcription of viral genes [[189,190]. Several other stud-
ies support a role for C/EBPβ regulation in HIV-1 expres-
sion in the CNS and in neuropathogenesis [149]. In the
lung, pulmonary tuberculosis markedly up-regulates
HIV-1 replication in AM by repressing the expression of
inhibitory C/EBPβ [153]. Lung infiltration of T lympho-
cytes leads to the loss of inhibitory C/EBPβ mediated by
the interaction of cell surface co-stimulatory molecules
and ligands during T cell/macrophage contact [154].
Meanwhile, production of pro-inflammatory cytokines
by activated T lymphocytes boosts infection by triggering
NF-κB activation [154]. It is conceivable that a similar
scenario may also occur in brain and other tissues of
HIV-infected individuals. Indeed, although HIV-1 infects
the CNS during acute primary infection, active viral rep-
lication is observed after the loss of immune control, and
this coincides with increased immune activation
(reviewed in [191]). Reactivation of viral replication from
latently infected microglia may occur concomitantly with
trafficking of activated Mo/Mφ into the CNS [192]. Inter-
estingly, enteropathy in chronically SIV infected
macaques has also been associated with increased
expression of the activating isoform of C/EBPβ localized
predominantly in Mφ in the jejunum and colon mucosa
[175]. Thus, increased expression of activating C/EBPβ
may contribute to the maintenance of inflammation and
the activation of viral replication in Mφ of different
organs. However, other mechanisms of transcriptional
silencing of the HIV-1 LTR that have been described in
microglial cells may contribute to HIV-1 latency in the
CNS [160].

The deregulation of uPA and its receptor uPAR has also
been implicated in the loss of control of HIV-1 replication
in the CNS [193]. uPA signaling through uPAR inhibits
late steps of HIV-1 replication [162,168] (see above). High
levels of expression of uPAR were detected in HIV-
infected microglial cells and reactive Mφ in the brain of
patients with encephalitis and other HIV-related neuro-
logical lesions, whereas uPA was detected in few cells
[193-195]. In addition, higher levels of the soluble form of
uPAR (suPAR), uPA and suPAR/uPA complexes were
found in the cerebrospinal fluid (CSF) in HIV-infected
patients than in HIV-negative controls, and in patients
with ADC or opportunistic CNS infections than in neu-
rologically asymptomatic patients. suPAR levels corre-
lated with CSF HIV-1 RNA [193]. It has thus been
proposed that HIV-1 infection induces over-expression of
uPAR and consequently overproduction of suPAR. The

excess suPAR in the CSF would bind most of the extracel-
lular uPA, preventing its binding to cell surface uPAR and
its signaling-induced inhibition of HIV-replication [193].

Conclusions
The list of putative mechanisms of control of HIV-1
infection in Mo/Mφ is rapidly growing (Table 1). HIV-1
replication is restricted at different steps. More research
is, of course, needed to gain further insights into the
molecular mechanisms underlying each restriction event.
However, importantly, evidence for the relevance of some
of these mechanisms in vivo is now coming from studies
concerning HIV-1 infected individuals and from the SIV/
macaque model, as reviewed above for the IFNβ/C/EBPβ
or uPA/uPAR pathways. The contribution of other mech-
anisms of HIV-1 restriction that have been identified in
vitro to the control of Mo/Mφ infection in vivo is still
uncertain and requires further studies. For example,
whether and how the balance of the inhibitory and
enhancing effects of p21 influences the replication of
HIV-1 in tissue Mφ remains an open question. The
answer to this question may be directly relevant to ther-
apy: modulation of p21 expression is currently studied in
anticancer therapy. The role of the restriction factors of
the TRIM or the APOBEC3 family in HIV-1 infection of
Mo/Mφ is unclear. In particular, APOBEC3A and 3G are
strongly induced by IFNs in Mφ [40,196], which is in
favor of their antiviral role. Whether and by which mech-
anisms these molecules contribute to the control of HIV-
1 infection in the cells remains to be elucidated [52,196].

New high throughput screening techniques are being
used to discover host molecules relevant to HIV-1 repli-
cation. Microarray analyses have revealed alterations of
gene expression in Mo/Mφ that are associated to HIV-1
infection (reviewed in [197]), but they have not allowed
the identification of new molecules involved in the con-
trol of HIV-1 replication. Genome-wide screenings,
including small interfering RNA (siRNA) screening have
provided a huge amount of information [198-201]. How-
ever, while they have a high potential to identify host
cofactors required for HIV-1 replication and to drive the
search for host targets for HIV therapeutics, such
approaches may be less suited to unveil factors that
inhibit viral replication [201]. For example APOBEC3G
was not detected by RNA interference screens [198]. In
addition, some factors may act differentially depending
on the cell type (for example, the restriction overcome by
Vpx in Mos/Mφ and DC). Only studies focused on the
relevant cell type will be able to detect these factors.

Last but not least, a question about the interplay
between host restriction mechanisms and viral infection
is: what is really the ultimate effect of the host factors that
hinder HIV-1 replication in host cells and are thought to
exert an antiviral activity beneficial to the host. It may be
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that an effective mechanism of restriction that blocks
viral replication in a cell may be subverted by the virus at
the organism level, in the complex interplay between the
virus and the host. For example, while inhibitory C/EBPβ
is an effective anti-viral lock that suppresses HIV-1 tran-
scription, it also allows the virus to remain latent in the
brain and lung until the host immune response is declin-
ing, and the infection is then unlocked when immune
activation boosts viral replication. This could be a con-
served strategy of persistence in lentiviral infections: a
post-transcriptional block also restricts MVV replication
in macrophages in the CNS and lung macrophages unless
inflammatory lesions promote viral expression [202,203].
Therapeutic strategies based on restriction mechanisms
may therefore be aimed either at enhancing some restric-
tion mechanisms to limit infection or to thwart other
events that would otherwise reactivate viral replication
and drain viral reservoirs.
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