
*For correspondence:

marcia_haigis@hms.harvard.edu

Present address: †Third Rock

Ventures, Boston, United States

Competing interest: See

page 17

Funding: See page 17

Received: 26 August 2020

Accepted: 29 October 2020

Published: 10 November 2020

Reviewing editor: Matt

Kaeberlein, University of

Washington, United States

Copyright Drijvers et al. This

article is distributed under the

terms of the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

The effects of age and systemic
metabolism on anti-tumor T cell responses
Jefte M Drijvers1,2,3†, Arlene H Sharpe1,2, Marcia C Haigis3*

1Department of Immunology, Blavatnik Institute and Ludwig Center at Harvard,
Harvard Medical School, Boston, United States; 2Evergrande Center for
Immunologic Diseases, Harvard Medical School and Brigham and Women’s
Hospital, Boston, United States; 3Department of Cell Biology, Blavatnik Institute
and Ludwig Center at Harvard, Harvard Medical School, Boston, United States

Abstract Average age and obesity prevalence are increasing globally. Both aging and obesity

are characterized by profound systemic metabolic and immunologic changes and are cancer risk

factors. The mechanisms linking age and body weight to cancer are incompletely understood, but

recent studies have provided evidence that the anti-tumor immune response is reduced in both

conditions, while responsiveness to immune checkpoint blockade, a form of cancer immunotherapy,

is paradoxically intact. Dietary restriction, which promotes health and lifespan, may enhance cancer

immunity. These findings illustrate that the systemic context can impact anti-tumor immunity and

immunotherapy responsiveness. Here, we review the current knowledge of how age and systemic

metabolic state affect the anti-tumor immune response, with an emphasis on CD8+ T cells, which

are key players in anti-tumor immunity. A better understanding of the underlying mechanisms may

lead to novel therapies enhancing anti-tumor immunity in the context of aging or metabolic

dysfunction.

Introduction
Average human lifespan has dramatically increased across the globe. For example, life expectancy in

the United States (U.S.) has risen by more than 30 years since the beginning of the 20th century,

from 47 to 79 years (Arias and Xu, 2019). More recently, many parts of the world have seen a sharp

increase in obesity rates, with now over 40% of adults in the U.S. being obese (defined as a body

mass index (BMI) �30 kg/m2). These profound demographic changes are also reflected in the dis-

eases that impose the largest burden on present-day societies. Notably, cancer is the leading cause

of death in the U.S. for individuals between 55 and 74 years of age and the second leading cause of

death overall, behind only cardiovascular disease (Kochanek et al., 2019).

Age is among the most well-known cancer risk factors, and the incidence of most cancer types

increases with age (Siegel et al., 2019). Illustratively, the chance for an individual in the U.S. to

develop any cancer in the first 50 years of life is 4–5%, whereas this is close to 30% over the age of

70 (Siegel et al., 2019). Similarly, obesity is a risk factor for at least 13 cancer types, including com-

mon cancers like colorectal and postmenopausal breast cancer (Lauby-Secretan et al., 2016). Due

to the increasingly high prevalence of obesity in the western world, obesity-related cancers consti-

tute a significant health problem: between 2011 and 2015, almost 5% and almost 10% of cancer

cases in men and women respectively of 30 years and older in the U.S. were attributable to excess

body weight (Islami et al., 2018). In contrast to aging and obesity, dietary restriction is thought to

provide widespread health benefits and increased lifespan (Fontana and Partridge, 2015; López-

Otı́n et al., 2016; McCay et al., 1935), and the limited evidence available, largely derived from ani-

mal studies, suggests that cancer incidence may also be lowered with dietary restriction
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(Colman et al., 2009; Michels and Ekbom, 2004; Ross and Bras, 1965; Rous, 1914;

Weindruch and Walford, 1982).

For both aging and obesity, a plethora of systemic and local factors have been suggested to

directly promote cancer incidence and growth (Fane and Weeraratna, 2020; Khandekar et al.,

2011). Although aging and excess body weight are distinct physiological entities, both conditions

are also associated with reduced immune function, as evidenced by increased susceptibility to infec-

tions and suboptimal antibody titers following vaccination (Nikolich-Žugich et al., 2012;

Painter et al., 2015; Sheridan et al., 2012), and both are among the main risk factors for a severe

disease course in the ongoing COVID-19 pandemic, which is characterized by immune dysregulation

and dysfunction (Lighter et al., 2020; Vabret et al., 2020; Wu and McGoogan, 2020). Given the

recent appreciation of the importance of anti-cancer immune responses, this poses the question

whether altered immunity may impact cancer rates and outcomes in systemic conditions like aging,

obesity, and dietary restriction.

The first evidence for cancer immunotherapy was provided by the American surgeon William

Coley in the late 19th century (McCarthy, 2006). Dr. Coley injected sarcoma patients with strepto-

coccal bacteria or bacterial products, inducing an immune response and, in some cases, tumor

regressions. Not much later, the notion that defense mechanisms must exist in the body to limit the

frequency of malignancies was first suggested by Ehrlich, 1909. However, Coley’s approach fell out

of favor, and it was not until the second half of the 20th century that experimentation with immune-

mediated cancer therapies, including the first cancer vaccines, resumed (Decker et al., 2017;

Graham and Graham, 1959). Around the same time, the concept of cancer immunosurveillance was

described by Burnet and Thomas but could not yet be experimentally proven given the limited

understanding of the immune system and the tools available at the time (Burnet, 1957; Dunn et al.,

2002). The field of immunology was then propelled by several seminal discoveries, including the

existence of distinct T and B lymphocyte populations (Cooper et al., 1965; Miller et al., 1967) as

well as the concept of major histocompatibility complex (MHC) restriction in T cell-mediated immu-

nity (Zinkernagel and Doherty, 1974). Definitive evidence for a role of immune cells in suppressing

malignant tumors was provided by the laboratory of Robert Schreiber, who observed that tumors

generated in immunodeficient mice could be cleared upon transplantation into immunocompetent

animals (Shankaran et al., 2001), confirming the existence of cancer immunosurveillance and immu-

noediting (Dunn et al., 2002). These findings led to a renewed interest and confidence in the field

of cancer immunotherapy, which would ultimately revolutionize cancer care (see ‘Cancer immuno-

therapies’ section below).

CD8+ T cells play a central role in anti-tumor immune responses by recognizing tumor cell anti-

gens that differ from normal tissue and deploying cytolytic machinery to kill cancer cells directly.

However, CD8+ T cell functions are often suppressed in the context of anti-tumor immunity. One

reason for reduced T cell function in this context is the potently immunosuppressive nature of the

tumor microenvironment (TME), where inhibitory signaling pathways are activated and immunosup-

pressive cell populations are present (Nakamura and Smyth, 2020). Moreover, extensive research

has highlighted the importance of cell-intrinsic metabolic pathways for T cell activation, differentia-

tion, and function (Buck et al., 2017). Since the TME is often depleted of nutrients, due to limited

blood supply and competition with metabolically active tumor cells, nutrient unavailability provides

another layer of immunosuppression (Lim et al., 2020).

In addition to local factors, the macroenvironment in which anti-tumor T cell responses take place

also warrants consideration. Interestingly, aging and obesity both induce metabolic (e.g. insulin resis-

tance) and immunologic (e.g. chronic inflammation) systemic alterations (Hotamisligil, 2017; López-

Otı́n et al., 2013). However, how these organism-level changes are reflected in the TME and impact

the anti-tumor immune response both systemically and locally are incompletely understood. Given

that average age and obesity prevalence are rising in many parts of the world, a better understand-

ing of these mechanisms is important to inform therapeutic strategies aiming to enhance the anti-

tumor immune response in patients of any age and body composition. Here, we review the current

knowledge of the shared and distinct effects of age, obesity, and various forms of dietary restriction

on anti-tumor T cell responses with an emphasis on the metabolic pathways involved and the
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CD8+ T cell compartment. For each of these conditions, we will address alterations in (1) the anti-

tumor T cell response, (2) metabolism and signaling, (3) TME-specific immunosuppression, and (4)

cancer immunotherapy responsiveness.

Anti-tumor T cell responses
T lymphocytes are a part of the adaptive immune system, which is characterized by the ability to

mount immune responses that are highly specific to certain antigens and result in the formation of

immunological memory (Chaplin, 2010). To facilitate the recognition of any pathogenic antigen, T

cells are endowed with unique antigen receptors known as T cell receptors (TCRs). Since TCRs rec-

ognize antigenic peptides in the context of MHC molecules, they rely on other cells to take up, pro-

cess, and present antigens to them. To facilitate the interaction of the TCR with peptide-MHC

complexes, T cells express a coreceptor, CD8 or CD4, which binds to MHC class I (MHC-I) or MHC

class II (MHC-II) respectively (Rossjohn et al., 2015).

Naı̈ve CD8+ and CD4+ T cells are generated from bone marrow-derived progenitor cells in the

thymus and circulate through secondary lymphoid organs in the body, such as lymph nodes and

spleen, until they encounter their cognate antigen. For initial T cell activation, an antigen needs to

be presented by a professional antigen-presenting cell (APC), usually a cell of the myeloid lineage

like a dendritic cell or macrophage, in the context of the appropriate costimulatory signals, most

importantly ligation of the costimulatory receptor CD28 (Esensten et al., 2016; Pennock et al.,

2013). Upon activation, a T cell undergoes clonal expansion, differentiates into an effector cell, and

migrates toward the relevant peripheral tissue, for example a site of infection or a tumor (Smith-

Garvin et al., 2009). Cytotoxic effector CD8+ T cells can directly kill cells that present their cognate

antigen through cytotoxic molecules, like granzyme B (GzmB) and perforin, and also secrete pro-

inflammatory cytokines, like interferon (IFN)-g and tumor necrosis factor (TNF)-a (Farhood et al.,

2019; Figure 1). CD8+ T cells therefore play a central role in the effectuation of immune responses

against intracellular pathogens and cancer. Activated CD4+ T cells take on more diverse roles. Con-

ventional CD4+ T cells (Tconvs) can differentiate into various types of immune helper T cells that sup-

port an immune response. A distinct lineage of CD4+ T cells, so-called regulatory T cells (Tregs),

Figure 1. CD8+ T cells are key effectors of the anti-tumor immune response. Naı̈ve CD8+ T cells circulate through the body, until their cognate antigen

is presented to them by an antigen-presenting cell, for example a dendritic cell, in a secondary lymphoid organ, for example a lymph node. T cells then

become activated, proliferate, differentiate, and migrate to the tumor. Upon entering the TME, they can mediate an effective anti-tumor response

through direct cytolytic activity, mediated by perforin and granzymes, and the secretion of cytokines like IFNg and TNFa. IFNg, interferon g . MHC-I,

major histocompatibility complex I. TCR, T cell receptor. TME, tumor microenvironment. TNFa, tumor necrosis factor a.
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suppresses immune responses and is important for preventing autoimmunity (van der Vliet and

Nieuwenhuis, 2007). After a successful immune response, most effector T cells undergo apoptosis,

while some remain as memory T cells, which are poised to be reactivated more quickly than naı̈ve T

cells (Pennock et al., 2013).

In addition to the TCR and costimulatory receptors such as CD28, which promote T cell activa-

tion, T cells also express co-inhibitory receptors, including cytotoxic T lymphocyte-associated protein

4 (CTLA-4) and programmed death-1 (PD-1). Inhibitory signaling through these receptors is impor-

tant to maintain tolerance to self-antigens and for the resolution of immune responses

(Nishimura et al., 1999; Tivol et al., 1995). However, enhanced expression of co-inhibitory recep-

tors develops when T cells are exposed to persistent antigen stimulation (e.g. during chronic viral

infection or in tumors) and correlates with an exhausted, dysfunctional state in T cells (Barber et al.,

2006; Blackburn et al., 2009). Moreover, tumor cells and other cell populations in the TME sup-

press T cell function by expressing ligands of these receptors, such as PD-L1 (Dong et al., 2002).

Several other immune cell types can also play important roles in anti-tumor immunity. Natural

killer (NK) lymphocytes, like CD8+ T cells, can acquire a cytotoxic phenotype and kill cancer cells

(Miller and Lanier, 2019). Some myeloid cells in the TME can promote the anti-tumor immune

response, for example macrophages with a pro-inflammatory phenotype often referred to as ‘M1’,

but many tumor-associated macrophages have an ‘M2’-like phenotype and have pro-tumor effects,

including suppression of anti-tumor immunity (Zhou et al., 2020). Importantly, the M1 and M2 des-

ignations do not describe distinct populations, but rather reflect opposite ends of the wide spectrum

of functional states that macrophages can assume (Murray, 2017). Additionally, myeloid-derived

suppressor cells (MDSCs), a heterogenous population of immature myeloid cells, inhibit T cell func-

tion in the TME through a variety of mechanisms, including depletion of extracellular arginine,

expression of PD-L1, and recruitment of Tregs (Kumar et al., 2016).

Anti-tumor T cell responses with aging
Aging negatively impacts CD8+ T cell immunity, in cancer and other contexts, through a combination

of T cell-intrinsic and -extrinsic mechanisms. First, the generation of new naı̈ve T cells declines with

age, as the thymus involutes and produces fewer naı̈ve CD4+ and CD8+ T cells (Bains et al., 2009).

Maintenance of the naı̈ve T cell pool, both in terms of numbers and TCR diversity, thus becomes

dependent on homeostatic proliferation of existing T cells, which leads to a reduction in naı̈ve T cell

numbers, especially of CD8+ T cells (Goronzy and Weyand, 2019). In addition, aging-associated

adipocyte accumulation in the bone marrow also contributes to reduced hematopoiesis with age

(Ambrosi et al., 2017), and hematopoiesis becomes skewed toward myeloid and away from lym-

phoid lineages with age (Beerman et al., 2010).

While the number of naı̈ve T cells decreases with age, there are increased numbers of circulating

T cells that express markers of antigen experience, for example CD45RO in humans or CD44 in mice

(Lages et al., 2010; Li et al., 2019). Adoptive transfer experiments in mice have shown that these

cells are dysfunctional (Decman et al., 2010). Some antigen-experienced cells express co-inhibitory

receptors, including PD-1, and have been likened to exhausted T cells (Decman et al., 2012;

Lages et al., 2010), whereas others are virtual memory T cells (Tvm), which develop from naı̈ve T

cells without full antigenic stimulation, and display some features of cellular senescence – an aging-

associated phenotype of growth arrest (Chiu et al., 2013; Quinn et al., 2018; Renkema et al.,

2014). However, although Tvm cells display a strongly reduced proliferation capacity, especially after

TCR stimulation, they can still proliferate after stimulation with interleukin (IL)�15 (Quinn et al.,

2018; Renkema et al., 2014), and thus do not have the irreversible cell cycle block that is character-

istic of true cellular senescence (Goronzy and Weyand, 2019). In humans the number of T effector

memory CD45RA (TEMRA) cells increases with age (Quinn et al., 2018). TEMRA cells develop upon

viral infections and display some, but not all, properties of cellular senescence (Goronzy and

Weyand, 2019). Finally, a loss of the co-stimulatory receptor CD28, which is essential for normal T

cell activation, has been observed on CD8+ T cells during aging (Lages et al., 2010), and CD8+

CD28– T cells may even play an immunosuppressive role in tumors (Filaci et al., 2007).

T cells rely on antigen-presenting cells, especially dendritic cells, to display antigens and provide

costimulatory signals to drive T cell activation in secondary lymphoid organs. In addition to the

described changes in the T cell compartment itself, dendritic cells also have reduced functionality

with aging, including in the context of murine cancer models (Grolleau-Julius et al., 2008; Grolleau-
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Julius et al., 2006). Overall, a reduction in the naı̈ve CD8+ T cell compartment, the existence of mul-

tiple dysfunctional T cell populations and reduced antigen presentation by dendritic cells likely all

contribute to reduced T cell-mediated immunity in aging (Figure 2).

Few studies have analyzed the anti-tumor T cell response without any immune-boosting therapies

in aged animals, but the existing studies predominantly show reduced T cell function in this context.

For example, anti-tumor T cell responses are decreased with age in a mouse model of oral cancer,

and this is accompanied by increased numbers of MDSCs (Sekido et al., 2019). Similarly, MDSCs

inhibit anti-tumor T cell function with age in a murine breast cancer model (Grizzle et al., 2007).

Defects in anti-tumor CD8+ T cell responses were also observed in a hematological cancer model as

well as a mesothelioma model (Jackaman et al., 2019; Lustgarten et al., 2004). Paradoxically, one

study found that the growth of several tumor types was slower in aged mice, and this difference in

growth rate was CD8+ T cell-dependent (Oh et al., 2018). It is not clear what explains this discrep-

ancy, but differences in experimental setup (e.g. mouse strain, tumor model, duration of aging) and

environmental factors (e.g. microbiome) between studies could play a role. More research carefully

examining the anti-tumor immune response in aged animals and humans is thus needed. At this

point, most of the available evidence points toward a reduction of anti-tumor immunity with

advanced age.

Anti-tumor T cell responses with obesity
In addition to other systemic changes, including metabolic alterations and inflammation, obesity has

been associated with reduced immune function (Figure 2). Some of the mechanisms impairing sys-

temic CD8+ T cell function with age are promoted by obesity. For example, diet-induced obesity

accelerates the age-associated decline of thymic function, resulting in reduced output of naı̈ve T

Figure 2. Systemic changes in the immune system with aging, obesity, and dietary restriction. T cell progenitors arise in the bone marrow and travel to

the thymus where they develop into mature naı̈ve T lymphocytes. Naı̈ve T cells circulate through the bloodstream and secondary lymphoid organs.

Systemic conditions like aging, obesity, and dietary restriction affect the immune system at each of these levels, impacting both anti-tumor and other

immune responses. Aging- and obesity-associated changes lead to reduced T cell immunity, while dietary restriction-associated changes promote T

cell responses. CLP, common lymphoid progenitor. SLO, secondary lymphoid organs. TCR, T cell receptor.
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cells and TCR diversity (Yang et al., 2009b). Just like aging, diet-induced obesity induces the accu-

mulation of adipocytes in the bone marrow (Ambrosi et al., 2017), which impairs hematopoiesis

(Naveiras et al., 2009). Secondary lymphoid organ function is also affected by obesity: lymphatic

transport, dendritic cell migration, and lymph node structure are reduced (Weitman et al., 2013),

and murine dendritic cells stimulate T cell responses less effectively in obesity (James et al., 2012;

Mauro et al., 2017). In addition, the prevalence of dysfunctional T cell populations is increased in

obesity (Shirakawa et al., 2016; Spielmann et al., 2014; Wang et al., 2019) and higher frequencies

of T cells expressing markers of antigen experience are present in the circulation of obese humans

and animals (Mauro et al., 2017; Wang et al., 2019), similar to aged individuals. Despite these chal-

lenges, effective antigen-specific CD8+ T cell responses can be generated in obesity in certain con-

texts, such as infection of mice with lymphocytic choriomeningitis virus (LCMV) (Khan et al., 2014).

Thus, disease context is a factor that affects CD8+ T cell-intrinsic function with obesity.

Recent studies have demonstrated that CD8+ T cell responses are impaired in the context of can-

cer with obesity. The growth of syngeneic subcutaneous B16 melanoma, 4T1 breast, and 3LL lung

carcinoma tumors is accelerated in C57BL/6 mice fed a high-fat diet (HFD) for 4–5 months

(Wang et al., 2019). This is associated with a dysfunctional CD8+ T cell phenotype, characterized by

enhanced expression of co-inhibitory receptors and reduced expression of cytokines and the prolif-

eration marker Ki-67. Although the interpretation of co-inhibitory receptor expression can be compli-

cated, given that these receptors can be upregulated following T cell activation as well as during T

cell exhaustion, the decreased expression of cytokines and Ki-67 points to a dysfunctional state. This

defect is CD8+ T cell-intrinsic, as it is also present with ex vivo T cell activation. Another study also

found a reduced anti-tumor CD8+ T cell response with diet-induced obesity in a murine breast can-

cer model (Zhang et al., 2020). There is some evidence, albeit limited, to suggest that the anti-

tumor immune response is reduced in obese human patients with cancer. For example, reduced T

cell infiltration was described in obese colorectal cancer patients, and increased expression of

markers of T cell exhaustion, including co-inhibitory receptor PD-1, was seen in tumor-infiltrating T

cells in obese melanoma patients (Wang et al., 2019).

Anti-tumor T cell responses with dietary restriction
Dietary restriction has long been suggested to enhance anti-tumor immune function

(Fernandes et al., 1976), and this may occur through both systemic and tumor-specific mechanisms.

Dietary restriction encompasses various interventions, ranging from a reduction of caloric intake,

for example by starvation or a fasting-mimicking diet (FMD), to a diet lacking in specific compo-

nents, such as a low-protein diet (Katewa and Kapahi, 2010), or intermittent fasting (de Cabo and

Mattson, 2019). Some of the metabolic consequences of dietary restriction can be induced pharma-

cologically by agents known as caloric restriction mimetics (CRMs). It is important to distinguish rela-

tively mild dietary restriction regimens often used in studies of anti-tumor immunity from severely

reduced dietary intake leading to malnutrition and lack of necessary nutrients. Malnutrition nega-

tively impacts the immune system, including CD8+ T cells, in both animals and humans (Iyer et al.,

2012; Rytter et al., 2014; Taylor et al., 2013).

Dietary restriction may improve T cell responses through several systemic mechanisms and can

delay or prevent the decline in T cell immunity induced by aging (Figure 2). First, age-induced thy-

mic involution can be decreased by long-term dietary restriction, thereby enhancing thymic output

in aged mice (Yang et al., 2009a). Second, feeding of a calorically restricted diet for 13 to 18 years

leads to preservation of T cell functions with age in non-human primates, in addition to increased

naı̈ve T cell numbers and TCR repertoire (Messaoudi et al., 2006). Finally, dietary restriction induces

a reduction of memory T cells in secondary lymphoid organs and circulation but an accumulation in

the bone marrow, resulting in increased protection from both infectious and tumor challenges

(Collins et al., 2019).

In addition to systemic effects on T cell immunity in general, anti-tumor immunity is specifically

improved with dietary restriction. For example, a short-term (48 hr) fast enhances the efficacy of che-

motherapy in the murine fibrosarcoma model MCA205 in a T cell-dependent manner

(Pietrocola et al., 2016). CRMs, including ATP citrate lyase inhibitor hydroxycitrate, reduce tumor

growth in chemotherapy-treated mice similarly to short-term fasting, in a manner dependent on

CD8+ T cells. These effects extend to murine breast, colorectal and lung cancer models

(Pietrocola et al., 2016). Notably, there is little to no effect of fasting or CRM alone in this setting,

Drijvers et al. eLife 2020;9:e62420. DOI: https://doi.org/10.7554/eLife.62420 6 of 29

Review Article Cancer Biology Immunology and Inflammation

https://doi.org/10.7554/eLife.62420


implying that cell death induced by chemotherapy is needed to induce the anti-tumor immune

response, which can then be boosted by dietary restriction. Another study demonstrated similar

findings with the 4T1 breast cancer and B16 melanoma models, using a low calorie FMD in combina-

tion with chemotherapy (Di Biase et al., 2016). However, in contrast to the Pietrocola et al. study,

they observed a significant benefit of FMD alone as well, albeit less pronounced than in combination

with chemotherapy. Systemically, the numbers of common lymphoid progenitors (CLPs) in the bone

marrow as well as circulating CD8+ T cells are increased by FMD (Di Biase et al., 2016). Another

CRM, glycolysis inhibitor 2-deoxyglucose (2-DG), also promotes an anti-tumor T cell response in

combination with chemotherapy, although this is likely primarily caused by an effect on the tumor

cells themselves, since the combination of 2-DG and chemotherapy also enhances tumor cell death

in vitro (Bénéteau et al., 2012). The fact that CRMs can replicate the benefits of dietary restriction

suggests that the therapeutic targeting of these pathways to promote anti-tumor immunity may be

feasible.

Finally, reducing dietary protein may also enhance anti-tumor immunity. Rubio-Patiño et al. found

that a low-protein diet reduced tumor progression in murine lymphoma, colorectal adenocarcinoma

and melanoma models in a CD8+ T cell-dependent manner (Rubio-Patiño et al., 2018). Restriction

of specific amino acids may also impact anti-tumor immunity. For example, dietary methionine

restriction, which promotes lifespan and metabolic health in mice (Ables et al., 2012; Miller et al.,

2005), can have anti-cancer effects (Gao et al., 2019; Wanders et al., 2020) and impacts helper T

cell responses (Wang et al., 2020). Accordingly, a shift in macrophage polarization accompanied by

increased intratumoral CD8+ T cell numbers and GzmB expression occurs in mice fed a methionine-

restricted diet (Orillion et al., 2018). The extent to which reduced intake of particular amino acids

may affect the anti-tumor T cell response is an interesting topic for future investigations.

Metabolism and signaling
Metabolism plays crucial roles in regulating T cell activation, differentiation, and function

(Buck et al., 2017; Lim et al., 2020; O’Sullivan et al., 2019). When naı̈ve T cells are activated by

ligation of the TCR and costimulatory signals, they initiate a phase of rapid growth, differentiation,

and proliferation (Smith-Garvin et al., 2009). This transition is accompanied by a switch from a qui-

escent metabolic state, characterized by mostly oxidative metabolism, to a highly metabolically

active state, characterized by the use of anabolic pathways such as anaerobic glycolysis, glutaminoly-

sis, and one-carbon metabolism (Chang et al., 2013; Ho et al., 2015; Ron-Harel et al., 2016;

Wang et al., 2011). These pathways not only provide the molecules necessary for cell growth and

proliferation, but also support activation and differentiation in different ways. For example, glycolysis

directly impacts translation of IFN-g mRNA (Chang et al., 2013), calcium signaling (Ho et al., 2015)

and epigenetic state (Peng et al., 2016) in activated T cells.

In contrast to effector T cells, memory T cells and Tregs rely on oxidative metabolic pathways,

including fatty acid oxidation (FAO) (Michalek et al., 2011; Pearce et al., 2009; van der Windt

et al., 2012). In many cases, manipulating metabolism is sufficient to change the differentiation of T

cells toward distinct phenotypes, indicating that certain metabolic pathways lie upstream of fate

decisions in T cells (Buck et al., 2016; Michalek et al., 2011; Pearce et al., 2009; Pollizzi et al.,

2016; Verbist et al., 2016).

Several transcription factors and nutrient-sensitive signaling pathways coordinate the metabolic

profiles of distinct T cell subsets. The anabolic metabolic program characteristic of effector T cells is

orchestrated by mammalian target of rapamycin (mTOR), Myc, and hypoxia-inducible factor (HIF)�

1a, which are engaged during T cell activation (Pollizzi and Powell, 2014). In contrast, memory T

cell metabolism is promoted by AMP-activated protein kinase (AMPK) – a nutrient sensor that is acti-

vated during low energy conditions and opposes signaling through mTOR, which is activated by

high nutrient levels (Pollizzi and Powell, 2014; Figure 3). Accordingly, memory T cell generation is

promoted by metformin-induced AMPK activation as well as rapamycin-mediated mTOR inhibition

(Araki et al., 2009; Pearce et al., 2009).

Although effector T cell responses have predominantly been associated with a shift toward ana-

bolic metabolic pathways, a more oxidative metabolic profile may be beneficial for T cell survival

and functionality in the context of a nutrient-depleted TME (see section on ‘Immune regulation in

the tumor microenvironment’). Various interventions that promote oxidative, mitochondrial meta-

bolic pathways in T cells enhance their anti-tumor function, for example promoting mitochondrial
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fusion, enhancing mitochondrial biogenesis, supplementing arginine, inducing fatty acid metabolism,

and inhibiting glutamine metabolism (Buck et al., 2016; Chowdhury et al., 2018; Geiger et al.,

2016; Leone et al., 2019; Scharping et al., 2016; Zhang et al., 2017).

Since the nutrient sensors mTOR and AMPK are affected by systemic metabolic state, an interest-

ing question is how the balance between mTOR- and AMPK-mediated metabolism may impact anti-

tumor T cell function downstream of systemic metabolism. While mTOR and AMPK are generally

activated in different energy conditions, both signaling pathways are engaged during T cell activa-

tion (Pollizzi and Powell, 2014). Given the importance of mTOR signaling in T cell activation and

acquisition of effector functions, the mTOR inhibitor rapamycin is generally viewed as immunosup-

pressive, and mTOR signaling has indeed been shown to support anti-tumor T cell responses

(Chaoul et al., 2015; Pollizzi et al., 2015). However, rapamycin can also promote anti-tumor immu-

nity in certain contexts, such as the MOC1 oral cancer model (Cash et al., 2015; Moore et al.,

2016). On the other hand, T cell-intrinsic AMPK signaling is also required for T cell responses, includ-

ing anti-tumor immunity, by promoting metabolic fitness and survival (Blagih et al., 2015;

Rao et al., 2015), which may be of particular relevance in the context of a nutrient-depleted TME.

Indeed, the AMPK activator metformin promotes anti-tumor T cell responses through several mecha-

nisms, including AMPK activation in T cells (Eikawa et al., 2015), AMPK-dependent degradation of

inhibitory ligand PD-L1 (Cha et al., 2018), and reduced oxygen consumption in tumor cells, likely

resulting from AMPK-independent inhibition of the electron transport chain by metformin

(Scharping et al., 2017). These findings show that the net result of the balance between effector

function-promoting mTOR and metabolic fitness-promoting AMPK is context-dependent and can

affect CD8+ T cell function both directly through T cell-intrinsic metabolic effects and indirectly

through other cell types. Cellular nutrient sensors like mTOR and AMPK thus provide an example of

how organismal metabolic state may interact with cellular metabolism and T cell function.

Figure 3. The balance between mTOR and AMPK signaling impacts anti-tumor immunity. High nutrient states induce mTOR signaling, which promotes

anabolic metabolism and reduces lifespan. Conversely, low energy states induce AMPK signaling, which promotes oxidative metabolism and extends

lifespan. While mTOR signaling is important for effector T cell responses, there is evidence to suggest that memory T cell-like oxidative metabolism

may be more beneficial for the anti-tumor T cell response. Since mTOR signaling is enhanced with obesity while AMPK signaling is promoted by dietary

restriction, altering the mTOR-AMPK balance may one way by which systemic metabolic state can affect CD8+ T cell function in cancer. AMPK, AMP-

activated protein kinase. mTOR, mammalian target of rapamycin.
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Metabolism and signaling with aging
Aging is a process characterized by widespread metabolic and signaling changes impacting many of

the pathways highlighted above (Barzilai et al., 2012), which may affect anti-tumor T cell responses.

Specific metabolic changes considered hallmarks of aging are mitochondrial dysfunction and dysre-

gulation of nutrient sensing (López-Otı́n et al., 2013). Underscoring the importance of metabolism

in regulating lifespan and aging, inhibition of insulin, insulin-like growth factor (IGF)�1, or mTOR sig-

naling increases lifespan, and so does enhancing AMPK signaling (López-Otı́n et al., 2016; López-

Otı́n et al., 2013; Figure 3). mTOR signaling also impacts immunity in aging: inhibition of mTOR sig-

naling improves hematopoiesis in aged mice as well as immune function in the contexts of vaccina-

tion and infection in elderly humans (Chen et al., 2009; Mannick et al., 2018; Mannick et al.,

2014). Systemic inflammation is similarly associated with aging – often referred to as ‘inflammaging’

(López-Otı́n et al., 2013), and this contributes to aging-related decline, as evidenced for example

by the observation that inhibition of pro-inflammatory NF-kB signaling can reduce aging phenotypes

(Tilstra et al., 2012). Interestingly, recent research demonstrated that T cells may contribute to age-

related inflammation and its metabolic complications, such as hyperglycemia (Bharath et al., 2020;

Desdı́n-Micó et al., 2020; Lee et al., 2019), and engineered T cells can prevent pathology by clear-

ing senescent cells (Amor et al., 2020). However, here we will focus on the inverse relationship: how

do systemic changes associated with aging impact T cell responses, particularly in the context of

cancer?

Cellular metabolic changes contribute to age-associated T cell dysfunction (Quinn et al., 2019;

Ron-Harel et al., 2015). For example, aged T cells are characterized by mitochondrial dysfunction

(Ron-Harel et al., 2018). This results in defective respiratory capacity and one-carbon metabolism,

and supplementation with one-carbon metabolites, like formate and glycine, can improve aged T

cell activation and survival (Ron-Harel et al., 2018). Both mitochondrial dysfunction and autophagy

contribute to inflammatory phenotypes in aged T cells, and this can be improved by the AMPK acti-

vator metformin (Bharath et al., 2020). Mitogen-activated protein kinase (MAPK) signaling, through

complex formation with a class of stress response proteins known as sestrins, directly contribute to

aged T cell dysfunction (Lanna et al., 2017). It should be noted that the aforementioned studies

were conducted in CD4+ T cells, and the effects in CD8+ T cells could thus be different, although

signs of mitochondrial dysfunction have been seen in aged human CD8+ T cells as well

(Moskowitz et al., 2017).

In some cases, different T cell subsets can display distinct metabolic phenotypes with age. For

example, aged CD8+ Tvm cell were recently shown to have enhanced respiratory capacity despite

being dysfunctional (Quinn et al., 2020). Furthermore, aged memory CD8+ T cells may have

increased mTOR activity and glycolysis well as a reduced ability to engage in autophagy

(Davenport et al., 2019; Henson et al., 2014), while newly activated aged CD4+ T cells fail to

induce glycolysis as robustly as younger counterparts (Ron-Harel et al., 2018). Thus, while the exact

metabolic properties of distinct T cell subsets in aging need to be further delineated, there is sub-

stantial evidence that metabolic dysregulation contributes to T cell dysfunction in aging.

Metabolism and signaling with obesity
Like aging, obesity is characterized by profound systemic changes in both humans and animal mod-

els, including insulin resistance, dyslipidemia, and inflammation, collectively leading to the so-called

metabolic syndrome (Barzilai et al., 2012; Huang, 2009). Adipose tissue inflammation plays a key

role in the pathophysiology of metabolic syndrome, and adipose tissue secretion of adipokines, such

as the satiety regulator leptin, and inflammatory cytokines into the circulation contributes to systemic

inflammatory and metabolic dysregulation (Bremer and Jialal, 2013). While not the focus of this

review, it is noteworthy that T cells also play an important role in the development of adipose tissue

inflammation and its systemic sequelae. Specifically, infiltration of CD8+ and inflammatory CD4+ T

cells into adipose tissue is increased with obesity, while CD4+ Tregs are reduced, contributing to adi-

pose tissue inflammation and insulin resistance (Feuerer et al., 2009; Nishimura et al., 2009;

Winer et al., 2009).

Obesity and metabolic syndrome are characterized by mTOR activation (Liu and Sabatini, 2020;

Figure 3). mTOR hyperactivation contributes to development of the metabolic syndrome, including

insulin resistance, as well as chronic inflammation, for example by promoting inflammatory cytokine
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secretion by cells of the innate immune system in the liver and adipose tissue (Jiang et al., 2014;

Liu and Sabatini, 2020). In turn, chronic inflammation associated with obesity is thought to promote

the dysfunctional T cell states described above (Shirakawa et al., 2016; Spielmann et al., 2014;

Wang et al., 2019).

Given the importance of metabolism in regulating T cell fate and function, it is likely that the vast

metabolic changes observed with obesity also affect T cell metabolism and function (Dyck and

Lynch, 2018; Turbitt et al., 2020). Indeed, in the context of influenza infection with HFD feeding,

C57BL/6 mouse CD8+ T cells display a shift toward oxidative metabolism accompanied by defective

memory T cell responses (Rebeles et al., 2019). This finding highlights the complex context-depen-

dent interactions between T cell metabolism, fate, and function, given that oxidative metabolism is

generally thought to promote memory T cell development (Pearce et al., 2009; van der Windt

et al., 2012). CD8+ T cells from obese BALB/c mice have increases in both spare respiratory capacity

and glycolytic reserve, indicating a more general metabolic dysfunction (Turbitt et al., 2020). These

findings contrast with the observed mitochondrial dysfunction in aged CD8+ T cells.

Increased circulating levels of the adipokine leptin with diet-induced obesity contribute to the

observed dysfunction in CD8+ T cells in the context of cancer, as leptin receptor-deficient T cells

mount a more effective anti-tumor response after adoptive transfer into HFD-fed recipients

(Wang et al., 2019). This is an interesting finding, given that the roles of leptin, while complex and

incompletely understood, are predominantly thought to promote T cell responses (Naylor and Petri,

2016). For example, leptin promotes proliferation, function, and glycolytic metabolism in CD4+ T

cells (Gerriets et al., 2016; Lord et al., 1998; Saucillo et al., 2014). Leptin also enhances mitochon-

drial metabolism in CD8+ T cells, and oncolytic virus-mediated expression of leptin in the TME

improved CD8+ T cell function in a mouse model of melanoma (Rivadeneira et al., 2019). One

potential explanation for this discrepancy is that leptin may have different effects in the context of

lean compared to obese organisms due to chronic exposure to elevated leptin levels with obesity.

This hypothesis is supported by the observations that intratumoral leptin delivery provides no bene-

fit in obese mice, in contrast to controls (Rivadeneira et al., 2019), and that neutralization of leptin

improves immunotherapy responsiveness in mice with diet-induced obesity (Murphy et al., 2018).

Further supporting the notion that leptin may reduce CD8+ T cell anti-tumor function in the context

of obesity, a recent study found that leptin contributes to CD8+ tumor-infiltrating lymphocyte (TIL)

dysfunction in a spontaneous breast cancer model (Zhang et al., 2020). This occurs through a

STAT3-mediated increase in FAO in CD8+ TILs, suggesting that FAO is harmful for the anti-tumor T

cell response. Like for leptin, different studies have yielded opposing results regarding the impact of

FAO on CD8+ TIL functionality. CD8+ T cells upregulate FAO in oxygen- and glucose-poor environ-

ments, like the TME, and promoting FAO through PPARa activation enhances CD8+ TIL function in

melanoma models (Zhang et al., 2017) and murine colorectal adenocarcinoma models

(Chowdhury et al., 2018). In all, the effects of FAO and leptin on anti-tumor CD8+ T cell function

are complex and likely dependent on many environmental factors, and further studies are needed to

delineate these.

In addition to leptin, circulating levels of free fatty acids and cholesterol are increased with obe-

sity, and these too may impact CD8+ T cell function, although there is currently only circumstantial

evidence to support this. Elevated fatty acid levels promote the differentiation of CD4+ T cells

toward an effector-memory-like phenotype in obesity (Mauro et al., 2017) and suppress the NK

cell-mediated anti-tumor response through the accumulation of intracellular lipids (Michelet et al.,

2018). Lipid accumulation in the TME of a pancreatic cancer model led to intracellular lipid accumu-

lation in CD8+ T cells, reducing their functionality (Manzo et al., 2020). Enabling the T cells to use

these lipids for oxidation restored T cell function. Therefore, how CD8+ T cells handle the lipids in a

particular context, i.e. intracellular accumulation versus use for FAO, may be a factor that determines

how environmental lipids affect T cell function. Moreover, the cholesterol content of the cell mem-

brane modulates CD8+ T cell function in tumors (Yang et al., 2016), but it is unclear whether this is

significantly impacted by increased cholesterol levels in the circulation with obesity.

Another metabolic feature often associated with obesity is insulin resistance, which leads to

increased plasma levels of both glucose and insulin. Hyperglycemia does not appear to affect

CD8+ T cell function (Recino et al., 2017), but the effects of hyperinsulinemia on CD8+ T cells are

not well-understood. T cells do express the insulin receptor and insulin signaling in T cells is required

for their metabolic reprogramming upon activation and optimal anti-viral responsiveness
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(Fischer et al., 2017; Tsai et al., 2018), suggesting that T cells could be sensitive to systemic altera-

tions in insulin signaling. Moreover, obesity-associated hyperinsulinemia inhibits IL-10-mediated

immunosuppression by Tregs (Han et al., 2014). Activated T cells from obese human subjects bind

less insulin, suggesting reduced expression of the insulin receptor in this condition (Helderman and

Raskin, 1980). However, the functional consequences of obesity-associated alterations in insulin sig-

naling on the anti-tumor CD8+ T cell response are currently unknown.

Metabolism and signaling with dietary restriction
The biological effects of dietary restriction are in many ways, perhaps expectedly, opposite to those

seen in obesity. Although human data are scarcer for dietary restriction than obesity, animal studies

have suggested that dietary restriction may provide widespread benefits, including protection from

various pathologies and increased lifespan (Fontana and Partridge, 2015; López-Otı́n et al., 2016;

Mattison et al., 2017; McCay et al., 1935). Dietary restriction also reduces cancer incidence in ani-

mal studies (Colman et al., 2009; Michels and Ekbom, 2004; Ross and Bras, 1965; Rous, 1914;

Weindruch and Walford, 1982) and may improve the efficacy of cancer therapies, including chemo-

therapy, radiotherapy and targeted therapies (Kopeina et al., 2017; O’Flanagan et al., 2017).

Prominent systemic metabolic consequences of dietary restriction include activation of AMPK and

PPARa signaling as well as a reduction of mTOR signaling, due to low insulin, IGF-1 and glucose lev-

els, together resulting in an increase in catabolic and mitochondrial metabolism (Kopeina et al.,

2017; Martin-Montalvo and de Cabo, 2013; Figure 3). These metabolic changes are important, as

reduced IGF-1 levels contribute to the anti-cancer effects of caloric restriction in mice

(Nogueira et al., 2012). AMPK-mediated metabolism also counteracts inflammatory pathways, thus

dampening age-related systemic inflammation and its consequences (O’Neill and Hardie, 2013).

As described above, effector T cell responses are associated with mTOR-mediated anabolic

metabolism, whereas memory T cell development is supported by AMPK-promoted oxidative path-

ways. However, in many instances, interventions that induce oxidative, mitochondrial metabolism

result in enhanced anti-tumor T cell function (Buck et al., 2016; Geiger et al., 2016; Leone et al.,

2019; Scharping et al., 2016), and AMPK signaling can promote anti-tumor immunity (Cha et al.,

2018; Eikawa et al., 2015; Rao et al., 2015). Dietary restriction also induces sirtuin 1 activity

(Cohen et al., 2004), which can support anti-tumor function in CD4+ T cells (Chatterjee et al.,

2018). Effector and memory T cell subsets may respond differently to such systemic metabolic alter-

ations given their distinct metabolic dependencies. Indeed, memory T cells assume a metabolically

quiescent state with reduced mTOR signaling during dietary restriction, resulting in increased pro-

tection in infection and tumors (Collins et al., 2019). Further work is needed to understand how sys-

temic metabolic alterations with dietary restriction, shifting toward catabolic, AMPK-induced

metabolism, may contribute to enhanced CD8+ T cell responses against tumors.

Immune modulation in the tumor microenvironment
Both cellular and metabolic factors contribute to the immunosuppressive nature of the TME. Cancer

cells, Tregs, macrophages, MDSCs, and fibroblasts cultivate a highly immunosuppressive microenvi-

ronment, where CD8+ T cell responses are impaired by signaling through inhibitory receptors, sup-

pressive cytokines, and reduced antigen presentation (Anderson et al., 2017; Figure 4). Metabolic

challenges in the TME constitute another layer of immunosuppression (Lim et al., 2020). For exam-

ple, T cells compete with tumor cells and other intratumoral cell populations for nutrients, which are

limited by the tumor vasculature and high density of metabolically active tumor cells. This has been

shown most specifically for glucose (Chang et al., 2015; Ho et al., 2015), but may apply to other

nutrients as well. Accordingly, immunosuppressive cells in the TME express the enzymes arginase

and indoleamine 2,3-dioxygenase, which degrade the amino acids arginine and tryptophan respec-

tively, resulting in suppression of T cell responses (Rodriguez et al., 2004; Uyttenhove et al.,

2003). Moreover, metabolic waste products, such as lactate, accumulate in the TME and suppress T

cells (Brand et al., 2016). Finally, tumors often induce cell-intrinsic metabolic changes in T cells, like

reduced mitochondrial mass and function, which impair their anti-tumor functionality (Kumar et al.,

2020; Scharping et al., 2016).
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Immune modulation in the tumor microenvironment with aging
Aging alters the TME in various ways (Fane and Weeraratna, 2020). For example, the aged TME is

characterized by increased immunosuppressive immune populations. Both Tregs and MDSCs have

been implicated in enhanced immunosuppression in aged tumors (Dominguez and Lustgarten,

2008; Grizzle et al., 2007; Hurez et al., 2012; Sekido et al., 2019; Sharma et al., 2006), although

the literature on Tregs is inconsistent, as some studies have described reduced Tregs numbers in

tumors in aged animals (Kugel et al., 2018). As for the mechanisms underlying increased MDSC infil-

tration in aged tumors, local senescent stromal cells, most notably fibroblasts, promote MDSC accu-

mulation in the TME through the secretion of inflammatory cytokines like IL-6 (Ruhland et al., 2016).

M2 macrophages, another immunosuppressive myeloid population, have been less studied in this

context, but they are also enriched in lymphoid tissues of aged mice (Jackaman et al., 2013) and

might be enhanced in tumors as well (Figure 4).

Aged fibroblasts can also perform additional immunosuppressive roles. For example, mitochon-

drial dysfunction in cancer-associated fibroblasts may lead to enhanced secretion of reactive oxygen

species and lactate (Balliet et al., 2011), thereby making the TME less permissive to T cell function.

Moreover, fibroblast dysfunction contributes to a decrease in extracellular matrix (ECM) integrity

with age, which, in addition to promoting cancer metastasis, likely impairs CD8+ T cell infiltration

(Kaur et al., 2019). The aged microenvironment can also impact cancer cell-intrinsic signaling path-

ways, such as Wnt signaling (Kaur et al., 2016), which in turn might affect immune infiltration

Figure 4. Shifts in the tumor immune infiltrate affect anti-tumor CD8+ T cell function in distinct systemic conditions. In addition to CD8+ T cells, the

TME contains other immune populations, some of which are immunostimulatory (e.g. M1-polarized macrophages), while others are suppressive (e.g.

M2-polarized macrophages, MDSCs and Tregs). In aging, enhanced MDSC numbers and potentially M2 macrophages contribute to

immunosuppression, resulting in a reduced anti-tumor CD8+ T cell response. Tregs may be either increased or decreased with aging. Similar shifts in

cellular populations in the TME exist with obesity. In dietary restriction, Treg and MDSC numbers are reduced while macrophage polarization is shifted

toward the M1 phenotype, resulting in an increased anti-tumor CD8+ T cell response. MDSC, myeloid-derived suppressor cell. TME, tumor

microenvironment. Treg, regulatory T cell.
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(Spranger et al., 2015). However, the tumor cell-intrinsic signaling and metabolic changes with

aging are generally not well-understood.

Immune modulation in the tumor microenvironment with obesity
Little is currently known about how the systemic metabolic alterations associated with obesity impact

the metabolic conditions in the TME locally. Changes to the intratumoral cellular populations are

somewhat better understood. Most notably and similar to aging, the TME contains higher numbers

of immunosuppressive myeloid cells with obesity, including MDSCs (Clements et al., 2018;

Hale et al., 2015; Turbitt et al., 2019), neutrophils (Incio et al., 2016), and dysfunctional dendritic

cells (James et al., 2012) in multiple cancer models. These populations contribute to cancer pro-

gression, metastasis, and suppression of CD8+ T cell function (Clements et al., 2018; Incio et al.,

2016; James et al., 2012; Norian et al., 2009; Quail et al., 2017). M2-polarized macrophage num-

bers are increased in human breast adipose tissue with obesity, suggesting that these may also play

a role in the context of cancer (Springer et al., 2019). In contrast, Treg infiltration in tumors is similar

in animals with diet-induced obesity compared to controls (Wang et al., 2019), suggesting that

enhanced immunosuppression in the obese TME is largely mediated by myeloid populations

(Figure 4).

Immune modulation in the tumor microenvironment with dietary
restriction
Some of the beneficial effect of dietary restriction on anti-tumor immunity is likely caused by tumor

cell-intrinsic metabolic changes. For example, a low-protein diet induces tumoral endoplasmic reticu-

lum (ER) stress pathways, mediated by inositol-requiring enzyme (IRE)1a, and retinoic acid-inducible

gene (RIG)-I activation, which may induce an immunostimulatory cytokine response (Rubio-

Patiño et al., 2018). Tumor cell-intrinsic changes also stimulate the anti-tumor immune response by

reducing immunosuppressive populations in the TME, such as Tregs. For example, dietary restriction

or a CRM enhances the efficacy of chemotherapy and anti-tumor CD8+ T cell response in a manner

dependent on cancer cell autophagy, which may deplete Tregs from the tumor bed by releasing

ATP (Pietrocola et al., 2016). FMD also prevents Treg accumulation in the TME, which is partially

dependent on downregulation of heme oxygenase (HO)�1 in tumors (Di Biase et al., 2016).

In addition to Tregs, dietary restriction also reduces myeloid cell-mediated immunosuppression in

the TME. MDSC numbers are reduced in tumors in mice with dietary restriction, correlating with

enhanced CD8+ T cell infiltration (Turbitt et al., 2019), and there is evidence to suggest that shifting

away from mTOR-mediated and toward AMPK-mediated metabolism impairs the suppressive capac-

ity of MDSCs (Deng et al., 2018; Salminen et al., 2019). Low-protein diet shifts the balance of

tumor-associated macrophages away from the immunosuppressive M2 phenotype and toward the

inflammatory M1 phenotype (Orillion et al., 2018). Thus, tumor cell-intrinsic metabolic changes and

a reduction in suppressive immune populations appear to be the main drivers for the enhanced anti-

tumor CD8+ T cell response seen with dietary restriction (Figure 4).

Cancer immunotherapies
Cancer immunotherapeutic strategies include immune checkpoint blockade (ICB), adoptive cell ther-

apy, cancer vaccines, and engagement of innate (e.g., Toll-like receptors) or adaptive (e.g. OX40)

immunostimulatory receptors. Immune checkpoint blockade (ICB) and adoptive cell therapy are now

FDA-approved cancer immunotherapies. With ICB, antibodies are used to prevent the binding of

inhibitory receptors on T cells, such as CTLA-4 and PD-1, to their ligands. CTLA-4-targeting antibod-

ies were approved for melanoma treatment in 2011, making them the first approved form of ICB for

cancer therapy (Baumeister et al., 2016). Anti-PD-1 therapies were approved for melanoma in 2014

and PD-1 pathway blockade is now approved for many other cancer types, including solid tumors

with a high degree of microsatellite instability or DNA mismatch repair deficiency regardless of ana-

tomical location or tissue of origin (Boyiadzis et al., 2018; Waldman et al., 2020). An exciting fea-

ture of ICB therapies is that they induce very long-lasting responses in some patients

(Ledford, 2016). However, many patients currently do not respond to ICB, and innovative strategies

to provide the therapeutic benefits of ICB to more patients are therefore highly sought after

(Park et al., 2018).
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Another therapeutic strategy to induce an anti-tumor T cell response is the administration of T

cells that can recognize cancer antigens. There are two main adoptive T cell therapy approaches.

First, T cells can be isolated from a tumor and expanded ex vivo; this approach has had some suc-

cess in melanoma (Rosenberg and Restifo, 2015). Second, T cells can be transduced with a TCR or

a chimeric antigen receptor (CAR) specific for a cancer antigen. CAR T cell therapies have been

most efficacious in hematological cancers by targeting the B cell antigen CD19, while success in solid

tumors has been limited so far (Jacoby et al., 2019; June et al., 2018).

Cancer immunotherapies with aging
Several immunotherapeutic modalities, such as engagement of immunostimulatory receptors (e.g.

TLRs or OX40) and cancer vaccination strategies (using DNA, tumor cells or dendritic cells), are less

effective in aged animals (Castro et al., 2009; Dominguez and Lustgarten, 2008; Grolleau-

Julius et al., 2008; Provinciali et al., 2003; Provinciali et al., 2000; Ruby and Weinberg, 2009).

Fewer T cells are recovered following adoptive transfer of young T cells into aged compared to

young tumor-bearing mice (Farazi et al., 2014), suggesting that adoptive cell therapies may also be

less effective with aging, in a manner dependent on the aged host environment. These results have

contributed to the general notion of decreased anti-tumor immune function with age.

In contrast, most available data suggest that the efficacy of ICB is intact in aged human cancer

patients and in animal tumor models (Figure 5). Kugel et al. found that responsiveness to anti-PD-1

was even enhanced in older human melanoma patients and aged mice, and this was associated with

increased CD8+ T cell infiltration (Kugel et al., 2018). Others have also found good ICB responsive-

ness in elderly patients with melanoma (Ben-Betzalel et al., 2019; Betof et al., 2017) or non-small

cell lung cancer (Lichtenstein et al., 2019), and across multiple cancer types (Corbaux et al., 2019).

Overall, most human studies show at least similar efficacy of anti-CTLA-4 and anti-PD-(L)1 therapies

in older compared to younger patients (Huang et al., 2020; Pawelec, 2019; Poropatich et al.,

2017).

In murine studies, the responsiveness to ICB varies with cancer type and the immunotherapy

used. Anti-CTLA-4, anti-PD-1 and anti-PD-L1 monotherapies are all highly effective in aged animals

with an oral cancer model (Sekido et al., 2019). Aged and young mice respond similarly to anti-PD-

L1 immunotherapy in a hematological malignancy model (Mirza et al., 2010). However, in the B16

melanoma model, anti-PD-1 is equally effective between aged and young mice, whereas anti-CTLA-

4 works less well and anti-PD-L1 does not work at all (Padrón et al., 2018). Responsiveness to anti-

CTLA-4 and anti-PD-L1 is also reduced in aged breast cancer models, but efficacy can be improved

by enhancing interferon signaling in the TME (Sceneay et al., 2019). Thus, while ICB appears to

Figure 5. The net effects of systemic conditions on anti-tumor immunity and ICB responsiveness. Aging and obesity lead to a reduced anti-tumor T cell

response compared to a young, lean adult at baseline, i.e. without immunotherapy, while dietary restriction enhances the baseline anti-tumor immune

response. However, the efficacy of ICB therapy is intact or even enhanced with aging and mostly increased with obesity, although this may not apply to

all cancer types and patient subsets. ICB responsiveness with dietary restriction has not been sufficiently studied to know whether this is altered. ICB,

immune checkpoint blockade.
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remain efficacious with aging in mice and humans, further studies are needed to delineate the

(determinants of) efficacy of different immunotherapeutic modalities in aged populations.

Cancer immunotherapies with obesity
Surprisingly, although obesity reduces the anti-tumor immune response, the efficacy of ICB cancer

immunotherapy is enhanced in both animal models and human obesity in multiple cancer types

(McQuade et al., 2018; Wang et al., 2019; Xu et al., 2019; Figure 5). However, not all studies

have found enhanced efficacy of ICB immunotherapy in mice with diet-induced obesity

(Murphy et al., 2018). This may be explained by several differences, including the mouse strain

(BALB/c versus C57/BL6), cancer model (renal cell carcinoma versus melanoma and lung carcinoma

models) and modalities of immunotherapy (anti-CTLA-4 combined with other immunostimulants ver-

sus anti-PD-1) (Murphy et al., 2018; Wang et al., 2019). The discrepancy in results obtained with

these different animal models correlates with human data, where obesity improves the efficacy of

ICB in patients with melanoma and non-small cell lung cancer, but not renal cell carcinoma

(Xu et al., 2019). Sex may also be a relevant factor, since some studies have found that better out-

comes after ICB with obesity are mostly driven by male patients (McQuade et al., 2018; Naik et al.,

2019), although a meta-analysis found that they are independent of sex (Xu et al., 2019). Further

studies are needed to determine which patient and cancer subsets display improved outcomes upon

ICB therapy with obesity.

The increase in responsiveness to cancer immunotherapy with obesity in many cancer types sug-

gests that obesity-associated immunosuppressive factors can be overcome with the removal of inhib-

itory signals like PD-(L)1 signaling. It is currently unknown whether the enhanced efficacy of ICB in

obese compared to non-obese subjects can be explained by obesity-related systemic alterations

that directly promote T cell function, or by indirect factors, such as tumor cells being more prone to

immune attack. Finally, the findings of ICB responsiveness with obesity likely do not translate to all

types of cancer immunotherapy, as other modalities have shown decreased functionality

(James et al., 2012). This suggests that, like with aging, ICB responsiveness may be better than

other immunotherapies in obesity.

Cancer immunotherapies with dietary restriction
Very little information is available on responsiveness to cancer immunotherapy with dietary restric-

tion. In one study, low-protein diet did not change anti-tumor immunity alone, but it did enhance

responsiveness to anti-PD-1 in a mouse model of renal cell cancer (Orillion et al., 2018). This con-

trasts with a study discussed above, in which low-protein diet alone reduced tumor progression in

murine lymphoma, colorectal adenocarcinoma and melanoma models (Rubio-Patiño et al., 2018).

Dietary restriction improves the efficacy of OX40 agonist immunotherapy in murine tumors as well as

activation of CD4+, but not CD8+, T cells (Farazi et al., 2014). The limited data available from animal

studies suggest that there is no paradoxical reduction of ICB efficacy with dietary restriction, as

might have been feared based on the data described above for aging and diet-induced obesity, but

more studies are needed.

Concluding remarks
While many outstanding questions remain, age and systemic metabolic state impact anti-tumor

CD8+ T cell responses. Systemic and TME-specific factors in the host environment as well as CD8+ T

cell-intrinsic factors play a role. There are striking similarities in the changes observed with aging and

obesity: both induce a chronic inflammatory state, reduce naı̈ve CD8+ T cell generation, promote

dysfunctional T cell states, and increase immunosuppressive myeloid cell populations in tumors.

Together, these factors significantly reduce the anti-tumor CD8+ T cell response. In contrast, dietary

restriction promotes anti-tumor immunity by opposing most of these age- and obesity-related mech-

anisms. Dietary restriction also causes cancer cell-intrinsic metabolic changes, such as induction of

autophagy and ER stress, which benefit the anti-tumor T cell response. A dietary restriction-induced

systemic shift toward AMPK-mediated oxidative metabolism likely contributes to the development

of an environment that is more conducive to anti-tumor CD8+ T cell function by reducing systemic

inflammation and improving the TME cellular landscape. Additionally, enhanced AMPK signaling in

CD8+ T cells themselves may promote their survival and function in the TME.
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The parallels between aging and obesity, and how they contrast with dietary restriction, are fur-

ther emphasized by research looking at a combination of these conditions. For example, the

observed increase in expression of PD-1 and other exhaustion markers on T cells in melanoma

tumors with high body weight was more pronounced in patients over 60 years of age (Wang et al.,

2019). Moreover, dietary restriction can restore some of the age-related decline in anti-tumor func-

tion of CD4+ T cells and responsiveness to OX40 immunotherapy (Farazi et al., 2014). Aged and

obese mice display a similar immune dysregulation, leading to a harmful cytokine storm upon admin-

istration of immunotherapy consisting of a costimulatory receptor CD40 agonist combined with IL-2,

which caloric restriction protects against (Mirsoian et al., 2014). These findings suggest that aging

and obesity activate common pathways to impair the anti-tumor immune response, and these can

be counteracted by dietary restriction.

The observation that responsiveness to ICB immunotherapies, like anti-PD-1, is intact or even

enhanced in aged or obese individuals is surprising. Typically, having a better pre-existing anti-tumor

CD8+ T cell response, as evidenced by intratumoral CD8+ T cell infiltration, increases the chances of

responding to ICB (Ji et al., 2012). The mechanisms underlying this paradox in the context of age

and obesity are unclear. Perhaps some of the dysfunctional T cell populations in aging and obesity

are more prone to (re)activation by blockade of coinhibitory receptor signaling. If so, that would also

explain why, in contrast to ICB, other immunotherapy modalities yield reduced responses with age

and obesity in animal models. Intratumoral exhausted CD8+ T cells can be divided into several sub-

populations including ‘terminally exhausted’ and ‘progenitor exhausted’ populations, the former

having higher cytolytic function and the latter being more important for responsiveness to anti-PD-1

therapy (Beltra et al., 2020; Hudson et al., 2019; Im et al., 2016; Miller et al., 2019). It would be

interesting to investigate whether an altered distribution of intratumoral CD8+ T cells between these

populations with aging or obesity could contribute to the observed paradox of reduced baseline

anti-tumor immunity with intact ICB responses.

Despite much progress over recent years, many important questions remain unanswered. First,

how conditions of obesity or dietary restriction impact nutrient availability in the TME is largely a

black box. Dietary changes can alter the metabolic composition of the TME (Maddocks et al., 2017;

Sullivan et al., 2019), but this has not been analyzed for HFD or dietary restriction. Given the limited

blood supply and high local metabolic rates in a tumor, alterations in metabolite concentrations in

the circulation may not be proportionally reflected in the TME (Sullivan et al., 2019). Moreover, diet

can change cancer cell metabolism (Bose et al., 2020; Lien and Vander Heiden, 2019), further

shaping the metabolic conditions in the TME and in some cases benefitting specific intratumoral cell

populations (Kumagai et al., 2020). Second, it is largely unknown what the intracellular fates of

nutrients in the TME are and how these may differ between cell types. Third, there are various sys-

temic conditions in addition to the ones discussed here for which the effects on anti-tumor immunity

are unknown, and it would be interesting to explore those. Fourth, since mouse research studying

obesity often involves the feeding of a HFD, the question arises whether the observed effects are

due to the diet itself or the obese state. Delineating the contributions of diet and obese state to

both systemic and TME-specific metabolic alterations will be an exciting avenue for future studies

with potential therapeutic implications. And finally, preclinical findings with dietary restriction, sug-

gesting enhanced anti-tumor T cell responses, look promising. It needs to be determined whether

combination of dietary restriction and CRMs with immunotherapies can boost anti-tumor immunity,

and some such trials are already underway (Lévesque et al., 2019). To further facilitate this, it would

be important to assess which exact dietary interventions are most beneficial in which context and

what metabolic changes underly any therapeutic benefit.

Research investigating the impact of age and metabolic state on both cancer biology and anti-

tumor immunity also has methodological implications and highlights shortcomings of the currently

available technologies. For one, it may be important to use aged and/or metabolically unhealthy ani-

mals for investigations into the anti-tumor immune response, in addition to the lean, young animals

that are most commonly used, to better model cancer patients and improve the translatability of any

findings. In that regard, it is noteworthy that there is a high degree of congruency between existing

human and animal data concerning anti-tumor immunity and ICB responsiveness with age, obesity,

and dietary restriction. Moreover, despite the value and practicality of using implantable tumor mod-

els for animal studies, they have some limitations, including (1) they do not assess effects of the

‘agedness’ of cancer cells themselves, and (2) they study cancer progression, whereas most human
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studies quantify cancer incidence. There may be value in using animal models of spontaneous tumor

growth to assess how age and diet alter immune surveillance, although there are challenges to this

approach, as genetic cancer models are typically not very immunogenic. Finally, it remains very chal-

lenging to determine the activity intracellular metabolic pathways in distinct cell populations in a tis-

sue, for example a tumor, in vivo. Mass spectrometry-based approaches are complicated, given that

only limited CD8+ T cell numbers can be obtained from a tumor and extensive processing and sort-

ing procedures are required for their isolation, which are bound to impact metabolite pool sizes.

Recently, several groups have made progress in this area, for example using in vivo infusion of isoto-

pically labeled glucose to assess T cell metabolism (Ma et al., 2019) or tracing isotopically labeled

nutrients into macromolecules with a slow turnover rate in distinct intratumoral cell populations, spe-

cifically cancer cells and fibroblasts (Lau et al., 2020). Others have developed advanced flow cyto-

metric strategies for reading out metabolic characteristics at a single-cell level (Ahl et al., 2020).

Cancer represents a huge public health burden, and the cancer risk factors of old age and obesity

are increasing in prevalence. It is therefore increasingly critical to consider these factors in the design

of cancer immunotherapies. Expanding our knowledge of the macroenvironmental determinants of

anti-tumor immunity should reveal new ways to extend the benefit of cancer immunotherapies to

more patients.
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Bénéteau M, Zunino B, Jacquin MA, Meynet O, Chiche J, Pradelli LA, Marchetti S, Cornille A, Carles M, Ricci JE.
2012. Combination of glycolysis inhibition with chemotherapy results in an antitumor immune response. PNAS
109:20071–20076. DOI: https://doi.org/10.1073/pnas.1206360109, PMID: 23169636

Betof AS, Nipp RD, Giobbie-Hurder A, Johnpulle RAN, Rubin K, Rubinstein SM, Flaherty KT, Lawrence DP,
Johnson DB, Sullivan RJ. 2017. Impact of age on outcomes with immunotherapy for patients with melanoma.
The Oncologist 22:963–971. DOI: https://doi.org/10.1634/theoncologist.2016-0450, PMID: 28476944

Bharath LP, Agrawal M, McCambridge G, Nicholas DA, Hasturk H, Liu J, Jiang K, Liu R, Guo Z, Deeney J,
Apovian CM, Snyder-Cappione J, Hawk GS, Fleeman RM, Pihl RMF, Thompson K, Belkina AC, Cui L, Proctor
EA, Kern PA, et al. 2020. Metformin enhances autophagy and normalizes mitochondrial function to alleviate
Aging-Associated inflammation. Cell Metabolism 32:44–55. DOI: https://doi.org/10.1016/j.cmet.2020.04.015,
PMID: 32402267

Blackburn SD, Shin H, Haining WN, Zou T, Workman CJ, Polley A, Betts MR, Freeman GJ, Vignali DA, Wherry
EJ. 2009. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection.
Nature Immunology 10:29–37. DOI: https://doi.org/10.1038/ni.1679, PMID: 19043418

Blagih J, Coulombe F, Vincent EE, Dupuy F, Galicia-Vázquez G, Yurchenko E, Raissi TC, van der Windt GJ, Viollet
B, Pearce EL, Pelletier J, Piccirillo CA, Krawczyk CM, Divangahi M, Jones RG. 2015. The energy sensor AMPK
regulates T cell metabolic adaptation and effector responses in vivo. Immunity 42:41–54. DOI: https://doi.org/
10.1016/j.immuni.2014.12.030, PMID: 25607458

Drijvers et al. eLife 2020;9:e62420. DOI: https://doi.org/10.7554/eLife.62420 18 of 29

Review Article Cancer Biology Immunology and Inflammation

https://doi.org/10.1371/journal.pone.0051357
https://doi.org/10.1371/journal.pone.0051357
http://www.ncbi.nlm.nih.gov/pubmed/23236485
https://doi.org/10.1038/s42003-020-1027-9
http://www.ncbi.nlm.nih.gov/pubmed/32533056
https://doi.org/10.1016/j.stem.2017.02.009
https://doi.org/10.1016/j.stem.2017.02.009
http://www.ncbi.nlm.nih.gov/pubmed/28330582
https://doi.org/10.1038/s41586-020-2403-9
https://doi.org/10.1038/s41586-020-2403-9
http://www.ncbi.nlm.nih.gov/pubmed/32555459
https://doi.org/10.1016/j.ccell.2017.02.008
https://doi.org/10.1016/j.ccell.2017.02.008
http://www.ncbi.nlm.nih.gov/pubmed/28292435
https://doi.org/10.1038/nature08155
http://www.ncbi.nlm.nih.gov/pubmed/19543266
https://doi.org/10.4049/jimmunol.0900743
http://www.ncbi.nlm.nih.gov/pubmed/19734223
https://doi.org/10.4161/cc.10.23.18254
https://doi.org/10.1038/nature04444
https://doi.org/10.1038/nature04444
http://www.ncbi.nlm.nih.gov/pubmed/16382236
https://doi.org/10.2337/db11-1300
http://www.ncbi.nlm.nih.gov/pubmed/22618766
https://doi.org/10.1146/annurev-immunol-032414-112049
http://www.ncbi.nlm.nih.gov/pubmed/26927206
https://doi.org/10.1073/pnas.1000834107
http://www.ncbi.nlm.nih.gov/pubmed/20304793
https://doi.org/10.1016/j.immuni.2020.04.014
https://doi.org/10.1016/j.immuni.2020.04.014
http://www.ncbi.nlm.nih.gov/pubmed/32396847
https://doi.org/10.1016/j.ejca.2018.12.012
http://www.ncbi.nlm.nih.gov/pubmed/30648631
https://doi.org/10.1073/pnas.1206360109
http://www.ncbi.nlm.nih.gov/pubmed/23169636
https://doi.org/10.1634/theoncologist.2016-0450
http://www.ncbi.nlm.nih.gov/pubmed/28476944
https://doi.org/10.1016/j.cmet.2020.04.015
http://www.ncbi.nlm.nih.gov/pubmed/32402267
https://doi.org/10.1038/ni.1679
http://www.ncbi.nlm.nih.gov/pubmed/19043418
https://doi.org/10.1016/j.immuni.2014.12.030
https://doi.org/10.1016/j.immuni.2014.12.030
http://www.ncbi.nlm.nih.gov/pubmed/25607458
https://doi.org/10.7554/eLife.62420


Bose S, Allen AE, Locasale JW. 2020. The molecular link from diet to Cancer cell metabolism. Molecular Cell 78:
1034–1044. DOI: https://doi.org/10.1016/j.molcel.2020.05.018, PMID: 32504556

Boyiadzis MM, Kirkwood JM, Marshall JL, Pritchard CC, Azad NS, Gulley JL. 2018. Significance and implications
of FDA approval of pembrolizumab for biomarker-defined disease. Journal for ImmunoTherapy of Cancer 6:35.
DOI: https://doi.org/10.1186/s40425-018-0342-x, PMID: 29754585

Brand A, Singer K, Koehl GE, Kolitzus M, Schoenhammer G, Thiel A, Matos C, Bruss C, Klobuch S, Peter K,
Kastenberger M, Bogdan C, Schleicher U, Mackensen A, Ullrich E, Fichtner-Feigl S, Kesselring R, Mack M, Ritter
U, Schmid M, et al. 2016. LDHA-Associated Lactic Acid Production Blunts Tumor Immunosurveillance by T and
NK Cells. Cell Metabolism 24:657–671. DOI: https://doi.org/10.1016/j.cmet.2016.08.011

Bremer AA, Jialal I. 2013. Adipose tissue dysfunction in nascent metabolic syndrome. Journal of Obesity 2013:1–
8. DOI: https://doi.org/10.1155/2013/393192

Buck MD, O’Sullivan D, Klein Geltink RI, Curtis JD, Chang CH, Sanin DE, Qiu J, Kretz O, Braas D, van der Windt
GJ, Chen Q, Huang SC, O’Neill CM, Edelson BT, Pearce EJ, Sesaki H, Huber TB, Rambold AS, Pearce EL. 2016.
Mitochondrial dynamics controls T cell fate through metabolic programming. Cell 166:63–76. DOI: https://doi.
org/10.1016/j.cell.2016.05.035, PMID: 27293185

Buck MD, Sowell RT, Kaech SM, Pearce EL. 2017. Metabolic instruction of immunity. Cell 169:570–586.
DOI: https://doi.org/10.1016/j.cell.2017.04.004, PMID: 28475890

Burnet M. 1957. Cancer: a biological approach. British Medical Journal 1:841–847. DOI: https://doi.org/10.1136/
bmj.1.5023.841

Cash H, Shah S, Moore E, Caruso A, Uppaluri R, Van Waes C, Allen C. 2015. mTOR and MEK1/2 inhibition
differentially modulate tumor growth and the immune microenvironment in syngeneic models of oral cavity
Cancer. Oncotarget 6:36400–36417. DOI: https://doi.org/10.18632/oncotarget.5063, PMID: 26506415

Castro F, Leal B, Denny A, Bahar R, Lampkin S, Reddick R, Lu S, Gravekamp C. 2009. Vaccination with Mage-b
DNA induces CD8 T-cell responses at young but not old age in mice with metastatic breast Cancer. British
Journal of Cancer 101:1329–1337. DOI: https://doi.org/10.1038/sj.bjc.6605329, PMID: 19826426

Cha JH, Yang WH, Xia W, Wei Y, Chan LC, Lim SO, Li CW, Kim T, Chang SS, Lee HH, Hsu JL, Wang HL, Kuo CW,
Chang WC, Hadad S, Purdie CA, McCoy AM, Cai S, Tu Y, Litton JK, et al. 2018. Metformin promotes antitumor
immunity via Endoplasmic-Reticulum-Associated degradation of PD-L1. Molecular Cell 71:606–620.
DOI: https://doi.org/10.1016/j.molcel.2018.07.030, PMID: 30118680

Chang CH, Curtis JD, Maggi LB, Faubert B, Villarino AV, O’Sullivan D, Huang SC, van der Windt GJ, Blagih J, Qiu
J, Weber JD, Pearce EJ, Jones RG, Pearce EL. 2013. Posttranscriptional control of T cell effector function by
aerobic glycolysis. Cell 153:1239–1251. DOI: https://doi.org/10.1016/j.cell.2013.05.016, PMID: 23746840

Chang CH, Qiu J, O’Sullivan D, Buck MD, Noguchi T, Curtis JD, Chen Q, Gindin M, Gubin MM, van der Windt
GJ, Tonc E, Schreiber RD, Pearce EJ, Pearce EL. 2015. Metabolic competition in the tumor microenvironment is
a driver of Cancer progression. Cell 162:1229–1241. DOI: https://doi.org/10.1016/j.cell.2015.08.016,
PMID: 26321679

Chaoul N, Fayolle C, Desrues B, Oberkampf M, Tang A, Ladant D, Leclerc C. 2015. Rapamycin impairs antitumor
CD8+ T-cell responses and Vaccine-Induced tumor eradication. Cancer Research 75:3279–3291. DOI: https://
doi.org/10.1158/0008-5472.CAN-15-0454, PMID: 26122844

Chaplin DD. 2010. Overview of the immune response. Journal of Allergy and Clinical Immunology 125:S3–S23.
DOI: https://doi.org/10.1016/j.jaci.2009.12.980, PMID: 20176265

Chatterjee S, Daenthanasanmak A, Chakraborty P, Wyatt MW, Dhar P, Selvam SP, Fu J, Zhang J, Nguyen H,
Kang I, Toth K, Al-Homrani M, Husain M, Beeson G, Ball L, Helke K, Husain S, Garrett-Mayer E, Hardiman G,
Mehrotra M, et al. 2018. CD38-NAD+Axis regulates immunotherapeutic Anti-Tumor T cell response. Cell
Metabolism 27:85–100. DOI: https://doi.org/10.1016/j.cmet.2017.10.006, PMID: 29129787

Chen C, Liu Y, Liu Y, Zheng P. 2009. mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem
cells. Science Signaling 2:ra75. DOI: https://doi.org/10.1126/scisignal.2000559, PMID: 19934433

Chiu BC, Martin BE, Stolberg VR, Chensue SW. 2013. Cutting edge: central memory CD8 T cells in aged mice are
virtual memory cells. The Journal of Immunology 191:5793–5796. DOI: https://doi.org/10.4049/jimmunol.
1302509, PMID: 24227783

Chowdhury PS, Chamoto K, Kumar A, Honjo T. 2018. PPAR-Induced fatty acid oxidation in T cells increases the
number of Tumor-Reactive CD8+ T Cells and Facilitates Anti-PD-1 Therapy. Cancer Immunology Research 6:
1375–1387. DOI: https://doi.org/10.1158/2326-6066.CIR-18-0095, PMID: 30143538

Clements VK, Long T, Long R, Figley C, Smith DMC, Ostrand-Rosenberg S. 2018. Frontline science: high fat diet
and leptin promote tumor progression by inducing myeloid-derived suppressor cells. Journal of Leukocyte
Biology 103:395–407. DOI: https://doi.org/10.1002/JLB.4HI0517-210R, PMID: 29345342

Cohen HY, Miller C, Bitterman KJ, Wall NR, Hekking B, Kessler B, Howitz KT, Gorospe M, de Cabo R, Sinclair
DA. 2004. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science
305:390–392. DOI: https://doi.org/10.1126/science.1099196, PMID: 15205477

Collins N, Han SJ, Enamorado M, Link VM, Huang B, Moseman EA, Kishton RJ, Shannon JP, Dixit D, Schwab SR,
Hickman HD, Restifo NP, McGavern DB, Schwartzberg PL, Belkaid Y. 2019. The bone marrow protects and
optimizes immunological memory during dietary restriction. Cell 178:1088–1101. DOI: https://doi.org/10.1016/
j.cell.2019.07.049, PMID: 31442402

Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, Allison DB, Cruzen C, Simmons
HA, Kemnitz JW, Weindruch R. 2009. Caloric restriction delays disease onset and mortality in rhesus monkeys.
Science 325:201–204. DOI: https://doi.org/10.1126/science.1173635, PMID: 19590001

Drijvers et al. eLife 2020;9:e62420. DOI: https://doi.org/10.7554/eLife.62420 19 of 29

Review Article Cancer Biology Immunology and Inflammation

https://doi.org/10.1016/j.molcel.2020.05.018
http://www.ncbi.nlm.nih.gov/pubmed/32504556
https://doi.org/10.1186/s40425-018-0342-x
http://www.ncbi.nlm.nih.gov/pubmed/29754585
https://doi.org/10.1016/j.cmet.2016.08.011
https://doi.org/10.1155/2013/393192
https://doi.org/10.1016/j.cell.2016.05.035
https://doi.org/10.1016/j.cell.2016.05.035
http://www.ncbi.nlm.nih.gov/pubmed/27293185
https://doi.org/10.1016/j.cell.2017.04.004
http://www.ncbi.nlm.nih.gov/pubmed/28475890
https://doi.org/10.1136/bmj.1.5023.841
https://doi.org/10.1136/bmj.1.5023.841
https://doi.org/10.18632/oncotarget.5063
http://www.ncbi.nlm.nih.gov/pubmed/26506415
https://doi.org/10.1038/sj.bjc.6605329
http://www.ncbi.nlm.nih.gov/pubmed/19826426
https://doi.org/10.1016/j.molcel.2018.07.030
http://www.ncbi.nlm.nih.gov/pubmed/30118680
https://doi.org/10.1016/j.cell.2013.05.016
http://www.ncbi.nlm.nih.gov/pubmed/23746840
https://doi.org/10.1016/j.cell.2015.08.016
http://www.ncbi.nlm.nih.gov/pubmed/26321679
https://doi.org/10.1158/0008-5472.CAN-15-0454
https://doi.org/10.1158/0008-5472.CAN-15-0454
http://www.ncbi.nlm.nih.gov/pubmed/26122844
https://doi.org/10.1016/j.jaci.2009.12.980
http://www.ncbi.nlm.nih.gov/pubmed/20176265
https://doi.org/10.1016/j.cmet.2017.10.006
http://www.ncbi.nlm.nih.gov/pubmed/29129787
https://doi.org/10.1126/scisignal.2000559
http://www.ncbi.nlm.nih.gov/pubmed/19934433
https://doi.org/10.4049/jimmunol.1302509
https://doi.org/10.4049/jimmunol.1302509
http://www.ncbi.nlm.nih.gov/pubmed/24227783
https://doi.org/10.1158/2326-6066.CIR-18-0095
http://www.ncbi.nlm.nih.gov/pubmed/30143538
https://doi.org/10.1002/JLB.4HI0517-210R
http://www.ncbi.nlm.nih.gov/pubmed/29345342
https://doi.org/10.1126/science.1099196
http://www.ncbi.nlm.nih.gov/pubmed/15205477
https://doi.org/10.1016/j.cell.2019.07.049
https://doi.org/10.1016/j.cell.2019.07.049
http://www.ncbi.nlm.nih.gov/pubmed/31442402
https://doi.org/10.1126/science.1173635
http://www.ncbi.nlm.nih.gov/pubmed/19590001
https://doi.org/10.7554/eLife.62420


Cooper MD, Peterson RD, Good RA. 1965. Delineation of the thymic and bursal lymphoid systems in the
chicken. Nature 205:143–146. DOI: https://doi.org/10.1038/205143a0, PMID: 14276257

Corbaux P, Maillet D, Boespflug A, Locatelli-Sanchez M, Perier-Muzet M, Duruisseaux M, Kiakouama-Maleka L,
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immunotherapy: historical perspective of a clinical revolution and emerging preclinical animal models. Frontiers
in Immunology 8:829. DOI: https://doi.org/10.3389/fimmu.2017.00829, PMID: 28824608

Decman V, Laidlaw BJ, Dimenna LJ, Abdulla S, Mozdzanowska K, Erikson J, Ertl HC, Wherry EJ. 2010. Cell-
intrinsic defects in the proliferative response of antiviral memory CD8 T cells in aged mice upon secondary
infection. The Journal of Immunology 184:5151–5159. DOI: https://doi.org/10.4049/jimmunol.0902063,
PMID: 20368274

Decman V, Laidlaw BJ, Doering TA, Leng J, Ertl HC, Goldstein DR, Wherry EJ. 2012. Defective CD8 T cell
responses in aged mice are due to quantitative and qualitative changes in virus-specific precursors. The Journal
of Immunology 188:1933–1941. DOI: https://doi.org/10.4049/jimmunol.1101098, PMID: 22246631

Deng Y, Yang J, Luo F, Qian J, Liu R, Zhang D, Yu H, Chu Y. 2018. mTOR-mediated glycolysis contributes to the
enhanced suppressive function of murine tumor-infiltrating monocytic myeloid-derived suppressor cells. Cancer
Immunology, Immunotherapy 67:1355–1364. DOI: https://doi.org/10.1007/s00262-018-2177-1

Desdı́n-Micó G, Soto-Heredero G, Aranda JF, Oller J, Carrasco E, Gabandé-Rodrı́guez E, Blanco EM, Alfranca A,
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