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Abstract

The melanosome is a specialized membrane-bound organelle that is involved in melanin

synthesis, storage, and transportation. In contrast to melanosome biogenesis, the pro-

cesses underlying melanosome degradation remain largely unknown. Autophagy is a pro-

cess that promotes degradation of intracellular components’ cooperative process between

autophagosomes and lysosomes, and its role for process of melanosome degradation

remains unclear. Here, we assessed the regulation of autophagy and its contributions to

depigmentation associated with Melasolv (3,4,5-trimethoxycinnamate thymol ester). B16F1

cells-treated with Melasolv suppressed the α-MSH-stimulated increase of melanin content

and resulted in the activation of autophagy. However, introduction of bafilomycin A1 strongly

suppressed melanosome degradation in Melasolv-treated cells. Furthermore, inhibition of

autophagy by ATG5 resulted in significant suppression of Melasolv-mediated depigmenta-

tion in α-MSH-treated cells. Taken together, our results suggest that treatment with Mela-

solv inhibits skin pigmentation by promoting melanosome degradation via autophagy

activation.

Introduction

Organelles are specialized intracellular structures that perform specific critical roles for cell

function and survival; the number of organelles can be modulated in response to specific func-

tional and environmental needs [1]. Autophagy is a pathway that promotes intracellular degra-

dation of large protein aggregates and damaged organelles. During autophagy, targeted

cytosolic constituents are isolated within double-membrane vesicles called autophagosomes;

these eventually fuse with lysosomes and undergo degradation [2, 3]. The acidic pH in the

lumens of these organelles is optimal for the activities of lysosomal hydrolytic enzymes that

degrade cellular components [2, 3]. Various autophagy-related genes (ATGs), including ATG5

and ATG7, mediate the actions of autophagic pathways. Recent studies have shown that target

organelles can be eliminated via organelle-specific autophagy, for example, mitophagy, which

is a unique pathway that promotes mitochondrial autophagy [4, 5].
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Melanosomes are unique organelles that are responsible for color and photoprotection in

the skin and promote diverse cellular processes including melanogenesis, a complex regulatory

process that includes melanin production, transportation, and release [6]. Several of the pro-

teins that regulate melanogenesis have been identified. Microphthalmia-associated transcrip-

tion factor (MITF) is a master regulator of the expression of melanogenesis-related proteins

that include tyrosinase and tyrosinase-related protein 1/2 [7, 8]. As tyrosinase activity is very

important in the control of melanin synthesis, various approaches focused on inhibiting these

melanogenic enzymes have been used to treat skin hyperpigmentation [9, 10]. The MITF fam-

ily includes four distinct genes: MITF, the transcription factor EB (TFEB), TFE3, and TFEC

[11, 12]. TFEB is a major transcriptional regulator of autophagy, as it promotes the expression

of genes required for autophagosome formation including the ATGs [12, 13].

Recently, our group and others have reported that autophagy regulates melanogenesis in

both melanocytes and keratinocytes [14–17]. Although autophagy may also contribute to skin

color via its role in regulating melanin degradation, the detailed mechanism has not been

clearly defined. A full understanding of the mechanisms underlying melanogenesis may help

to explain pigmentation dysregulation disorders and likewise to facilitate the development of

important cosmetic strategies. In this study, we have developed a monitoring system for mela-

nosome-selective autophagy, (melanophagy), and also evaluated the effects of 3,4,5-trimethox-

ycinnamate thymol ester (Melasolv) on melanophagy in mouse melanoma B16F1 cells.

Materials and methods

Reagents and plasmid

Melasolv was synthesized by Amorepacific Research Group, as described previously [18].

ARP101, Torin1 were purchased from TOCRIS (Bristol, UK). Biochemicals α-melanocyte-

stimulating hormone (α-MSH) and bafilomycin A1 were purchased from Sigma-Aldrich

(St. Louis, MO, USA). The expression plasmid pEGFP-LC3 was a gift from Tamotsu Yoshi-

mori (Osaka University, Japan) [19]. Plasmids pEGFP-TFEB, pmRFP-EGFP-LC3 (21074), and

pEGFP-two-pore channel (TPC2) (80153) were purchased from Addgene (Watertown, MA,

USA). For pcDNA/TPC2-mRFP-EGFP plasmid construction, PCR-amplified products TPC2

and mRFP-EGFP were individually subcloned into pcDNA3.1/Myc-His(−)A. A validated

siRNA for mouse Atg5 siRNA(5‘-ACCGGAAACUCAUGGAAUA-3‘) and scrambled control

siRNA (5‘-CCUACGCCACCAAUUUCGU-3‘) were synthesized by Bioneer (Daejeon, Korea).

Cell culture

Cells from the B16F1 melanoma line, which were obtained from ATCC, were cultured at 37˚C

in a 5% CO2 incubator and maintained in Dulbecco’s Modified Eagle’s Medium containing

10% fetal bovine serum and 1% penicillin/streptomycin (Invitrogen, Carlsbad, CA, USA). To

generate stable cell lines, B16F1 melanoma cells were transfected with pEGFP-LC3 (B16F1/

GFP-LC3), pcDNA/TPC2-mRFP-EGFP (B16F1/TPC2-mRFP-EGFP), or pEGFP-TFEB

(B16F1/TFEB) with Lipofectamine 2000 according to the manufacturer’s protocol (Invitro-

gen). Stable transfectants were selected by growth in a selection medium containing 1.25 mg/

ml of G418 (Invitrogen) for 10 days, and colonies derived from single transfected cells were

isolated. Stable clones were selected by visualization under a fluorescence microscope.

Melanin content assay

Melanin content determination was performed using a slight modification of a previously described

method [14]. To measure the melanin contents, B16F1 cells were harvested by trypsinization and
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dissolved in solubilization buffer at 100˚C for 30 min. Relative melanin content was determined by

measuring at 405 nm using an ELISA plate reader (PerkinElmer, Victor X3).

Autophagy analysis and melanophagy assay

B16F1/GFP-LC3 cells were treated with Melasolv (10 μg/ml) or ARP 101 (10 μM). Autophagy

was determined by the number of cells that displayed GFP-LC3 punctate structures indicative

of autophagosomes via fluorescence microscopy (IX71, Olympus, Japan). B16F1/TPC2-

mRFP-EGFP cells were seeded on coverslips in 12-well plates. At 70% confluence, the cells

were treated with Melasolv (10 μg/ml) or left untreated in the presence or absence of bafilomy-

cin A1 (5 nM) for 12 h. The cells were then washed with phosphate-buffered saline (PBS, pH

7.4), fixed with 4% paraformaldehyde at room temperature for 20 min, and then washed with

PBS. After mounting with coverslips, cells were evaluated under a confocal microscope. The

number of cells with red punctate structures was counted; the findings were presented as a per-

centage of total cells from counts of 200 cells.

Western blotting

All lysates were prepared with 2× Laemmli sample buffer (Bio-Rad, Hercules, CA, USA). Total

protein was measured using the Bradford assay (Bio-Rad) according to the manufacturer’s

instruction. Samples were separated by SDS-polyacrylamide gel electrophoresis and trans-

ferred to PVDF membrane. After blocking with 4% skim milk in tris-buffered saline supple-

mented with Tween-20, the membrane was incubated with primary antibodies including anti-

MITF (MS-771-P1; Neomarkers), anti-TYR (a gift from Amorepacific Research Group), anti-

LC3 (NB100-2220), anti-ATG5 (NB110-53818) and anti-actin (NB600-501; NOVUS Biologi-

cals, Littleton, CO, USA), and anti-GFP (sc-9996; Santa Cruz Biotechnology, Dallas, TX,

USA). For protein detection, the membranes were incubated with HRP-conjugated secondary

antibodies (Pierce, Rockford, IL USA).

Confocal microscopy

B16F1/TPC2-mRFP-GFP cells were plated on glass-bottom dishes and treated with α-MSH

(1 μM; M4135, Sigma, St. Louis, MO, USA) for 48 h and Melasolv for 24 h. The cells were then

washed with PBS and fixed with 4% paraformaldehyde for 20 min. Then, the fluorescence

images of TPC2-mRFP-EGFP cells were obtained using a LSM 700 laser-scanning confocal

microscope (LSM 700; Objective C-Apochromat 40x/1.2 W Corr UV-VIS-IR M27; Carl Zeiss,

Thornwood, NY, USA) and processed using ZEISS Zen Software.

Statistical analysis

Data were obtained from at least three independent experiments and presented as

means ± SEM. Statistical evaluation of the results was performed with one-way ANOVA. Data

were considered significant at a value of p<0.05.

Results

Melasolv activates autophagy in B16F1 cells

From a previous biochemical screening, we identified Melasolv as the most potent of the

depigmenting agents that does not promote cytotoxicity [18]. Melasolv inhibits pigmentation

in various experimental models, including α-MSH-treated B16F1 cells, primary normal

human melanocytes, and a human skin equivalent system [20]. To confirm the whitening

effect characteristic of Melasolv, B16F1 cells stimulated with α-MSH were treated with
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Melasolv, and the melanin content was analyzed. Consistent with the previous report, Mela-

solv efficiently suppressed melanogenesis in B16F1 cells, despite the strong melanogenic stim-

ulus provided by α-MSH (Fig 1). As autophagy is one means to inhibit skin pigmentation, we

further examined whether Melasolv activates cellular autophagy pathways in these cells. B16F1

cells stably expressing GFP-LC3 (the autophagy activation marker, microtubule-associated

protein 1A/1B-light chain 3) were treated with either Melasolv or the matrix metalloproteinase

two inhibitor, ARP 101, a potent inducer of autophagy [14]. As shown in Fig 2A and 2B, the

formation of intracellular punctate deposits containing GFP-LC3 protein underwent dramatic

increase in response to treatment with Melasolv. To examine autophagy flux in response to

treatment, B16F1 cells were incubated with Melasolv with or without the autophagosome–

lysosome fusion inhibitor, bafilomycin A1. The level of immunoreactive LC3 was higher in

cells treated with Melasolv and bafilomycin A1 than in cells treated with either of these com-

pounds alone, suggesting that Melasolv is a potent autophagy inducer (Fig 2C). Earlier studies

have reported that TFEB, which was phosphorylated in response to inhibition of mammalian

target of rapamycin (mTOR), is retained in the cytoplasm, whereas dephosphorylated TFEB

undergoes translocation to the nucleus to induce the transcription of autophagy-associated

target genes including various ATGs [12]. Here, we found that treatment with Melasolv

induces nuclear translocation of TFEB to an extent similar to that induced by Torin1, a potent

mTOR inhibitor in B16F1 cells (Fig 3A and 3B). Taken together, these results indicate that

Melasolv activates autophagy in B16F1 cells.

Fig 1. Melasolv induces depigmentation in B16F1 cells. B16F1 cells were pre-treated with α-MSH (1 μM) for 48 h

and then further incubated with Melasolv [MS 5, 10 (5 μg/ml, 10 μg/ml)] or ARP101 (ARP, 10 μM) for 24 h. Then the

cell pellets were collected to determine melanin content.

https://doi.org/10.1371/journal.pone.0239019.g001
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Melasolv induces depigmentation by increasing melanophagy in B16F1

cells

To determine whether Melasolv is a potent inducer of melanophagy, we developed a monitor-

ing system featuring TPC2 protein followed by tandem fluorescent tags (TPC2-mRFP-EGFP).

The basic principle of this assay is based on different pH stability of the green (GFP) and red

Fig 2. Melasolv induces autophagy activation in B16F1 cells. (A, B) B16F1/GFP-LC3 cells were treated with either Melasolv (5–10 μg/ml) or ARP101 (10 μM). After

24 h treatment, the cells were fixed for fluorescence imaging (A). The scale bar indicates 10 μm. The cells with autophagy activation were determined by counting

punctate GFP-LC3 dots under a fluorescence microscope (B). Data were obtained from about 200 cells per group and experiments were repeated at least three times. (�

p<0.05, SEM, n = 3). (C) B16F1 cells were treated with Melasolv (10 μg/ml) in the presence or absence of bafilomycin A1 (5 nM) for 24 h. The level of LC3 protein was

then assessed by Western blotting.

https://doi.org/10.1371/journal.pone.0239019.g002

Fig 3. Melasolv induces translocation of TFEB in B16F1 cells. (A, B) B16F1/GFP-TFEB cells were treated with either Melasolv (5–10 μg/ml) or

incubated with Torin1 (0.25 μM for 1 h). The cells were fixed and imaged by a fluorescent microscopy (A). And nuclear localization of

GFP-TFEB was analyzed (B). Scale bar, 10 μm. Data were obtained from about 200 cells per group and experiments were repeated at least three

times. (� p<0.05, SEM, n = 3).

https://doi.org/10.1371/journal.pone.0239019.g003
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(RFP) fluorescent proteins. The acidic environment within the lysosome (pH 5.2) quenches

the fluorescent signal of EGFP with only minimal impact on mRFP [21]. During melanophagy,

targeted melanosomes are selectively engulfed by autophagosomes that are delivered to the

lysosomes for degradation. In the lysosome, the acid-sensitive GFP signal is quenched, whereas

the stable RFP signal remains, suggesting a melanophagic process (Fig 4A and 4B). TPC2 is

primarily expressed in the melanosome-limiting membranes of melanocytes [22–24]. As such,

we generated a stable B16F1 cell line that expresses TPC2-mRFP-EGFP (B16F1/TPC2-mRFP-

EGFP). To examine melanophagy with this monitoring system, B16F1/TPC2-mRFP-EGFP

cells stimulated with α-MSH were treated with Melasolv. As shown in Fig 4C and 4D, treat-

ment with Melasolv drastically increased the RFP-only positive signals (red dots). Whereas

addition of bafilomycin A1 strongly suppressed the generation of RFP-labeled melanosomes

(Fig 4D).

As activation of autophagy led to decrease in melanin content, we further addressed the

issue of Melasolv-induced activation of autophagy on pigmentation in B16F1 cells. Consistent

Fig 4. Melasolv induces depigmentation by increasing melanophagy in B16F1 cells. (A, B) Schematic representations of the measurement of autophagic

flux of melanosome using TPC2-mRFP-EGFP. Expression of TPC2-mRFP-EGFP in B16F1/TPC2-mRFP-EGFP cells was confirmed by Western blotting

with anti-GFP antibody (B). (C, D) B16F1/TPC2-mRFP-EGFP cells were pre-treated with α-MSH (1 μM) for 48 h and then further incubated with melasolv

(10 μg/ml) with or without bafilomycin A1 (5 nM) for 24 h. (C) The cells were fixed and distribution of TPC2-mRFP-EGFP was imaged by a confocal

microscopy. The scale bar indicates 10 μm. (D) Cells presenting RFP-only puncta were quantified with the merged images (� p<0.05, SEM, n = 3).

https://doi.org/10.1371/journal.pone.0239019.g004
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with our hypothesis, we found that inhibition of autophagy by targeted suppression of ATG5

suppressed Melasolv-mediated depigmentation in α-MSH-stimulated B16F1 cells (Fig 5A).

Furthermore, suppression of ATG5 restored the levels of immunoreactive tyrosinase, which

had been suppressed in response to treatment with Melasolv in α-MSH-stimulated cells (Fig

5B). Taken together, these results suggest that Melasolv induces melanosome degradation via

activation of autophagy.

Discussion and conclusion

Previous screening of our synthetic compound library resulted in the identification of Mela-

solv as a potent depigmenting agent; we also described the anti-melanogenic efficacy of Mela-

solv in various cellular models [18, 20] and found that Melasolv did not directly inhibit

tyrosinase activity; as such, the precise regulatory mechanism underlying its mechanism of

action remained unclear [18]. Melanosomes are sites of intracellular melanin synthesis, stor-

age, and transportation that provide tissues with pigment and photoprotection [25]. In this

study, we found that Melasolv activates the process of autophagy that results in increased deg-

radation rates of intracellular melanosomes.

Among various regulatory signaling pathways that are known to contribute to the activa-

tion of autophagy, the pathway via mTOR signaling is the best defined [12, 26]. Upon activa-

tion of autophagy by starvation or treatment with an mTOR inhibitor, the mTOR complex 1

becomes inactive, resulting in dephosphorylation and nuclear translocation of TFEB; once in

the nucleus, TFEB activates target genes including the ATGs [12, 26]. One of the main regula-

tors of mTOR is adenosine monophosphate-activated protein kinase (AMPK) [26].

Fig 5. Loss of ATG5 inhibits depigmentation activity of Melasolv in B16F1 cells. (A, B) B16F1 cells were transfected with scrambled control siRNA (Sc) or

Atg5 siRNA (siAtg5). After 1 day, the cells were further treated with α-MSH (1 μM) for 48 h, and exposed to melasolv (10 μg/ml) for additional 24 h. (A) After

96 h post-transfection, the cells were harvested and lysed to measure melanin contents. (B) The protein expression was assessed by Western blotting using

indicated antibodies. (� p<0.05, SEM, n = 3).

https://doi.org/10.1371/journal.pone.0239019.g005
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Consistently, our results indicate that treatment with the mTOR inhibitor, Torin1, also

induces nuclear translocation of TFEB in B16F1 cells. Interestingly, we also observed that

treatment with Melasolv also induces nuclear translocation of TFEB in B16F1 cells (Fig 3).

These results suggest that Melasolv may activate AMPK to promote dephosphorylation of

TFEB. Future studies will be performed to identify the cellular signal transduction pathways

triggered by Melasolv including mTOR and TFEB contribution.

Selective autophagy provides cells with an efficient means to control the quality and quan-

tity of cellular organelles, including mitochondria, peroxisomes, lysosomes, the endoplasmic

reticulum, chloroplasts, and the nucleus [5, 27]. Recognition of target organelles by the autop-

hagosome occurs via interactions with microtubule-associated protein 1 light chain 3 (LC3)

and LC3 adaptors including the p62 protein in an ubiquitin-dependent manner [5, 27]. Inter-

estingly, the existence of an autophagic degradation pathway that targets melanosomes had

not been addressed. Here, we developed a novel system to monitor autophagic flux of melano-

somes using tandem fluorescent-tagged TPC2 (TPC2-mRFP-EGFP). With this system, we

found that treatment with Melasolv resulted in a dramatic increase of the red-fluorescence-

positive punctate deposits within target cells (Fig 4). As such, our findings suggested that Mela-

solv induces melanophagy in B16F1 cells.

Generally, ubiquitination of membrane proteins of targeted organelles is required to mark

them for autophagic clearance [5, 28]. For example, in mitophagy, Parkin E3 ligase enhances

the recruitment of phospho-ubiquitin, promoting the ubiquitination of outer mitochondrial

membrane protein such as voltage-dependent ion channel 1 and mitofusin 1/2 [5]. Levy et al.

previously demonstrated that ubiquitination of a melanosome membrane protein by Homolo-

gous to the E6-AP Carboxyl Terminus (HECT)-E3 ligase is involved in lysosomal degradation

of melanosome proteins [29]. Likewise, the autophagy adaptor protein p62 is a critical compo-

nent of the pathways that promote degradation of intracellular organelles [30–33]. The p62

protein binds to ubiquitinated components and recruits the LC3 protein of autophagosome,

resulting in autophagic degradation [34]. Therefore, further studies on p62 in melanophagy

and ubiquitin-mediated degradation of melanosome proteins are needed to characterize and

elucidate the underlying mechanisms.

In conclusion, here, we report that Melasolv promotes depigmentation in a melanoma cell

line by activating autophagy, thereby promoting degradation of intracellular melanosomes.
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