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Abstract: The early detection of damaged (partially broken) outdoor insulators in primary distri-
bution systems is of paramount importance for continuous electricity supply and public safety.
Unmanned aerial vehicles (UAVs) present a safer, autonomous, and efficient way to examine the
power system components without closing the power distribution system. In this work, a novel
dataset is designed by capturing real images using UAVs and manually generated images collected
to overcome the data insufficiency problem. A deep Laplacian pyramid-based super-resolution
network is implemented to reconstruct high-resolution training images. To improve the visibility of
low-light images, a low-light image enhancement technique is used for the robust exposure correction
of the training images. A different fine-tuning strategy is implemented for fine-tuning the object
detection model to increase detection accuracy for the specific faulty insulators. Several flight path
strategies are proposed to overcome the shuttering effect of insulators, along with providing a less
complex and time- and energy-efficient approach for capturing a video stream of the power system
components. The performance of different object detection models is presented for selecting the most
suitable one for fine-tuning on the specific faulty insulator dataset. For the detection of damaged
insulators, our proposed method achieved an F1-score of 0.81 and 0.77 on two different datasets and
presents a simple and more efficient flight strategy. Our approach is based on real aerial inspection of
in-service porcelain insulators by extensive evaluation of several video sequences showing robust
fault recognition and diagnostic capabilities. Our approach is demonstrated on data acquired by a
drone in Swat, Pakistan.

Keywords: primary distribution systems; transfer learning; YoloV4; porcelain insulator detection;
UAVs; BRISQUE; LIME; LapSRN; YoloV5

1. Introduction

Low-voltage power distribution lines are the means of electricity distribution from the
distribution grid to the end users. An important aspect of a primary distribution system is
a continuous supply of electricity and the efficient performance of its equipment. Insulator
strings are essential equipment in primary overhead power distribution lines because of
their role in insulation and providing mechanical strength. An insulator’s efficiency is
affected when exposed to pollution, environmental conditions such as dust, rain, wind,
or snowfall, and wildlife. Components of such importance cause serious problems when
damaged, both to the power supply and public safety. Every year, a number of human lives
are taken due to electric shocks during the rainy season due to exposure to electric poles. In
2019, in the rainy season in Karachi, Pakistan, six people died due to electric shocks due to
poor insulation of the distribution lines from the electric poles [1]. In order to prevent such
severe and costly damage, periodic maintenance and detection of defects in the early stages
are of great importance. Some of the defects present in primary distribution systems are
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broken insulators, broken cross arms, conductor corrosion, and vibration damage. Some
normal and defective insulators from different view angles are shown in Figure 1. An
illustration of the overhead primary power distribution lines is depicted in Figure 2.
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Figure 2. Illustration of overhead power distribution line from drone camera.

Research on porcelain insulators present on electric poles for supporting and insulating
the overhead lines is very scarce. This might be due to the non-availability of such systems
in developed countries or limited resources in developing countries for researching these
systems. One of the objectives of this study is to shed some light on these systems. In
Pakistan, overhead power distribution lines are commonly present both in urban areas and
the countryside. In these systems, porcelain-type insulators are commonly used due to
their robustness and low cost. The pin-type and suspension disc-type porcelain insulators
are used for a voltage range of 11 kV to 33 kV. Such a pin insulator sits on the cross arm of
the electric pole, which has grooves on the upper end to hold the conductor and insulate
the electric pole from the conductor. The suspension disc insulator provides mechanical
strength and insulation to power lines. The rain shed or petticoats made of porcelain,
a non-porous and waterproof material present on both pin and disc insulators, provide
a long leakage path to avoid flashovers and puncture. A broken rain shed poses a risk
of flashovers and outages of power, which needs to be detected in advance to prevent
future anomalies.

Several researchers employed methods to inspect, detect, and analyze such defects
using computer vision techniques. Van et al. presented an extensive review on some
of the current methods and techniques to inspect, identify, and classify such defects in
power equipment mounted on electric poles, along with different weather conditions,
using computer vision-based techniques [2]. Adrian et al. discussed different applications
of deep learning in unmanned aerial vehicles (UAVs) along with performances and limi-
tations [3]. Thus, to provide safety to the public and maintenance crews and continuous
delivery of power to end users, the prevention of such defects is a top priority of electrical
companies. To prevent the aforementioned defects, a periodic inspection is carried out by
electrical companies.
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Two common methods of power system inspection include maintenance crew per-
sonnel patrolling by foot, examining each component. Such patrolling is costly, risky, and
time-consuming. Another patrol method is by manned helicopters that fly a safe distance
from the power lines and equipment and a cameraman records the video of these systems
for later investigation. Such patrolling is fast, expensive, risky, and less accurate. In recent
research, Xie et al. used a large unmanned helicopter along with multiple sensor data for
power line inspection [4]. This system is fast and inexpensive but further optimization
needs to improve the accuracy and success rate. To perform fast and quality inspections,
mobile robots such as climbing robots have been used. Such climbing robots move along
the conductor for inspection. Jaka et al. surveyed such robots and presented their main
characteristics [5]. To reduce maintenance costs and mitigate downtime and emergency
repairs, Rebecca et al. designed and tested a power line robotic device as a tool for main-
tenance crews for preventive inspection [6]. Certain sensors, like a camera LiDAR and
GPS chip, can be embedded in the climbing robot to analyze the power lines to improve
the accuracy of the inspection results. Xinyan et al. proposed a cable inspection robot for
the automatic inspection of transmission lines to reduce manpower and improvement of
inspection accuracy [7]. Recently, unmanned aerial vehicles have been used for different
applications in many areas, such as surveillance, security, and inspection. High operational
costs and security concerns urged electric utility companies to utilize UAVs for the inspec-
tion and maintenance of power equipment. The regular advancement of automatic flight
controls and more efficient computer vision-based detection, classification, and tracking
techniques allow UAVs to perform low-cost and efficient inspections of power equipment
from a safe distance. Based on different data types, such as GPS data, visible and infrared
images, and LiDAR data, UAVs provide high performance in inspection tasks [8–13].

Obstacle avoidance and path planning is another major point of research on UAVs
reduce human interference during its operation and provide fully autonomous navigation.
Classically simultaneous localization and mapping (SLAM) systems use data taken from
LiDAR and RGB-D cameras to infer the visual geometry of obstacles and spaces, which
leads to achieving obstacle and collision avoidance [14,15]. Such systems are highly
expensive and an alternative for such a system is a computer vision algorithm used for
depth estimation or optical flow from the data taken from a stereo camera [16,17]. Such a
system is more cost effective than the latter sensors but needs more computational power.
Further research is needed in such regard to make such a system less complex and to
reduce the overall consumption of computational resources.

Path planning is another major concern in operating a drone as it ensures autonomous
flight and the optimal path of flight for the UAV to reach its goal. The latest evolving
fuzzy algorithms and controllers for the path optimization and control of UAVs and multi-
copters have been reviewed [18]. Yang et al. developed a famous metaheuristic firefly
algorithm [19] and the work was inspired by natural firefly flashing behavior. Another
study addressed a continuous optimization problem by proposing a hybrid particle swarm
optimization along with a firefly algorithm [20]. Thus, for a better solution, hybrid fuzzy
and firefly algorithms acquire the features of both controllers to achieve an optimal solution
for time and path planning [21].

Super-resolution reconstruction is a technique developed to improve the quality of
low-resolution (LR) images and reconstruct high-resolution (HR) images. Traditionally,
the upscaling of the image was based on the interpolation of nearby pixels and taking a
mean average of pixel values by adding another pixel. Such upscaling methods reduced
the overall quality of the image during the reconstruction process. Deep learning-based
super-resolution techniques addressed this problem by different techniques to achieve
high peak signal to noise ratios. In [22], to improve the quality of images in the training
dataset, a super-resolution convolutional neural network is implemented on blurry images
taken by a drone. Such methods are continuously evolving and new algorithms with high
efficiency are being developed to improve the overall output of such networks. Deploying
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such advanced deep learning-based super-resolution neural networks will improve the
overall performance.

Critical to many object detection and object tracking applications, the high visibility of
image features is of paramount importance. Images taken in low-light conditions shutters
some of the details, reducing the quality and visibility. Low-light enhancement algorithms
proved successful on such images, improving the visibility and quality of the image [23,24].
Aimed at the quantitative representation of human perception of image quality, quality
assessment algorithms have been developed. These algorithms are divided into two
subclasses, including a high-quality reference image used to evaluate two images [25]. An
image quality assessment (BRISQUE) describes the image structure by calculating features
and a human opinion of image quality based on those features [26]. Such methods are
utilized to improve the training and validation datasets and the overall object detection
and training accuracy.

Compared to conventional methods, UAV-based inspections, along with computer
vision techniques, provide safer, less expensive, and more robust inspections of power
system equipment. However, still, a lot of discrepancies are found in these systems, such
as low endurance. Robust algorithms for object avoidance and more efficient and accurate
computer vision-based object detection techniques, etc., are still needed. In particular, a
fully autonomous system of UAVs to automate the whole inspection process is still far from
reality. Such a system needs a highly trained human pilot to fly the drone at a safe distance
from the electric lines to protect the UAV from any hazards. A video from a drone camera
is analyzed frame by frame by an object detection model to assess the maintenance status
of porcelain insulators. Additionally, autonomous UAV-based inspection provides a safer
inspection from a distance above the overhead power lines, capturing each component of
the power system using different kinds of sensor for further investigation.

In the present work, we aim to achieve the aforementioned objectives and focus our
work on faulty porcelain insulator detection in a low-voltage power distribution system in
which insulators provide mechanical support to overhead power distribution lines and
insulate them from electric poles. We present our work as follows:

• We demonstrated and developed an algorithm for improved UAV-based low-voltage
porcelain insulator inspection which is commonly used in Pakistan in the power
distribution system. Among the several components present in the power system
infrastructure, we devoted our study to examining the structure anomalies and faults
present in pin and suspension disc insulators insulating and supporting the power
cables from the electric towers.

• Regarding the structure anomalies, we developed a novel dataset of visible insulator
images by preprocessing the training and validation datasets (increasing dataset)
along with a Laplacian pyramid-based super-resolution network (LapSRN) to acquire
high-resolution images and improve the image quality.

• Low-light enhancement and exposure correction for less visible images. These dif-
ferent low-light images with varying lambda and gamma values are used as an
augmentation technique for the training dataset. The images after processing through
this pipeline were evaluated with the blind no-reference image quality assessment
(BRISQUE) to prove their improved quality and visibility.

• A different fine-tuning strategy was implemented in state-of-the-art object detector
YoloV4 for improved detection accuracy for fault detection and classification.

• We automated the inspection and for improved inspection accuracy requiring less
flight time, we developed a path planning strategy for the UAV flight.

• The proposed method was evaluated with a test dataset comprising different back-
grounds, light conditions, and complex scenarios.

Other sections of the paper are presented in the following manner. Section 2 describes
the background knowledge of all the methods and techniques used to improve the efficiency
of detecting and classifying insulators and our proposed approach. Section 3 presents the
experimentation, comparison of different object detection models, flight path strategies,
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and the results achieved. Finally, Section 4 concludes the achieved results and details some
future work directions.

2. Materials and Methods

The surge in the usage of UAV technology has recently been boosted in numerous
fields, such as agriculture, wildlife surveillance, search and rescue operations, and also
the power sector. A need for more advanced and robust object tracking and detection
algorithms has emerged. Additionally, with UAVs that have a long endurance time and are
robust to environmental changes, fast, and automatic, less human support is needed. In the
power sector, high-voltage power lines need automatic inspection using UAV intelligence
and support to reduce the risk to the maintenance crew. A fully automatic scheme where a
UAV does not need any human pilot for its operation would provide safe and fast operative
maintenance. Such algorithms need to be developed. In our research, we developed a
prototype to accomplish the abovementioned objectives, which include: (i) A fine-tuned
efficient object detector and tracker for insulator fault detection and classification and (ii) a
flight path planning strategy for the drone to fly and inspect insulators from one electric
pole to another with minimal human support.

In this regard, we devoted our work to the detection of broken insulators of both pin
and suspension disc types from image sequences acquired by a drone camera carrying out
inspection from one electric pole to another. To detect faults in the insulators, the first step
is to preprocess the data for the efficient training of the object detector and classifier. The
dataset of the faulty insulators is enlarged by adding different types of faulty insulators
from different angles of view and different background images taken by a drone camera. In
the second step, different image-processing algorithms are used to improve the quality of
the dataset to differentiate between insulator types. We then utilize visible images to extract
normal and faulty insulators. In the third step, we define different flight path patterns to
efficiently investigate the porcelain insulators mounted on an electric pole. The framework
of the proposed methodology is presented in Figure 3. In the following sections, we present
a brief discussion of the techniques used to inspect a video stream coming from a UAV
camera for the detection and classification of faults in low-voltage porcelain insulators
from visible RGB images, along with flight path patterns for the drone.
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2.1. Framework of Insulator Detection and Classification

The proposed deep learning-based low-voltage porcelain detector consists of three
stages. Data augmentation and image preprocessing, training and validation of both real
and custom YoloV4 architecture, UAV path planning strategy, and real-time insulator
detection. The framework for the low-voltage insulator detection is depicted in Figure 3.
First, images of insulators, both normal and faulty pin and suspension disc types, are
collected using a UAV, a digital camera, and a mobile phone for distribution line inspection.
Different datasets are used in the fine-tuning and validation of the object detection model.
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The preprocessing of these datasets includes dataset generation, data augmentation, image
reconstruction using LapSRN, low-light enhancement, image quality assessment, and
dataset labeling. For the training stage, we utilized YoloV4 architecture by feeding in the
training images. A normal insulator dataset is fed into the YoloV4 architecture in stage A
and transfer learned with normal insulator features following stage B in which some of the
previous layers are frozen and the detection layers are fine-tuned with the faulty insulators
dataset. Such a strategy proved efficient in the detection of the faulty insulators in the
aerial images and frames taken by the UAV for the distribution line inspection system.

2.2. Electric Poles and their Components

In low-voltage power distribution lines, electric poles consist of different components
for specific tasks. The inspection and maintenance of such components are of paramount
importance for the continued supply of power to the end users. Due to the presence of
these systems in urban and congested areas, public safety is a major concern. Most electric
poles serve as a mechanical support for different components present in these distribution
systems. Such components comprise insulators, transformers, three-phase ACSR wires,
cross arms, etc., shown in Figure 4.
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Such systems support 11kV three-phase wires distributed from pole to pole. At each
utility feeder location, there are step-down transformers that step down the voltage from
11 kV to 220–240 V for consumers. Pin-type insulators are used to provide insulation to the
three-phase wires from the electric pole and provide support for the distribution wires. Disc
insulators are used for mechanical strength and supporting endpoints of the conducting wires.
Different kinds of fault are present in such insulators, which mostly interrupt the power
supply and cause a risk to the public. Such faults are shown in Figure 5.
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The internal structure of pin and disc insulators is shown in Figure 6. The rain shed is
a source of insulation between the pole and the conducting wire. The rain shed increases
the insulation distance between the pole and the wire. When the rain shed is broken,
the insulation distance decreases and, due to the arcing effect or air ionization effect, a
connection between the pole and wire is established, leading to high current flow and
puncturing of the insulator and shutdown of the power supply. Such a scenario is known
as flashover. Power supply companies need to identify this fault in advance and replace
the respective component in time, and strategies need to be developed for the power
supply company to overcome such problems beforehand. Reducing the manpower used
for inspections is a time-consuming, risky, and costly procedure. Using UAVs and the
proposed object detection techniques can play a major role in reducing such problems,
increasing inspection and maintenance quality with fewer risks.
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2.3. Image Preprocessing

Images of porcelain insulators mounted on the 11 kV electric poles in the visible spectrum
were acquired from video frames taken from a drone, a Canon DSLR camera, and a mobile
phone in Mingora City, Swat (Pakistan) in June 2020. To ensure the safe acquisition of images
of the electric poles, the safety procedures for power-operated tools with 11 kV ACSR lines
were followed. The safe distance from power lines is 3 m to avoid electromagnetic interference
from the power-operated tools [27]. Most of the images were taken of the overhead power
lines present in commercial as well as residential areas. Based on different angles of views
and light exposure, the training dataset, as well as a testing dataset, were acquired. Figure 7
presents some of the images taken from different view angles.

The dataset is divided into four classes, including pin insulator, disc insulator, faulty
pin, and faulty disc insulator. To differentiate between the faulty (broken) insulators and
normal (intact) insulators, insulators with a partly broken rain shed or a small piece broken
off so that the white porcelain material is visible and insulators that are deformed are
compared to a corresponding normal intact insulator. These faults could easily create a risk
for pollution deposition and surface corrosion. Such different faulty (broken) insulators
are shown in Figure 7b. The proportion of faulty insulators in the dataset is very small
due to the unavailability of such insulators in the system. Such insulators are discarded
by throwing them in the garbage as no proper method is available for their disposal. To
overcome this problem and to increase such images in the training dataset, we followed the
study in [28] to improve our dataset and remove the class imbalance. Frames are extracted
from drone videos comprising different backgrounds and different light conditions. Faulty
insulators from a different angles of view are then added to these backgrounds extracted
from real images. Figure 8 shows the scenario for such dataset formation step by step.
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Another set of images and videos was made for evaluating the detection, classification,
and fault diagnosis of insulators. This dataset was mainly acquired using a UAV with
different flight path patterns with a prototype of an electric pole on which a faulty disc
and pin insulator were mounted. These experiments were performed in a controlled
environment. Figure 9 shows the UAV, its technical specification, and the prototype of the
electric pole used for testing our proposed method for insulator fault diagnosis.
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2.4. Image Reconstruction Using LapSRN

To improve the insulator fault detection performance the data acquired from UAVs
and other sources, images should be of high quality and have rich features. During
the acquisition of the training dataset, some images were blurred. Another problem
was cropping the faulty insulator patch from images with multiple insulators with both
normal and faulty pins and suspension discs, as shown in Figure 10. Cropping the image
degrades the resolution of the images. Another problem was distortion in images due
to UAV vibration and fuselage. To overcome these problems, we used LapSRN. Super-
resolution techniques with deep Laplacian pyramids provide a fast and accurate super-
resolution solution for high-resolution image reconstruction. Such a technique allows for
reconstructing the low-resolution patches of faulty insulators taken from images consisting
of both normal and faulty insulators. LapSRN is comprises two stages. A bundle of
convolutional layers learns a non-linear feature map from the low-resolution input image
in the feature extraction branch and upsamples the low-resolution image to a finer level in
the image reconstruction branch, then with the help of convolutional layers, the residuals
are predicted [29]. The overall workflow of the LapSRN algorithm on low-resolution
images is shown in Figure 10.

• In the first step, there is a transformation of high-dimensional non-linear feature maps
by feature embedding networks.

• In the second step, there is an upsampling of the extracted features by transposed
convolutional layers by a scale of 2.

• Lastly, a sub-band residual image is created by convolutional layers ( Convres).
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In the training of LapSRN in all convolutional layers except the first layer, 64 filters are
used on the input LR image, image upsampling layer, and layers for predicting residuals.
A filter for the convolutional layer and transposed convolutional layers of size 3 × 3
and 4 × 4 are used, respectively [29]. To keep the input of each level the same size, a
zero-padding step around the boundaries is used before convolution. To generate an HR
image ŷ = f (x; θ) a mapping function similar to the ground truth y is learned. Instead of
minimizing the mean square errors (MSEs) between ŷ(i)l and y(i)l , an efficient loss function
to handle outliers is used. The loss function is calculated as

Ls(y, ŷ; θ) =
1
N

N

∑
i=1

L

∑
l=1

ρ((y(i)l − x(i)l ) − r̂l
(i)) (1)
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From Equation (1), θ is the set of parameters in the network to be optimized, at
each level ι the residual image is represented as r̂l , as shown in Figure 10a, and the HR
image is represented by ŷι and the corresponding LR image by xι. Additionally, the L1
norm differential variant known as the Charbonnier penalty function is represented by
ρ(x) = (

√
x2+ ∈2), S presents the scaling factor of upsampling, and the number of training

samples is presented by N. The pyramid levels in the model are represented by L = log2 S.

2.5. Low-Light Image Enhancement

During the acquisition of the training dataset, there were some images with a low-light
problem due to the shadow of a nearby building or due to cloudy weather. Such conditions
can hinder a lot of features of the insulator, especially the color, making it difficult to
differentiate between a black and a dark brown insulator. Such a problem in the training
dataset may lead to low visibility of the insulators and their structure. Such artifacts present
in the images degrade the overall performance of computer vision and image-processing
techniques. To overcome these problems, we used the algorithm of [23] to enhance the
low-light images for exposure correction. LIME is an algorithm that enhances the exposure
of an image by illumination map estimation.

LIME is built on the retinex model, showing the development of a low-light image. It is

L = T o R (2)

where L is the captured image, T represents the illumination map, and R is the recovery
desired for L. Element-wise multiplication is represent by the symbol “o”.

The LIME algorithms takes low-light input image parameters with a positive coeffi-
cient and gamma corrections are designated. A weight matrix is key to designing the initial
illumination map for the structure-aware refinement. Such a weight matrix is calculated by
Equation (3).

Wυ(x)←∑y∈Ω(x)
Gσ(x, y)

∑y∈Ω(x) σv(x, y)∇νT̂(̂y)+ε
(3)

where Gσ(x, y) is formed by the Gaussian kernel by using the standard deviation σ and
∇vT̂ is the first-order derivative filter. Additionally, ε is a small constant value to prevent
zero denominators. Gσ(x, y) is calculated as

Gσ(x, y) ∝ exp
(
−dist(x, y)

2σ2

)
(4)

where the spatial Euclidean distance between location x and y is represented by the function
dist(x, y). In Equation (4), the initial illumination map is estimated for each low-light input
image pixel by Equation (5):

T̂(x) ← maxc∈{R,G,B} Lc(x), (5)

In Equation (5) x represents each individual pixel of each channel and L represents
the low-light image. The initial illumination map is then refined from T̂ to T by sped-up
solver Equation (6):

(I + ∑d∈(u,v) DT
d Diag(w̃d)Dd)t = t̂, (6)

where I is the identity matrix and Equation (6) represents a symmetric positive definite
Laplacian matrix with Diag(x) to compute the diagonal matrix by using vector x. Gamma
correction is applied to the refined illumination map T and the low-light input image L is
enhanced by the application of Equation (1). Furthermore, if recomposing and denoising is
needed, then the denoised and recomposed output image is acquired by Equation (7):

R f ← R o T + Rd o (1− T), (7)
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where Rd and R f are the output results after recomposing and denoising. A final enhanced
image is acquired by the use of the above process. Some of the results obtained on different
training images are shown in Figure 11. Such variations of different gamma and lambda
values are used as an augmentation technique to increase the detection and generalization
of the insulator detection model in different light conditions.
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2.6. Image Quality Assessment

Image quality is one of the center points for the high performance of object detection
models, as a highly visible image provides rich spatial features of the objects present
in the image. In view of such requirements, we used in this work a quality assessment
on part of the training images, including different image processing techniques, such as
Laplacian-based super-resolution on low-resolution images and low-light enhancement on
low visibility in certain images. To evaluate the quality of such images to be suitable for
training the insulator detection model, we used image quality assessment algorithms.

Image quality assessment algorithms are quantifying metrics used to observe and
evaluate the performance of different computer vision and pattern recognition tasks, such
as image processing, image compression, and image transmission [30]. These algorithms
comprise two groups, i.e., a reference-based quality assessment in which a high-quality
image is taken as a reference and a distorted or low-quality image is compared to it. Another
type that is utilized in our work is BRISQUE [26], a blind reference image spatial quality
evaluation. This algorithm is highly efficient compared to the reference-based evaluation
as it does not require any transformation for calculating features from image pixels.

To calculate the BRISQUE value for a given image, first, mean subtracted contrast nor-
malized (MSCN) coefficients also known as locally normalized luminance, are calculated
by Equation (8) [31]:

Î(i, j) =
I(i, j)− µ(i, j)

σ(i, j) + C
(8)

In Equation (8), Î(i, j) computes locally normalized luminance for a given image I(i, j)
by using local mean subtraction µ(i, j) divided by local deviation σ(i, j), and C is a constant
to avoid zero division. A better fit to the empirical histogram for the coefficient products
is represented by an asymmetric generalized Gaussian distribution [31]. The fitting of
MSCN coefficients to generalized Gaussian distributions and the pair-wise products of the
asymmetric generalized Gaussian distribution produces the resultant features needed to
calculate the image quality. The image quality after implementing BRISQUE is calculated
on a scale of 1–100. The lower the output scores, the better the quality of the image.

2.7. YoloV4

Yolo (you only look once) is a single-stage detector designed for real-time object de-
tection which performs object classification and localization at the same time. In object
detection, high real-time processing frame rates and detection accuracy are the primary ob-
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jective. The YoloV4 object detection model is benchmarked on the MS COCO dataset [32],
achieving 65 fps inference speed with an accuracy of 43.5% AP (65.7% AP50) on Tesla
V100 [33]. Object detectors compress features of an input image down through a convo-
lutional neural network backbone. The mixing and holding up of the feature layers from
the convolutional backbone happens in the neck part of the object detector. The detection
of a specific object in the image happens in the head part of the detector. As YoloV4 is a
single-stage object detector, the classification and prediction of object localization are done
at the same time.

2.7.1. Backbone

The backbone of YoloV4 is based on CSPDarknet53. The convolutional architecture
is based on a modified DenseNet [34]. The edited DenseNet uses cross-stage partial
connections that send one copy of the feature map separated from the base layer through
the dense block and another to the next stage. The major advantages of choosing DenseNet
architecture are alleviating the gradient vanishing problem, bolstering backpropagation,
and fewer network parameters, while, when using the cross-stage partial connections, the
computational bottleneck of DenseNet is removed, with improved learning.

2.7.2. Neck

Feature aggregation occurs in the neck part of the YoloV4 object detector. Path aggre-
gation networks (PANets) are used by the YoloV4 detector for feature aggregation along
with a spatial pyramid pooling block after CSPDarknet53 to increase and improve the
receptive field and sort out the most important features from the backbone.

2.7.3. Head

Anchor-based detection steps are deployed with three levels of detection granularity
in the head region of the YoloV4 detector, the same as those implemented in YoloV3 [35], a
previous version of Yolo. Certain novel features have been added to YoloV4, such as bag
of freebies, which includes different augmentation techniques, drop block regularization,
complete IoU loss (CIoU), etc. Additionally, some bags of specials are also included that
consist of mish activation, DioU-NMS, modified path aggregation networks, etc. [33]. The
complete structural diagram, with different blocks of YoloV4, is presented in Appendix A
Figure A1.

2.8. Proposed Fine-Tuning Strategy for YoloV4

To overcome the class imbalance problem and scarce dataset of faulty insulator images,
we propose a different fine-tuning strategy of insulator defect detectors for efficient training.
To achieve the best results on object detection tasks, deep learning models need enormous
amounts of training data. Such enormous amounts of data are needed for the object
detectors to learn features of the specific object of interest so that the model generalizes
well when exposed to unseen test data. Recently, different techniques have been developed
to overcome data insufficiency domain gap problems. These techniques include data
augmentation in which the labeled training samples go through different procedures, such
as geometric juxtaposition, cropping, scaling, mosaic, flipping and zoom augmentations, etc.
Such techniques increase the richness of features learned by the deep learning architectures.
The insulators that are the focus of this work have no available open-source dataset,
and with small datasets, the available data augmentation techniques do not overcome
the problem of the overfitting of deep convolutional architectures which decreases the
detection accuracy of the object detection models.

To overcome such limitations, we fine-tuned the insulator detection model in two
steps. In step one, a state-of-the-art model YoloV4 [33] pre-trained on the MS COCO dataset
is considered for fine-tuning insulator detection. The COCO dataset consists of 2 million
images and 80 object classes. These classes do not contain the insulators that are the focus
of this work. However, such learned features from those 2 million images can be used for
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better detection accuracy of the insulator detection model. For that reason, in step two,
we transfer learned normal insulator images on top of the previously learned features
from the COCO dataset so that the model learns different insulator features present in the
training samples of the normal insulator dataset. The step-wise procedure of the two-step
fine-tuning strategy is depicted in Figure 12.
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The main focus of electric supply companies is to inspect defective and broken insu-
lators to ensure safe and reliable power delivery to consumers. Low-power distribution
systems are mostly present in densely populated areas, and the insulation of such power
supply apparatus is of paramount importance for public safety. That is why faulty and
defective insulators are the major concern for electric supply companies. In light of this, the
insulator detection model should be more robust to find these faulty and broken insulators
in advance. For that reason, a second fine-tuning strategy is performed. In the second
step, the previous single-step fine-tuned model parameters are again fine-tuned with the
training samples containing only defective insulators labeled as a faulty pin and faulty disc
insulators. Upon fine-tuning, the features from the defective insulator dataset which are
more meaningful in terms of defective insulators are learned by the detection model. Using
a two-step strategy increases the accuracy of the detection model in detecting specific faulty
insulators, and also resolving overfitting and data insufficiency problems.
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2.9. Drone and Flight Path Trajectory

To improve the maintenance crew’s safety, power system components mounted on
electric poles can be inspected with the use of drones. In this study, to perform our
experiments, we developed a prototype of an electric pole, as shown in Figure 9, on which
the faulty pin and disc porcelain insulators are mounted and examined using a DJI Tello
drone [36], which is a programmable drone. The technical specification of the drone is
presented in Table 1. The drone camera captures 5 megapixel stills with a field of view of
82.6◦ and records 720 p HD video footage at 30 fps in MP4 format. Frames of the video
have been examined by the insulator detection model and the results are presented in the
results section.

Table 1. Technical specification of the UAV.

Technical Parameters Value

Camera lens FOV: 82.6◦ 25 mm
Takeoff weight 300 g

Video resolution FHD: 1280 × 720 30 p
Max hovering time 15 min

Max flight speed 31 mph
Endurance 13 min

Positioning system Vision

Most of the previous works on insulator detection lack a complete explanation of the
process of taking the video feed with the drone’s camera. Research on low-voltage power
distribution systems is scarce but is highly important, as these systems are present in densely
populated areas. To automate the process of inspection, in this work, we defined different
flight path strategies and captured the frames of pin and disc insulators from different
orientations. These different flight path strategies are important to overcome the shuttering of
the insulators due to the presence of conductors and the top tie clipping wires. The clipping
wire is used to tie the conductor wire on the head of the pin insulators and to the central pin
of the disc insulator. Such a shuttering phenomenon is shown in Appendix A Figure A2a.
Focusing on this problem of how to avoid these shuttering phenomena, different flight path
strategies are defined and the effects of such strategies are evaluated. These strategies are
divided into two types, as shown in Figure 13.
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Figure 13. Flightpath strategies for the UAV for inspection of the insulators mounted on an electric
pole. (a) Presenting a circular flight strategy (b) Presenting a straight flight path strategy.

In Figure 13a, a 270◦ rotational path is implemented in the drone around the electric
pole and a video is recorded consisting of frames including faulty pin and disc insulators.
The drone is again flown in the straight direction, as depicted in Figure 13b, hovering above
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the power lines at a safe distance and upon crossing the cross arm of the electric pole from
above, the drone itself is rotated by 180◦ to take a view of the back side of the cross arm
and components mounted on the electric pole. The frames have a complete view of the
top, front, and back sides of the insulators. The major advantage of this strategy is that it is
more energy- and time-efficient for the drone. This strategy is a lot safer due to the safe
flight path provided by the width of power lines, as shown in Figure 14. The safety limits
of the powered device with electric poles were considered while performing the above
experiments and such safety guidelines were described earlier.
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Figure 14. Aerial image of 3-phase 11kV lines showing the spacing between the conductor lines and
obstacle-free path for the drone flight.

Due to congestion and close proximities of buildings and trees near the electric poles,
applying circular flight trajectory will be difficult and needs more complex sensors and
control theory. The straight path for the drone as devised in this study is helpful in a less
complex flight path. The distance between the three-phase conductors is enough for the
drone to have a smooth flight path and avoid the buildings and surrounding objects. The
field of view of the camera can capture the front, back, and top sides of the insulators and
they can easily be inspected.

3. Experimentation and Results
3.1. Data Preparation

For our model, we gathered aerial images taken by the UAVs from PESCO Pakistan
low-voltage distribution lines and power systems [37]. For training, we gathered two
different novel datasets, as shown in Table 2, one for training and one for validation of a
single-stage YoloV4 object detection model. This dataset consists of 5939 images containing
both faulty and normal pin and disc insulator images. For training the custom YoloV4
architecture, in the first step, the first 135 layers were frozen and the rest were fine-tuned on
4827 images containing only normal pin and disc insulator images. In the second step, the
detection layers of the YoloV4 architecture were fine-tuned with 4099 images containing
faulty pin and disc insulators only. For evaluating the single-stage YoloV4 detection model,
three different test datasets were used. Furthermore, to evaluate our two-step fine-tuned
insulator detection model, two different test datasets were used. The details of the training
and testing datasets are presented in Table 2.
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Table 2. Training and testing datasets for insulator detection model.

Training Testing

Single-
stage Stage A Stage B R-1 R-2 C Prototype-C Prototype-P

Samples 5939 4827 4099 330 300 15 768 632

R-1 consists of images taken from a UAV of normal insulators mounted on an electric
pole. These images were taken in a low-light condition, making it harder for the detection
model to generalize. R-2 consists of images also taken from a UAV of normal insulators
mounted on an electric pole but with better light conditions and orientations. The complex (C)
dataset consists of images taken from a still camera and consists of images of the electric pole
with a larger number of insulators of both types with shuttering effects due to conductors
and tying wires. Such a dataset is used as a stress test on the insulator detection model to
prove its generalization ability in complex scenarios. Prototype-C contains video frames that
are taken from the prototype electric pole on which faulty suspension disc and pin insulators
were mounted. This dataset was recorded during the circular flight of the UAV. Prototype-P
consists of the frames taken by the UAV with the proposed flight path for insulator inspection.
Most of these datasets consist of multiple objects per image. Additionally, different images
have different backgrounds, such as blue sky, cloudy sky, vegetative background, scenes
containing buildings, and also complex backgrounds. Example images of different training
datasets are shown in Appendix A Figure A2 and samples from testing datasets are shown
in Appendix A Figure A3. All the datasets are manually labeled with ground truth boxes.
Among these datasets, each contains a random number of both pin and disc insulators of both
normal and faulty types.

3.2. Implementation

The proposed insulator detection model is implemented in the Darknet framework
with object detection API. The training of the insulator detection model is powered by
the Google Colab cloud platform. The hardware is equipped with 12.6 GB RAM and a
12 GB Tesla K80 GPU. We used the Windows 10 platform. For evaluation, we also used
a computer equipped with NVIDIA GeForce GTX 1060 GPU with 16 GB of RAM, Intel
Core i5-8400 CPU 2.80 GHz (6 CPUs), on the Windows 10 platform. The trained weights
were converted to the Tensorflow [38] object detection API model to check the test videos.
To acquire the test dataset, we semi-autonomously controlled the UAV by writing Python
libraries, such as pygame and Tello drone blocks. We also used the DJI Tello app for
recording the videos and performing different flight patterns. The video frames taken were
then tested with the saved Tensorflow model weights. For the deep Laplacian pyramid,
super-resolution networks and low-light estimation techniques for image enhancement
were also implemented in the Tensorflow framework with the same hardware setup as
stated earlier.

The parameters for fine-tuning the insulator detection model were set as follows:
the initial learning rate is 0.0013 with decay 0.0005 and momentum is set to 0.949. A 64
batch size with 32 subdivisions. Cross iteration batch normalization (CmBN) is applied to
prevent overfitting and noisy estimations. The IoU threshold is 0.213 and complete IoU
loss (CIoU) is selected as the IoU loss function to minimize the central point distance of
the predicted box and the ground truth box, to maintain consistency of the box aspect
ratio, and to increase the overlapping area [39]. Precision, recall, precision–recall curve
(PRC), F1-score, and average precision (AP) are metrics selected to evaluate the detection
performance of the model.
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3.3. Insulator Detection Results
3.3.1. Image Quality Assessment for Specific Insulator Dataset

Faulty insulator inspection and maintenance are the top priority for electricity supply
companies to maintain uninterrupted power supply to consumers. The need for efficient
fault detection models is immense. For such requirements, we need to improve the quality
of the training dataset and provide a highly efficient faulty insulator detection model which
is accurate, fast, and provides reliable results. For this reason, as shown in Figure 15, a
pipeline has been proposed in which a low-resolution image of 320 × 180 is fed into the
super-resolution network based on deep Laplacian pyramids. The output of LapSRN is
upsampled by a scale factor of 4. Such super-resolution networks preserve the quality better
as compared to the traditional upscaling techniques. The image quality score is assessed by
using blind no-reference image spatial quality estimation to prove the improvement in the
quality of the image. For some of the training images, such as those with low visibility, the
LIME technique is applied. Such an algorithm is efficient in making the object’s features in
the image clearer and helps in learning better features in the detection model. After the
implementation of LIME, again, the image quality score is calculated to prove the feature
improvement of low-light images. As shown in Figure 15, an improvement of 12.1 points
is achieved in the quality of the image. Different variants of the single low-light image can
be obtained by optimizing various gamma and lambda values of the LIME algorithm. The
obtained images can possibly be used as a novel augmentation technique. The scenario
is depicted in Appendix A Figure A3f. Such quality improvements are varied based on
image distortion correction and low-light enhancement. The respective plots in Figure 15
present the distribution of the mean subtracted contrast normalized (MSCN) coefficients in
different directions, such as vertical, horizontal, main diagonal, and secondary diagonal.
Such distributions with a regular structure present a better quality and, as shown in
Figure 15, the distribution is more regular after implementing the LIME algorithm.
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3.3.2. Normal Insulator Detection in Primary Distribution Power Systems

To check the viability of the YoloV4 architecture and the tuning parameters, along
with the training dataset, we first trained YoloV4 and its variant YoloV4 Tiny for the
insulator detection model. The testing results for different datasets of both architectures
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are presented in Table 3. All the testing datasets comprise only normal pin and suspension
disc insulators. We took into account a different conditions of these test datasets to check
the generalization ability of the normal insulator detection model. The test set R-1 had
frames taken in a low-light condition by the UAV of a current in-service electric pole.

Table 3. Test results of YoloV4 and YoloV4 Tiny for different datasets.

Test Data
Type

YoloV4
%AP50

YoloV4 Tiny
%AP50

Pin Disc All Classes Pin Disc All Classes

R-1 78.2 87.7 82.9 44.4 72.6 58.5
R-2 99.5 95.2 97.4 68.2 90.1 79.2

Complex 81.5 83.8 82.7 59.9 65.3 62.6

YoloV4 presents an average precision (AP) of 82.9% in both classes, including an AP
of 78.2% on pin insulators and 87.7% on suspension disc insulators. As YoloV4 Tiny is a
light model with high inference speed, the AP is lower as compared to the full YoloV4
model. Another test set, R-2, is composed of video frames taken by the UAV in better light
conditions where all the components are highly visible. An AP of 99.5% on pin insulators
and 95.2% on disc insulators is achieved. These results are better than the R-1 dataset due
to the high visibility of insulators. The complex dataset is composed of images taken from
a mobile phone camera of different complex electric poles present outside a 132 kV grid
substation. Such electric poles have a large number of components per electric pole, as
shown in Appendix A Figure A2. An AP of 81.5% is achieved on pin insulators and 83.8%
on suspension disc insulators. The results with the detection bounding box are shown in
Appendix A Figure A4.

The precision–recall curves of YoloV4 for pin and suspension disc insulators from
different test datasets are shown in Figure 16. The average maximum precision is calculated
with 11 recall values. Overall, the performance of the model is highly reliable when used
in better light conditions.
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Figure 16. Precision recall curve of YoloV4 for normal insulator detection model for different
test datasets.

3.3.3. Performance Comparison with other Object Detection Models

To present the performance of the insulator detection model in comparison to other
famous models, we trained YoloV5 [40] and its lighter version YoloV5s on the same normal
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insulator dataset that we used to train the YoloV4 architecture. The results presented in
Table 4 show that the YoloV4 architecture outperforms YoloV5 in terms of AP for both
normal pin and suspension disc insulators. Additionally, the YoloV5s model outperforms
the YoloV4 Tiny model trained on our training dataset and evaluated on the same test
datasets. YoloV4 remains as the best choice to further fine-tune on the specific faulty
insulator dataset for better detection results.

Table 4. Performance comparison of YoloV4 with other object detection models.

YoloV4
%AP50

YoloV4 Tiny
%AP50

YoloV5x
%AP50

YoloV5s
%AP50

Pin Disc All Classes Pin Disc All Classes Pin Disc All Classes Pin Disc All Classes

R-1 78.2 87.7 82.9 44.4 72.6 58.5 58.4 78.6 68.5 54.8 78.7 66.8
R-2 99.5 95.2 97.4 68.2 90.1 79.2 99.4 88.3 93.9 96.4 87.3 91.9

Complex 81.5 83.8 82.7 59.9 65.3 62.6 77.3 70.7 74.0 87.3 55.2 71.2

Detection results of different object detection models along with bounding boxes are
presented in Appendix A Figure A4. Such an evaluation was performed to choose between
the object detection models for further fine-tuning on the specific faulty insulator dataset.

3.3.4. Faulty Insulator Detection using Proposed Methodology with Different Flight
Path Strategies

To better inspect the defective porcelain insulators mounted on electric poles of
overhead power distribution systems, we fine-tuned the insulator detection model in two
stages. As stated earlier, the proposed fine-tuning strategy results are obtained with test
datasets that are obtained using different flight path strategies for the UAV. The Prototype-C
test dataset presents the frames taken from the video captured by the drone using a circular
flight path. As stated in Table 5, an AP of 83.90% for faulty pin insulators and an AP of
70.56% for faulty disc insulators were achieved. With the proposed flight path, the dataset
Prototype-S is captured and evaluated with the faulty insulator detection model. An AP
of 56.51% on faulty pin insulators and an AP of 90.91% on suspension disc insulators are
achieved. Overall F1-scores of 0.77 and 0.81 are obtained with Prototype-C and Prototype-S
datasets, respectively.

Table 5. Results of proposed YoloV4 fine-tuning on faulty disc insulators using proposed flight
path strategies.

Test Data Type YoloV4 Proposed Methodology
%AP50

Pin Disc F1-Score

Prototype-C 83.90% 70.56% 0.77
Prototype-S 56.51% 90.91% 0.81

The proposed straight flight path achieves a higher F1-score with the proposed fine-
tuning strategy. Another major advantage of the straight flight path is less need for complex
algorithms and less need for computation and components for obstacle avoidance. The PR
curve is presented in Figure 17. Detection results, along with bounding boxes drawn from
both of the datasets, are presented in Appendix A Figure A5. After detecting the faulty
insulator in a frame, the area is cropped from the image and the results are saved. Such
a procedure will reduce the inspection time and allow the crew personnel to not need to
observe the whole frame and they can check only the saved one for confirmation.
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Figure 17. Precision vs. recall curve for the faulty insulator detection model with the pro-
posed methodology.

The proposed method presents a higher F1-score on insulator defect detection of
overhead power line distribution systems. In [41], by using multi-task learning, an F1-
score of 0.75 is achieved on insulator defect detection in overhead power lines, while our
proposed methodology achieved an F1-score of 0.77 on the Prototype-C test dataset and an
F1-score of 0.81 on the Prototype-S test dataset. Both of these datasets have both defective
pin and suspension disc insulators.

Table 6 presents the F1-score of our proposed methodology for both faulty pin and
disc porcelain insulators. The detection accuracy of our proposed methodology could
possibly decrease when exposed to more complex case scenarios. For example, as shown in
Figure A3a, such complex cases needed a more efficient fault detection algorithm. Further
investigation is needed to design efficient flight path strategies when inspecting insulators
on electric poles presenting high shuttering effects from clipping wires and conductors.
Additionally, this study is limited to broken rain sheds, which are responsible for pollution
deposition and surface corrosion. Further improvements can possibly be made for the
detection of other types of faults present in porcelain insulators, i.e., cracks and damage,
by enriching the training dataset with such faults.

Table 6. Results of the insulator detection model on prototype dataset with proposed flight path strat-
egy.

Method Insulator Defect Detection
In OPDL

F1-Score

Literature [41] 0.75

Proposed method Prototype-C 0.77
Prototype-S 0.81

4. Conclusions

In this paper, we present an approach to efficiently detect and recognize faults in
porcelain insulators mounted on electric poles in primary distribution systems. Our
approach deploys several image processing techniques to improve the quality of the
training dataset, overcome the data insufficiency problem, and improve the generalization
ability of the insulator detection model. Our results show that YoloV4 outperforms other
state-of-the-art object detection models on our dataset. In addition, a less complex and
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more time- and energy-efficient flight path strategy for the UAV with our insulator fault
detection model provides better detection and classification accuracy compared to those in
previous literature. This study highlighted that the primary distribution system should be
researched further. As future work, we will investigate the implementation of insulator
fault detection, along with object avoidance algorithms and the detection of faults in
insulators made of different materials. Additionally, we will extend the proposed approach
to other power system components.
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