
Review
The Role of Adaptor Protein CARD9
in Colitis-Associated Cancer
Xiaoming Zhong,2,4 Bin Chen,3,4 Min Liu,3 and Zhiwen Yang1

1Department of Pharmacy, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (Preparatory Stage), Shanghai 201600, China; 2Jiangxi

Province Tumor Hospital, Nanchang, China; 3Department of Surgery, First Affiliated Hospital of Gannan Medical University, GannanMedical University, Ganzhou, China
The adaptor protein CARD9 plays an important role in anti-
fungal immunity responses, linking detection of fungi by
surface receptors to activation of the transcription factor
nuclear factor kB (NF-kB). Recent studies indicate that
CARD9 also plays different but vital roles during the devel-
opment of colitis-associated colorectal cancer (CAC). This
review summarizes the current understanding of CARD9
functions in CAC, and we discuss its potentially carcinogenic
mechanisms.

It is well known that patients with inflammatory bowel disease
(IBD) have an increased risk of developing colorectal cancer
(CRC) as compared to healthy people, and this cancer is defined
as colitis-associated CRC (CAC).1 CAC develops from a non-
neoplastic inflammatory intestinal epithelium that progresses to
cancer. Chronic inflammation enriches the colonic mucosa of
reactive oxygen species and reactive nitrogen species, which can
lead to DNA damage and genetic mutations (k-ras, p53, c-src,
and b-catenin), and then induce cell transformation and the initi-
ation of cancer.2 In addition, chronic inflammation also activates
the signal transducer and activator (nuclear factor kB [NF-lB],
signal transducers and activators of transcription [STAT]3, and
b-catenin), promotes proliferation and remodeling of intestinal
epithelial cells, and subsequently drives CAC initiation in IBD
patients.3

CARD9 is classified as an inflammation-related protein, triggering
the NF-kB and/or mitogen-activated protein kinase (MAPK) in-
flammatory signaling pathway.4 There is growing evidence to sug-
gest that CARD9 maybe play a critical role in CAC.5–7 In these
studies, CARD9 demonstrated a biphasic behavior in CAC, with
anti-carcinogenic and pro-carcinogenic activities. Therefore, this
review focuses on the dual role of CARD9 in CAC, and we discuss
the potential molecular mechanisms.
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CARD9 Protein

CARD9 is mainly expressed in myeloid cells, especially in macro-
phages and dendritic cells. It has disparate functions in these two
pathways, linking Toll-like receptors to MAPK and C-type Lectins
to activation of the transcription factor NF-kB.4 As a result,
CARD9, a central integrator of innate and adaptive immunity, is
involved in various inflammatory diseases.
Molecular
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CARD9 Protein in IBD

CARD9 is validated to play a pivotal role in the pathogenesis of IBD.
In these recent studies, Card9 rs10870077, rs10781499, and
rs4077515 variant in IBD patients showed a predisposing factor
with an increase in the expression of CARD9 mRNA,8,9 while
Card9 c.IVS11+1G > C and rs200735402 variant had a protective fac-
tor with a loss of the biological function.10,11

Next, animal studies were used to assess the susceptibility of Card9
to develop IBD. First, Card9-null mice showed an impaired
intestinal mucosal immune response and defective expressions of
interleukin (IL)-6, IL-17A, IL-22, regenerating islet-derived 3
gamma (RegIIIg), and colonic T-helper (Th) 17 cells.12 It is widely
known that these abnormal inflammatory factor and immune cells
are strongly linked to IBD through the alteration of intestinal
epithelial cell proliferation and apoptosis and the impairment of
Th17 cell immune responses.13 Second, Card9�/� mice revealed
a defective ecological effect in shaping the gut microbiota
ecosystem. Numerous studies had confirmed a key role for the
gut microbiota in the pathogenesis of IBD. The fecal fungal
composition in Card9�/� mice was dominated by members of
the phyla Ascomycota, Basidiomycota, and Zygomycota. However,
the composition of the fecal bacterial microbiota was only found
to have a slight alteration.14 Third, the gut bacteria of Card9�/�

mice failed to metabolize tryptophan into aryl hydrocarbon recep-
tor (AHR) ligands. AHR ligand production was found to normalize
the presence of exogenous IL-22, effectively relieving IBD suscep-
tibility.15 As predicted, Card9�/� mice with IBD could obviously
inhibit the intestinal epithelial restitution and impair the gut
recovery.14

CARD9 Protein in Intestinal Carcinoma

To date, the molecular mechanisms underlying the growth of in-
testinal carcinoma are still unknown. Of note, the role of
CARD9 in intestinal carcinoma has been clearly described in
some studies.16
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Figure 1. CARD9 Function Inhibited CAC Growth

through the Activation of Immune Cells

CARD9 showed a strong fungicidal ability, which led to

decreased fungi load and MDSC accumulation, increased

the frequency of cytotoxic lymphocytes (CTLs), and even-

tually suppressed CAC development. (A and B) WT (A) and

Card9–/– (B) mice.
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A recent study reported a strong clinical correlation between CARD9
expression and human colon carcinoma.17 After carefully analyzing
the clinic-pathologic features of 48 cases, CARD9 expression level
was found to have a negative correlation with tumor differentiation
and a positive correlation with tumor invasion depth and metastasis.
It was important to note that aberrant CARD9 expression in tumor-
infiltrating macrophages could contribute to liver metastasis of colon
carcinoma cells through the following three molecular mechanisms:
(1) CARD9 induced tumor metastasis via promoting macrophage
function in the tumormicroenvironment, independent of the number
of infiltrating macrophages; (2) CARD9 was responsible for driving
macrophage polarization via secreting tumor-promoting cytokines,
such as IL-6, IL-12, IL-10, transforming growth factor b1 (TGF-b),
and vascular endothelial growth factor (VEGF); and (3) CARD9
contributed to M2 macrophage polarization through activation of
the NF-lB-signaling pathway.

Enteropathy-associated T cell lymphoma (EATL) is identified as a
rare primary T cell lymphoma in the human small intestines. A study
by Tomita et al.18 indicated that CARD9 was validated as a potential
candidate gene for EATL in 20 patients. This study also reported a
similarly frequent copy number change (about 75%) between Japa-
nese and European EATL cases, without East and West ethnic
differences.19

As is well known, the APCmin mouse model is used to mimic human
familial adenomatous polyposis. CARD9 was found to promote
tumorigenesis in sex-biased colon tumors, specifically in male
mice.20 Sex-biased colon tumors may be attributed to less T cell
and macrophage infiltration into colonic tumor tissues and decreased
plasma cytokines (IL-6, G-CSF, and RANTES).21

Role of CARD9 in CAC

It is now recognized that inflammatory cytokines could stimulate
epithelial cell proliferation, inhibit cell death, directly target
neoplastic cells, and facilitate tumor progression.22 For instance,
IKKb-mediated NF-lB activation in myeloid cells stimulated the
expression of pro-tumorigenic inflammatory factor, which pro-
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moted CAC induction and progression. Consis-
tently, IKKb inhibition or deletion was
confirmed to restrain the cancer growth in
CAC murine models.23,24 Further work showed
that IL-6, mainly produced by intestinal den-
dritic cells and macrophages, was a critical
signaling pathway for CAC. The increased IL-6 expression could
prompt STAT3 activation and greatly drive CAC tumorigenesis in
mice, whereas IL-6 deletion suppressed the pro-carcinogenic ef-
fect.25,26 IL-17A that was produced by Th17 cells directly promoted
the progression of early non-neoplastic inflammatory epithelium
into cancer, and the elevated expression of such cytokine, together
with IL-23R, induced the development of CAC in colitis mice.27–29

On the other hand, cytotoxic T lymphocytes (CTLs) acted as tumor
immunosurveillance, mounting vigorous immune responses against
CAC tumor cells.30

In view of the close relationship of CARD9 pathways with the
pathogenesis of IBD and intestinal carcinogenesis, it suggests
that CARD9 could be playing a critical role in CAC as well.
Although clinical evidence relating CARD9 protein to CAC is
scarce, studies from animal models provide some insight. Since,
in intestinal mucosa, CARD9 is overexpressed in tumor-infiltrating
macrophages, but not in cancer cells, CARD9-expressing immune
cells potentially influence tumor cell growth and survival in the
development of CAC. Following the oral administration of dextran
sodium sulfate (DSS) and azoxymethane (AOM), the susceptibility
of such animals to develop DSS-driven CAC was assessed. Howev-
er, to date, data available are limited to provide controversial
results.

Wang and colleagues7 had observed that a high level of CARD9
expression was much less susceptible to CAC, exerting an anti-tu-
mor immune response (Figure 1). Card9-knockout mice showed
an increased tumor burden (size, number, and load) as compared
to wild-type mice with AOM-DSS-induced CAC. Card9-deficient
mice could alter the composition of the intestinal fungal micro-
biota, but not the composition of bacterial microbiota, exhibiting
an impaired fungicidal ability, which led to increased fungi load
and variation in the gut, with a notable increase in C. tropicalis.
Fecal microbiota from tumor-bearing Card9�/� mice induced tu-
mors, due to more total fungal burden and a greater proportion
of C. tropicalis. Germ-free (GF) mice that received feces from tu-
mor-bearing Card9�/� mice or C. tropicalis developed significantly
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Figure 2. CARD9 Function Inhibited CAC Growth

through the Activation of Inflammasomes

Recognition of commensal gut fungi, sensed via a CARD9-

dependent manner, promoted inflammasome activation

and IL-18 maturation, and eventually it suppressed CAC

development. (A and B) WT (A) and Card9–/– (B) mice.
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more tumor burden, compared with those that received feces from
tumor-bearing wild-type (WT) mice. These data suggested that the
increased C. tropicalis in Card9�/� mice, instead of the lack
of Card9 in recipient GF mice, was responsible for CAC
development. Furthermore, anti-fungal fluconazole treatment
significantly decreased fungal burden and ameliorated CAC in
Card9�/� mice.

Next, this study investigated the potential mechanism whereby
fungal dysbiosis increased the accumulation of myeloid-derived
suppressor cells through modification of gut microbiota. This study
emphasized that Card9-deficient macrophages exhibited impaired
fungicidal abilities, resulting in a notable increase in C. tropicalis
in the gut. The increased C. tropicalis induced the accumulation
of intestinal myeloid-derived suppressor cells (MDSCs), eventu-
ally suppressed immunosurveillance, and facilitated tumor
development.

Malik et al.5 reported that CARD9 was a protective factor for CAC
(Figure 2). In this study, Card9�/� mice exhibited increased num-
ber and size of tumors when compared to the WT mice with
AOM-DSS administration. Card9 deletion changed the gut micro-
bial landscape, especially commensal gut fungi. Further, anti-
fungal amphotericin B treatment led to a significant decrease in
commensal fungi but a distinct change in bacterial landscape. As
a result, anti-fungal agents exacerbated colon tumorigenesis in
Card9�/� mice, demonstrating an active role for commensal fungi
in suppressing CAC. This study outlined a mechanism whereby
commensal gut fungi are a critical contributor to inflammasome
activation and IL-18 maturation via the CARD9-signaling axis.
CARD9 is activated downstream of C-type lectin receptors
(CLRs) and required for inflammasome activation during fungal
infection. Inflammasomes are multimeric protein complexes,
which could activate the cysteine protease caspase-1, leading to
the proteolytic processing of IL-18.31 Early IL-18 maturation by in-
flammasome is known to promote epithelial barrier restitution and
stimulate interferon gamma (IFN-g) production from intestinal
CD8+ T cells.32,33 As expected, mice lacking Card9 with AOM-
Molecular
DSS-induced CAC were significantly defective
in inflammasome activation and IL-18 matura-
tion. What is more, after transferring Casp1�/�

or WT bone marrow-derived myeloid cells
(MCs) into Card9�/� mice, the decreased tu-
mor burden was found in Card9�/� mice given
WT MCs rather than Card9�/� mice given
Casp1�/� MCs. Exogenous supplementation
of IL-18 significantly increased IFN-g production from T cells
and exerted a positive anti-tumor effect. Thus, CARD9 signaling
was required to ameliorate CAC in the AOM-DSS mouse model.

Bergmann et al.6 reported that CARD9 was a harmful factor for
CAC (Figure 3). WT mice exhibited increased numbers of tumors
in the gut that were also bigger in size when compared to the
Card9�/� mice. Further, the pro-tumor function of CARD9-
mediated CAC mainly contributed to regulating IL-22 production
from intestinal group 3 innate lymphoid cells. It is clear that
CARD9 is cooperative with the inflammasomes, which triggers
the proteolytic processing of IL-1b.4 IL-1b by myeloid cells
generally drives the IL-22-induced STAT3 phosphorylation
that provides intestinal immunity.34–36 In this study, Card9
deletion in mice dramatically impaired IL-1b generation, subse-
quently controlled the production of IL-22 from group 3 innate
lymphoid cells, and eventually blocked the tumor cell intrinsic
STAT3 activation. Together, these results accounted for the
induced tumor growth and malignant epithelial cell regeneration
in WT mice.

Intestinal fungi were reported to modulate the development of
CAC.5,7 Compared to the WT mice, Card9 deletion mice exhibited
an obvious change of the gut commensal fungal microbiota.
Card9�/� mice showed a decreased occurrence of Ascomycota,
including Claussenomyces of Leotiomycetes, Agaricomycetes, and
Pseudocercospora cordiana of Dothideomycetes, along with a
notable increase in Saccharomycetes, particularly Diutina catenu-
late and Cladosporium of Dothideomycetes.5 Due to the diversity
of the gut fungi, it was difficult to define the healthy or
diseased-related gut fungi, but increasing evidence suggested that
C. tropicalis may contribute to a well-known inducer of CAC.7

Contrary to the above studies, colonic mucosa-associated fungal
microbiota in CAC patients did not show any significant difference
in comparison to the ones in sporadic cancer or in healthy sub-
jects, dominating by two phyla, Basidiomycota and Ascomycota.
As a result, commensal gut fungi maybe were not the potent risk
factor for the development of CAC.37
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Figure 3. CARD9 Function Promoted CAC Growth

through the Regulation of Type 3 Innate Lymphoid

Cells

CARD9 specifically upregulated IL-1b production, leading

to intrinsic IL-22/STAT3 activation in intestinal epithelial

cells (IECs), and eventually it induced CAC development. (A

and B) WT (A) and Card9–/– (B) mice.
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CARD9 in CAC Immunoprevention

CAC is driven by a series of well-defined genetic and epigenetic alter-
ations, and these typically take many years or decades to accumulate.
This long development process provides a better opportunity for can-
cer immunoprevention.38 Immunoprevention is an effective
approach to reduce cancer risk based on the stimulation of the im-
mune system before intestinal tumor onset.39 Macrophages have
emerged as a major player in CAC prevention, due to the increased
appreciation of immunosurveillance, which trigger an anti-tumor im-
mune response against early lesions.40,41

The role of CARD9 in shaping the intestinal immune response
needs to be defined. As reported, CARD9 was found in tumor-infil-
trating macrophages, but not in intestinal cancer cells, suggesting
that CARD9 was expressed by infiltrating macrophages in intestine
tissue.17 It was important to note that CARD9 expression level was a
clinical correlation with human colon carcinoma.17 Furthermore,
CARD9 represented a vital role during the progression of CAC.
The potential molecular mechanisms maybe contribute to sensing
the intestinal fungi and regulating the immune cells through intes-
tinal macrophages in a CARD9-dependent manner.5–7 Thus, the
CARD9-signaling molecule in macrophages may inform the devel-
opment of immunoprevention and immunotherapy strategies for
CAC.

Conclusions

To date, the exact function of CARD9 in the development of CAC is
still unknown, three aspects of which are particularly controversial.
First, it is unclear whether CARD9 protects against CAC or not.
One study showed the presence of CARD9 may facilitate CAC tumor
progression. This pro-tumor function contributes to a Card9-
controlled, IL-1b-mediated STAT3 activation mechanism. Accumu-
lating evidence is defining the STAT3 activation as an important
pathway for the transition from inflammation to cancer. However,
the other two studies reported that the deficiency of CARD9 may
be advantageous to CAC. The anti-tumor function contributes to a
4 Molecular Therapy: Oncolytics Vol. 15 December 2019
CARD9-controlled, anti-fungal immunity in the
gastrointestinal environment. Likewise, intestinal
immune responses generally link to a critical role
in inflammatory-promoting tumor responses.

Second, how CARD9 contributes to inflamma-
some-mediated cytokine production is unclear.
One study revealed that CARD9 exhibited the
pathogenic effects of inflammasome-dependent
IL-1b generation, but not inflammasome-mediated cytokine IL-18
in Card9�/� mice, resulting in a promoting role in CAC. Conversely,
one study revealed that CARD9 induced inflammasome-mediated IL-
18 production (not IL-1b data), ameliorating the development of
CAC. As previously reported, NLRP3 inflammasome, the most
intensely studied inflammasome, is triggered in a CARD9-dependent
manner, which simultaneously activates the proteolytic processing of
inflammatory cytokines IL-1b and IL-18. Thereby, it is confusing how
CARD9-dependent inflammasome proteolytically activates IL-1b
and IL-18.

Third, it is unclear whether gut commensal fungi are beneficial to
CAC in Card9�/� mice or not. In a study, Amphotericin B treat-
ment increased the colon tumorigenesis upon AOM-DSS adminis-
tration, at least in part, by reducing exogenous IL-18 secretion
through the inhibition of commensal fungi in the gut. In the other
study, Amphotericin B treatment significantly ameliorated colitis-
associated colon cancer, by controlling MDSC differentiation
through modification of intestinal fungi. The molecular mechanism
and biological function of gut commensal fungi require further
exploration.
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