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Abstract: Cellular senescence, a term originally used to define the characteristics of normal human
fibroblasts that reached their replicative limit, is an important factor for ageing, age-related diseases
including cancer, and cell reprogramming. These outcomes are mediated by senescence-associated
changes in gene expressions, which sometimes lead to the secretion of pro-inflammatory factors, or
senescence-associated secretory phenotype (SASP) that contribute to paradoxical pro-tumorigenic
effects. p53 functions as a transcription factor in cell-autonomous responses such as cell-cycle control,
DNA repair, apoptosis, and cellular senescence, and also non-cell-autonomous responses to DNA
damage by mediating the SASP function of immune system activation. The human TP53 gene encodes
twelve protein isoforms, which provides an explanation for the pleiotropic p53 function on cellular
senescence. Recent reports suggest that some short isoforms of p53 may modulate gene expressions in
a full-length p53-dependent and -independent manner, in other words, some p53 isoforms cooperate
with full-length p53, whereas others operate independently. This review summarizes our current
knowledge about the biological activities and functions of p53 isoforms, especially ∆40p53, ∆133p53α,
and p53β, on cellular senescence, ageing, age-related disorder, reprogramming, and cancer. Numerous
cellular and animal model studies indicate that an unbalance in p53 isoform expression in specific
cell types causes age-related disorders such as cancer, premature ageing, and degenerative diseases.
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1. Introduction

Over five decades ago, Hayflick and Moorhead discovered and described the process of cellular
senescence in normal human fibroblasts as a limited number of cell divisions, followed by irreversible
growth arrest after serial cultivation in vitro [1,2]. Since then, several types of cellular senescence have
been identified. Replicative cellular senescence describes a senescent state with telomere shortening or
dysfunctional telomeres [3,4], and stress-induced cellular senescence is induced by cellular stresses,
such as mitogenic and oncogenic stimuli, namely p38 MAPK activation and overexpression of oncogenic
Ras [5,6]. Senescent cells differ from other non-dividing cells (quiescent or terminally differentiated cells)
by several markers, such as the expression of p16INK4A [7,8] and senescence-associated β-galactosidase
(SA-β-gal) [7,9], senescence-associated heterochromatic foci (SAHFs) [10], which contribute to silencing
E2F target genes such as PCNA and cyclin A, and the senescence-associated secretory phenotype
(SASP) [11–13], which consists of secreted inflammatory cytokines and other signaling molecules
including interleukin-1 (IL-1), IL-6, IL-8, vascular endothelial growth factors (VEGF) [14] and matrix
metalloproteinases (MMPs) [15,16]. In general, cellular senescence constitutes a critical mechanism for
tumour suppression in vivo and may contribute to organismal aging and age-related diseases. Further,
accumulating evidence indicates that the physiological relevance of cellular senescence extends beyond
tumor suppression to include several biological processes such as embryonic development [17,18],
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tissue repair [19,20], and wound healing [20]. Moreover and counterintuitively, recent data strongly
suggest that SASP can contribute to not only tumor suppression but also tumor promotion [4,21,22].
The accumulation of senescent cells does not directly determine the organismal lifespan, but it does
accelerate with ageing [23–26]. The increase of senescent cells in aged tissues is thought to cause a
functional decline in homeostasis and integrity and is linked with diminished responses to physiological
conditions under stress (Figure 1).
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Figure 1. Mechanisms of cellular senescence. The many triggers for cellular senescence, such as DNA
damage, telomere shortening, oxidase stress, chromatin disruption, and oncogenic activation, can
initiate p53 signaling pathways through the activation of ATM (ataxia telangiectasia-mutated) kinase and
ATM-mediated Chk2 (check point kinase 2). Activated Chk2 phosphorylates p53, which protects p53
from Mdm2 (mouse double minute 2)-mediated protein degradation. Oncogenic activation and chronic
mitogenic signals induce p16INK4a activation, resulting in the inhibition of CDK (cyclin-dependent
kinase) activity. Increased p21Waf1/Cip1 expression and/or Rb (retinoblastoma) activity cause cellular
senescence. Senescence markers include senescence-associated β galactosidase activity (SAβ-gal),
senescence-associated secretory phenotype (SASP), senescence-associated heterochromatic foci (SAHFs),
telomere dysfunction, and the high expression of p16INK4a. Early (acute) senescent cells self-organize
their elimination by the immune system through SASP, which contributes to tumor suppression, wound
repair, and probably healthy normal ageing. Late (chronic) senescent cells can evolve from early
senescence if the clearance of early senescent cells by the immune system is impaired with age, leading
to alterations of SASP, resulting in tumor progression, tissue dysfunction, and aged-related diseases.

p53 is a transcriptional factor highly regulated by post-transcriptional modifications [27–30].
It regulates cellular senescence, which is important for tumor suppression in vivo and organismal
ageing. p53 regulates self-renewal, genome stability, and the differentiation of normal and cancer
stem cells. In addition, p53 and retinoblastoma (Rb)-p16INK4a pathways modulate the efficiency of
cell reprogramming to induce pluripotent stem cell (iPSC) generation by cellular senescence [31].
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p53 knockdown and a p53 dominant-negative mutant were shown to enhance cell reprogramming,
while upregulated p53 reduced the cell reprogramming efficiency, showing that p53 activity is critical
in reprogramming [32–34]. However, p53 is also critical in DNA damage repair, thus its inactivation
could result in persistent DNA damage and chromosome aberrations [35–37].

p53 directly binds as a tetramer to the p53-response elements on the DNA of more than 3600
estimated target genes [38]. This binding stimulates tumor suppression mechanisms by halting
cell proliferation and inducing apoptosis in response to various stresses. Conversely, in unstressed
conditions, p53 protein expression is kept low due to E3-ubiquitn ligase Mdm2 (murine double minute
2)-mediated proteasomal degradation [39]. Mdm2 is also directly induced by p53, resulting in a
negative feedback loop in p53 signaling. The tight regulation between p53 and Mdm2 is important,
because excess p53 can induce cell death in normal cells, whereas insufficient p53 can transform normal
cells. Drugs targeting wild-type p53 serve to enhance the stabilization of p53 via several mechanisms:
1) Nutlin 3a, benzodiazepinediones, and spiro-oxindoles target the p53-Mdm2 interaction to reduce
Mdm2-mediated proteasomal degradation; 2) RITA (Reactivation of p53 and induction of tumor cell
apoptosis) directly binds to p53, inducing a conformational change that inhibits Mdm2 binding; and 3)
Mdmx inhibitors, which block Mdmx-Mdm2 dimerization to activate p53 [40]. These drugs induce
apoptosis by upregulating several pro-apoptotic p53 target genes, such as PUMA (p53 upregulated
modulator of apoptosis), NOXA (Laten for damage), BAX (Bcl-2-associated X protein), and BAK
(BCL2-antagonist/killer 1), which are all critical for tumor suppression [41]. Indeed, some of these
drugs have been used successfully as chemotherapies, with many inducing p53-mediated apoptosis in
tumors. [29,42–44].

p53-mediated DNA damage responses (DDR) are also a trigger of cellular senescence and
caused by multiple inducers, including not only telomere shortening but also reactive oxygen species
(ROS) [30,45], ultraviolet light (UV) [46–48], and along with cancer therapies [49]. DDR activate
ataxia teleangectasia-mutated (ATM) kinase, which phosphorylates p53 in a checkpoint kinase (Chk)
2-dependent manner, thus accumulating p53 protein due to the avoidance of Mdm2-mediated
proteasomal degradation and initiating the transcription of multiple p53 target genes [50]. The
first identified senescence-associated downstream target gene of p53 is CDKN1A gene, which codes
for the cyclin-dependent kinase (CDK) inhibitor p21Waf1/Cip1 [51–54]. p21Waf1/Cip1 is an essential
mediator of p53-dependent cell cycle arrest following DNA damage [55] (Figure 1). Mouse embryonic
fibroblasts lacking p21Waf1/Cip1 fail to undergo p53-dependent G1 arrest after DNA damage [55].
Subsequent studies have shown that p53 binds and transactivates the p21Waf1/Cip1 promoter during the
replicative cellular senescence of normal human diploid fibroblasts [56]. In fact, the lack of p21Waf1/Cip1

prevents cellular senescence in several settings [52,57–59]. On the other hand, forced p21Waf1/Cip1

expression induces senescence in vitro [60,61]. These studies define p21Waf1/Cip1 as a strong mediator of
p53-regulated growth arrest and cellular senescence in response to various stresses and DNA damage.

p53 isoforms were first discovered by Matlashewski in 1984 [62]. Wolf et al. showed alternatively
spliced C-terminal variants of mouse p53 in 1985, and their results were confirmed in several human
cells [63–65]. The human full-length p53 protein is composed of 393 amino acids with six classified
domains: transcription activation domain (TAD) I (residues 1–40) and TAD II (residues 41–67), which
interact with various proteins; a proline-rich domain (residues 68–98), which is conserved in most
p53 isoforms; DNA-binding domain (DBD) (residues 94–292); hinge domain (HD) (residues 293–325);
oligomerization domain (OD) (residues 326–353); and carboxy-terminal regulatory domain (CTD)
(residues 353–393) [66–69] (Figure 2A). Bourdon et al. recognized that the human TP53 gene structure
is similar to human TP63 and TP73 genes and discovered that human TP53 gene encodes at least twelve
natural isoforms including the full-length p53 protein due to alternative initiations of translation, usage
of alternative promoters, and alternative splicing [70] (Figure 2B). p53 mRNA isoforms are expressed
in a tissue-specific manner. For example, while ∆133p53α is expressed in most normal tissues except
the prostate, uterus, skeletal muscle, and breast, p53β is expressed in most normal tissues but the brain,
lung, prostate, skeletal muscle, spinal cord, and fetal liver.
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Figure 2. The human TP53 gene and cellular senescence-associated isoform proteins. (A) The human
TP53 gene structure. Boxes indicate exons, and lines indicate introns. The exons and introns are not to
scale. Grey boxes show non-coding sequences. Other colors show coding sequences. The human TP53
gene is composed of 11 exons and encodes several p53 isoforms using alternative promoters (P1 and P2)
and splicing sites (zigzag lines). The gene also includes two unique exons that are part of intron 9 and
encode the β and γ isoforms. (B) The cellular senescence-associated human p53 isoforms. The colors
of the protein domain match the corresponding exons. p53 has two transactivation domains (TAD-1
aa 1–40 and TAD-2 aa 41–67), a proline-rich domain (PRD, aa 68–98), DNA-binding domain (DBD,
aa 94–292), oligomerization domain (OD, aa326–353), and carboxy-terminal regulatory domain (CTD,
aa 353–393). ∆40p53 lacks TAD1 because of alternative initiation at ATG40. ∆133p53α is transcribed
from P2 and lacks the whole N-terminus (TAD-1, TAD-2, and PRD) and part of DBD. p53β is missing
several residues that are replaced by new amino acids through the alternative splicing of intron 9.

The biological activities of p53 isoforms differ. p53β preferentially binds to p53-responsive
elements in the promoters of p21Waf1/Cip1 and Bax but not of Mdm2, whereas full-length p53 preferentially
binds to p53-responsive elements in the promoters of Mdm2 and p21Waf1/Cip1 but not of Bax in vitro.
Under stress conditions, p53β complexes with full-length p53 to enhance the transcriptional activity of
full-length p53 against Bax promoter, suggesting that p53β cooperates with full-length p53 [70]. Another
in vitro experiment showed that the co-transfection of ∆133p53α with full-length p53 strongly inhibits
p53-mediated apoptosis in a dose-dependent manner, indicating that ∆133p53α has an inhibitory
regulation on full-length p53 [70,71]. Because p53 isoforms have tissue-specific expression and activity
that are tightly and differentially regulated, the balance of their expression and function makes p53
isoforms critical for p53-mediated cellular or tissue outcomes. This review focuses on the contribution
of p53 isoforms to cellular senescence, ageing, cancer, and cell reprogramming, by examining how the
isoforms interact with full-length p53.

2. p53 Isoforms in Cellular Senescence

∆40p53 (also known as ∆Np53 or p47) was the first described human p53 isoform and is derived
from the alternative translation initiation of p53 mRNA at the second AUG codon [70,72–74]. This
isoform does not contain the Mdm2-binding site or N-terminal transactivation domain of full-length
p53. Mdm2 induces the translation initiation of full-length p53 and ∆40p53, however, it also degrades
full-length p53, while ∆40p53 stabilizes full-length p53 in the presence of Mdm2 [72]. Candeias et al.
later showed that full-length p53 and ∆40p53 were separately and competingly regulated, so that



Int. J. Mol. Sci. 2019, 20, 6023 5 of 19

∆40p53 was normally masked by cap-dependent translation initiation [75,76]. Endoplasmic reticulum
stress induces ∆40p53 mRNA translation and its homo-oligomerization to induce G2 cell cycle arrest.
In contrast, full-length p53 induces G1 arrest [77,78]. In relation to senescence, the proliferation of
embryonic cells in mice expressing transgenic p44 (a mouse homolog of ∆40p53) was decreased by
the induction of p21Waf1/Cip1 compared with embryonic cells in wild-type and heterozygous mice [79].
Mouse embryonic fibroblasts (MEF) from p44 transgenic mice experiencing oxidative stress, which is
an inducer of cellular senescence, by treatment with H2O2 showed less cell proliferation and were
more SA-β-gal-positive, indicating that the overexpression of p44 induced cell cycle arrest and cellular
senescence [80]. Furthermore, neuronal stem/progenitor cells in the p44 transgenic mice showed
reduced cell proliferation without increased apoptosis, suggesting that defects in cell proliferation
limit stem cell self-renewal and cause premature stem cell depletion [81]. In contrast to somatic stem
cells, cell growth rates under the ectopic expression of p44 (p44Tg) in embryonic stem cells (ESCs)
were similar with normal ESCs, but the loss of one copy of p44 in ESCs significantly decreased cell
proliferation and pluripotency. The ∆40p53 expression level controls the switch from pluripotent ESCs
to somatic cells by regulating the activity of full-length p53 at target genes (Nanog and IGF-1 (Insulin
like growth factor 1) receptor) [82]. Furthermore, along with in normal cells, the exogenous expression
of both ∆40p53 and wild-type p53 in human hepatocellular carcinoma cell lines reduced cell growth
and induced senescence by increasing the expression of p21Waf1/Cip1 and IL-8 to stabilize full-length
p53 [83] (Figure 3).
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Figure 3. A model for the regulation of cellular senescence and ageing by ∆40p53. ∆40p53 directly
regulates the IGF-1 signaling pathway to modulate cell growth and survival factors. On the other
hand, the binding of ∆40p53 to full-length p53 regulates the transcriptional activity of full-length p53
on target genes and its capacity to bind Mdm2 for proteasomal degradation. Regulation of the IGF-1
signaling pathway and full-length p53 by ∆40p53 affects not only cellular senescence and ageing but
also the pluripotency of ESCs and neurodegeneration.

The isoform that is most associated with cellular senescence is ∆133p53α. ∆133p53α is derived
from the internal initiation of transcription at the intragenic promoter located at intron 4, resulting in
specific mRNA. The first AUG that is used for the initiation of translation corresponds to codon 133 of
full-length p53. ∆133p53α lacks the first 132 amino acids, TAD I, TAD II, as well as the first 30 residues
of DBD [70]. We have shown that ∆133p53α is abundant in early passage normal human fibroblasts and
decreases in late passage and senescent cells. Interestingly, siRNA (short interfering RNA)-mediated
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knockdown of endogenous ∆133p53α induces cellular senescence, which is attributed to the induction
of p21Waf1/Cip1 and other p53 transcriptional target genes, including microRNA-34a. In contrast, the
overexpression of ∆133p53α in late passage (near senescent) normal human fibroblasts extends the
cellular replicative lifespan due to the inhibited expression of p21Waf1/Cip1 and other p53 transcriptional
target genes [84]. However, premature senescence induced by oncogenic Ras or acute telomere
dysfunction is not associated with diminished ∆133p53α [84]. The downregulation of ∆133p53α in
replicative senescence is not because of a change in mRNA levels or proteasomal degradation. Instead,
unlike full-length p53, which is degraded by the Mdm2-mediated proteasomal pathway, ∆133p53α is
degraded by autophagy [85,86]. The chaperone-associated E3 ubiquitin ligase STUB1 (STIP1 homology
and U-box containing protein 1), which is known to regulate autophagy, interacts with ∆133p53α and is
downregulated in replicative senescence. Thus, in early passage human normal fibroblasts, ∆133p53α
interacts with STUB1 to inhibit the recruitment of ∆133p53α to the autophagosome. In contrast,
the dysregulation of STUB1 in senescent cells can release ∆133p53α from the STUB1 complex and
recruit it to the autophagosome, resulting in the degradation of ∆133p53α [86]. Along with replicative
senescent human normal fibroblasts, radiation-induced senescent astrocytes show decreased ∆133p53α
levels. The overexpression of ∆133p53α in human astrocytes protects radiation-induced cellular
senescence, resulting in the inhibition of astrocyte-mediated neuroinflammation via the promotion of
DNA repair [87]. ∆133p53α in a human hepatocyte cell line (QSG-7701) is induced by γ-irradiation, but
not other stresses such as heat shock or UV irradiation, to promote DNA double-strand break repair,
where ∆133p53α upregulates the transcription of the repair genes RAD51, LIG4, and RAD52 by binding
to a p53-responsive element in their promoters. QSG-7701 cells with ∆133p53α-knockdown eventually
arrest at the G2 phase in response to γ-irradiation and ultimately become senescent [88]. ∆133p53α
is transactivated by p53, p63, and p73 isoforms after genotoxic stress [89]. In addition, ∆133p53α
has been shown to regulate gene expression in both a full-length p53-dependent and -independent
manner [90] (Figure 4).

p53β, which is obtained from the P1 promoter of TP53 gene and alternative splicing of intron 9,
is upregulated in normal human senescent fibroblasts [70,84]. It was also found that the overexpression
of p53β induced cellular senescence in early passage by the upregulation of p53 target genes such as
p21Waf1/Cip1 via cooperation with full-length p53 [84]. The downregulation of SRSF3 (serine and arginine
rich splicing factor 3, SRp20), which is a member of a highly conserved family of splicing factors and
sequence-specifically binds to the p53β-unique exon i9β on p53 pre-mRNA to prevent the induction of
p53β in proliferating normal human fibroblasts (Figure 2), induces p53β at the mRNA and protein
levels, because SRSF3 can leave an alternative exon in p53β mRNA during replicative senescence.
Indeed, knockdown of SRSF3 in early-passage normal human fibroblasts induces senescence, which is
partially rescued by full-length p53, suggesting that SRSF3 acts on p53-mediated cellular senescence [91].
I propose that the balance between endogenous p53β and ∆133p53α in normal human fibroblasts is
critical for the regulation of replicative cellular senescence. Finally, the ectopic expression of p53β in
RKO and MCF-7 cancer cell lines is unable to modulate p53-dependent stress responses including
infrared radiation (IR)-induced senescence [92]. Further studies are needed to clarify the p53β-mediated
mechanism for senescence induction, including the cell type affected by p53β and the manner with
which p53β induces senescence under different stresses (full-length p53-dependent or -independent)
(Figure 4).
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∆133p53α and p53β. Abundant ∆133p53α competitively acts on p53 functions in proliferating cells, and
p53β expression is kept at low levels. In senescent cells, p53β is upregulated by SRSF3-mediated splicing,
and ∆133p53α is downregulated by STUB1-mediated chaperon-dependent autophagic degradation.
Change in the senescence-associated p53 isoform expression also contributes to tumor progression
from adenoma to carcinoma along with neurodegeneration and reprogramming into iPSCs.

3. p53 Isoforms in Ageing and Age-Related Functional Decline

Transgenic mice overexpressing ∆40p53 show small body size and ageing phenotype, including
typical lordokyphosis, and reduced bone density. However, these effects are not seen with the same
transgenic mice in p53 null background, suggesting that ∆40p53 is dependent on the presence of
full-length p53 [79]. Moreover, the phenotype of ∆40p53 transgenic mice alters insulin-like growth
factor (IGF) signaling, which is associated with the regulation of ageing [93–96]. Serum IGF levels were
elevated in ∆40p53 transgenic mice more than three-months-old but not in younger mice, and IGF-1
receptor expression levels and activated Akt levels, a downstream target of IGF1, were also upregulated
in older ∆40p53 transgenic mice, suggesting that the IGF signaling pathway is altered with an increase
in ∆40p53 levels. Additionally, the upregulated IGF signaling pathway in ∆40p53 transgenic mice led
to the phosphorylation of p53 at Ser15, resulting in the enhanced the stabilization and transcriptional
activity of p53 to induce p21Waf1/Cip1 and Mdm2 through sustained ERK (extracellular signal-regulated
kinase) activation [79]. It also led to cell cycle arrest via the activation of ERK signaling, which in
turn inhibited cell proliferation. Therefore, the small size of ∆40p53 transgenic mice was caused
by decreased cell number, which consequently caused cellular senescence and premature ageing
phenotypes [79]. New neurons in the olfactory bulb of the older ∆40p53 mice were reduced compared
to wild-type due to the accelerated decline of proliferating cells and stem cells in the subventricular zone
by the constitutive activation of full-length p53 and subsequent constitutive expression of p21Waf1/Cip1

in neural stem cells [81]. Mice 2.5-months old and homozygous for a transgene encoding ∆40p53
showed memory and synaptic defects because of IGF-1 receptor hyperactivation and abnormal tau
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metabolism [97]. The expression of a humanized form of mouse amyloid precursor protein (hAPP) in
∆40p53 transgenic mice also reduced lifespan and degenerated memory-forming and -retrieving areas
of the brain compared to hAPP-expressing wild-type mice [97]. Thus, the role of ∆40p53 in ageing is
two parts. One has ∆40p53 as a regulator of full-length p53 function by complexing with it, resulting in
the capacity to transactivate target genes and to bind Mdm2 to undergo proteasomal degradation. The
other has ∆40p53 directly regulating the IGF-1 signaling pathway, mediating cell growth and survival
in many tissues (Figure 3).

Isolating and manipulating senescent cells from human solid tissues are difficult, complicating
study of the in vivo roles of senescent cells in physiological and pathological ageing phenotypes in
humans. In contrast, late-differentiated CD8+ T lymphocytes from healthy human donors are more
easily isolated and manipulated. In addition, late-differentiated CD8+ T lymphocytes are observed to
accumulate age-dependently and associated with specific changes in cell surface antigen expressions
(i.e., the loss of CD28 and gain of CD57) [98–102] as well as other senescence markers, such as
SA-β-gal activity, shortened telomeres, increased SAHFs, and increased SASP. In addition, we observed
that the in vivo accumulation of senescent CD8+ T lymphocytes (CD28−CD57+), which show the
senescence-associated p53 isoform expression signature (diminished ∆133p53α levels and induced
p53β levels) in blood during physiological ageing [103]. Cultured CD8+ T lymphocytes underwent
replicative senescence that was associated with the loss of CD28 and ∆133p53α, which was rescued
by the ectopic expression of CD28 or ∆133p53α, respectively, resulting in restored cell proliferation,
extended replicative lifespan, and reduced senescent phenotypes. In contrast, ∆133p53α knockdown or
p53β overexpression in CD8+CD28+ cells reduced cell proliferation and induced senescence [103]. This
study indicates a role for ∆133p53α and p53β in the regulation of cellular proliferation and senescence
that is associated with physiological ageing in vivo (Figure 4).

The senescence-associated p53 isoform expression signature correlates with several age-related
disease. The onset of neurodegenerative diseases, such as Alzheimer’s diseases (AD) and sporadic
amyotrophic lateral sclerosis (ALS), is associated with ageing and caused by the dysfunction of
cross-talk between astrocytes and neurons [104,105]. Astrocytes are the most abundant cell type in
the brain and have roles in providing functional and metabolic support to neurons [106]. During the
replicative senescence of primary human astrocytes, the senescence-associated p53 isoform signature
along with autophagic degradation and the SRSF3-mediated regulation of p53β were observed. These
same phenotypes were also observed in the replicative senescence of normal human fibroblasts [87].
Interestingly, neurons co-cultured with ∆133p53α-knockdown or p53β-overexpressing astrocytes
showed increased cell death, whereas neurons co-cultured with aged ∆133p53α-overexpressing
astrocytes were protected from senescence and cell death. This study also showed that brain
tissues from AD and ALS patients had increased numbers of senescent astrocytes that showed less
∆133p53α and more p53β expression, demonstrating in vitro observations are consistent with the
in vivo pathology of these neurodegenerative diseases, which has implications in the development of
therapeutic interventions [87] (Figure 4).

The premature ageing disorder Huntchinson–Gliford Progeria Syndrome (HGPS) is an extremely
rare genetic disorder caused by a de novo point mutation in exon 11 of the LMNA gene, leading to
the increased expression of a truncated splicing mutant of lamin A protein named progerin [107,108].
The accumulation of progerin induces cellular senescence associated with increased DNA damage
signaling [109–112]. Particularly, DNA damage in HGPS is induced by the accumulation of unrepaired
DNA double-strand breaks due to defective DNA repair and genomic instability by progerin [113,114].
Near-senescent HGPS fibroblasts express low levels of ∆133p53α and high levels of p53β, while the
overexpression of ∆133p53α in near-senescent HGPS fibroblasts delays replicative senescence despite
progerin expression levels and nuclear abnormalities remaining unchanged [115]. ∆133p53α promotes
the repair of DNA double-strand breaks due to the increased expression and recruitment of RAD51,
which is a DNA repair factor essential for effective homologous recombination, through the repression
of full-length p53 and upregulation of E2F1, a transcription activator of RAD51. Therefore, the
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restoration of ∆133p53α expression may be a novel therapeutic strategy for treating ageing-associated
phenotypes of HGPS in vivo [115] (Figure 4).

4. p53 Isoforms in Cell Reprogramming to Pluripotent Cells

Pluripotency and differentiation potential are crucial for cell and tissue homeostasis and
regeneration. p53 regulates pluripotency and differentiation through the transcriptional regulation
of its target genes [55,116]. Indeed, several studies showed that reducing p53 activity increased the
reprogramming efficiency of various mouse and human somatic cells and the self-renewing potential
of iPSCs and ESCs [56–58,60,117]. These results are attributed to the functions of p53 and to cellular
senescence acting as a barrier to cell reprogramming in vitro in a cell-autonomous manner. On the
other hand, p53 is also a critical regulator of DNA damage response and repair. These properties
have a bigger effect on iPSCs and ESCs than somatic cells because iPSCs and ESCs give rise to
various lineage-committed somatic stem/progenitor cells [59,61,118]. To maintain genomic stability,
iPSCs and ESCs have high rates of apoptosis to eliminate damaged cells, a function that is also
regulated by p53 [119,120]. The expression of ∆133p53α protein in 20 human iPSC and ESC lines is
higher than in human normal fibroblasts derived from the iPSC lines, in spite of the widely varied
expression levels of full-length p53 among lines [121]. During the process of reprogramming, ∆133p53α
protein and its transcript were induced from nine days after the transduction of the Yamanaka factors
(Oct4, Klf4, c-Myc, and Sox2) [122]. The overexpression of ∆133p53α enhanced the reprogramming
of normal human fibroblasts to iPSCs due to the inhibition of p53-inducible genes that mediate
factors for cellular senescence, such as p21Waf1/Cip1, PAI-1 (plasminogen activator inhibitor-1), IGFBP7
(insulin-like growth factor binding protein 7), and microRNA-34a [121], and also genes mediating DNA
double-strand break repair, such as RAD51, RAD52, and LIGASE4 [122]. Karyotype assay [122] and
whole-exome sequencing [121] revealed that the overexpression of ∆133p53α led to fewer chromosomal
aberrations and somatic mutations than full-length p53 knockdown. These studies demonstrated that
the overexpression of ∆133p53α is non- or less oncogenic and mutagenic than the total inhibition of
p53 due to the selected induction of p53-mediated genes.

5. p53 Isoforms in Cancer

Mice with the loss of a single copy of Trp53 or p16 INK4a are prone to tumors [123,124], but
mice carrying an extra copy of either gene are cancer resistant [125,126]. Most, if not all, cancers
harbor mutations in one or both pathways in humans [127,128]. Accordingly, these two pathways are
crucial anticancer mechanisms that prevent the growth of neoplastic transformed cells, and cellular
senescence depends on both [129–131]. Cellular senescence also contributes to arresting tumors at
the premalignant stage. Senescent cells are detectable in benign tumors, which depending on the
tissue type are also known as adenomas and intraepithelial neoplasias [132]. The acute activation
of p53 in hepatocellular carcinomas and sarcomas induces senescence, which is followed by tumor
elimination [133,134]. Yet cellular senescence paradoxically has a function for tumor promotion, which
is probably related to SASP factors. Senescent cells secrete SASP factors, which have been described
to reinforce the senescence program in an autocrine manner and to promote senescence induction in
a paracrine mode [14,21,135–137]. Namely, SASP causes diverse effects in senescent cells and their
neighbor cells. Some of the effects are beneficial for tumor suppression, such as the suppression of
malignancy in pre-malignant tumor cells, the activation of the immune system to remove damaged
cells, and the promotion of wound healing and tissue repair [19,133,138–140]. However, detrimental
effects, including chronic inflammation, stem cell-like phenotypes in malignant cells, and the promotion
of tumor immune evasion and angiogenesis, contribute to tumor promotion [14,21,135–137]. These
properties are mediated by p53 and nuclear factor-κB (NF-κB) [141]. Zhang and Friedman showed
that p53-triggered SASP derived from stromal cells strongly influences epithelial tumorigenesis in the
liver [142]. Moreover, Lujambio et al. showed p53 regulates the SASP of hepatic stellate cells that
accumulate in the liver and coordinate the production of fibrotic scar tissue, resulting in hepatocellular
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carcinoma [139]. Thus, the senescence response, particularly SASP, in tumorigenesis is considered a
double-edged sword.

Many studies have shown that p53 isoforms are abnormally expressed in breast cancer, ovarian
cancer, lung cancer, colon carcinoma, glioblastoma, melanoma, head and neck tumors, renal cell
carcinoma, acute myeloid leukemia, and hepatic cholangiocarcinoma [70,84,143–151]. These results led
us to consider whether each p53 isoform may have different roles in tumorigenesis and cancer through
cooperation with full-length p53 or its own direct function. Indeed, ∆40p53 is significantly expressed
in the aggressive triple negative (negative expression of estrogen receptor, HER2 (Erb-B2 receptor
tyrosine kinese 2), or epidermal growth factor receptor 2, and progesterone receptor) subtype of breast
cancer, which is resistant to anti-tumor drugs [152]. Conversely, in wild-type TP53 mucinous or serous
ovarian cancer, higher ∆40p53 expression correlates with better clinical outcomes [153]. Similarly,
∆40p53 expression in melanoma cells and hepatocellular carcinoma cells suppresses their proliferation
through the induction of apoptosis or cellular senescence [83,151].

Colon adenomas, which are premalignant tumors associated with senescence, express increased
amounts of ∆133p53α compared to normal colon tissues. However, in colon carcinomas, the ∆133p53α
expression is comparable with normal colons. This expression change of ∆133p53α is correlated with
an expression change of p53β, which is high in colon adenomas and low in colon carcinomas. A further
significant increase in ∆133p53α from stage I to II and decrease in p53β from stage II to III carcinomas
might have a role in the cancer stage progression. ∆133p53α also stimulates angiogenesis and tumor
progression in glioblastoma cell lines and osteosarcoma cell lines, and the expression of angiogenic
genes is differentially regulated by the expression ratio of ∆133p53α and p53 [84].

The upregulation of ∆133p53α combined with the downregulation of TAp53 (p53α, p53β,
and p53γ) is associated with the short patient survival time in cholangiocarcinoma [150]. p53β is
correlated with a higher risk of recurrence of wild-type TP53 ovarian cancer and associated with
adverse clinicopathologic markers [148]. In contrast, several studies of different human cancers have
shown that prognosis in the TP53 mutation status is improved with the expression of certain p53
isoforms. The overall survival of mutant TP53 serous ovarian cancer patients correlates with ∆133p53α
expression [154,155]. In breast cancer with mutant TP53, higher p53γ expression levels are associated
with good prognosis to levels comparable with the wild-type TP53 status, while the absence of p53γ
expression with the mutant TP53 status is associated with a particularly poor prognosis [149]. Taken
together, p53 isoform expression is associated with the clinical outcomes of cancer, which depend on
the TP53 status (wild-type or mutant) and cancer type.

6. Concluding Remarks

Cellular senescence is a process in which proliferative-competent cells undergo permanent,
irreversible growth arrest in response to stress (for example, replicatively dividing limit, oncogene
activation, oxidative stress, or DNA damage) [3–6]. Senescent cells are distinct from other non-dividing
cells by their expression of senescence-associated markers, including short or dysfunctional telomeres,
positivity of SA-β-gal, SAHFs, SASP, and activation of the p53 and/or p16INK4A pathways followed by
changed gene expressions [7–9,12,13,156,157]. Numerous studies have shown that cellular senescence
contributes not only to multiple pathological disorders including cancer, ageing, and age-related
diseases, but also to regeneration [4,18,158–162]. In a cell-autonomous manner, senescence acts to
deplete various pools of cells in an organism, including stem and progenitor cells, to cause ageing
and tumor suppression. Senescence interferes with tissue homeostasis and regeneration, and also
in cooperation with non-autonomous factors (i.e., SASP) induces tumor progression and age-related
diseases [161]. Emerging evidence has shown that p53 has a key role in the regulation of these
cell-autonomous and non-autonomous factors [4,163,164]. p53 modulates cellular senescence at
different levels and circumstances with a dual effect, promoting or inhibiting the senescence program.
This dual effect seems to depend on the p53 isoform expression pattern. As discussed in this review,
some p53 isoforms cooperate with full-length p53, whereas others operate independently. The effect of
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p53 isoforms on p53-mediated functions against cellular senescence, ageing, and age-related disorders is
dependent on the cell type and p53 status. The balance of different p53 isoform expression patterns may
be critical for senescence- and ageing-associated outcomes. Moreover, some p53 isoforms modulate
full-length p53 transcriptional activity, while others have transcriptional activity independent of
full-length p53 even in p53-dependent biological activities (Figure 5). Based on these considerations,
there are still many unsolved questions. How are p53 isoforms involved in cancer, ageing, and
age-related disorders? How do p53 isoforms and full-length p53-mediated signaling pathways connect
with other signaling pathways related to cellular senescence and ageing? Further studies will elucidate
the mechanism of p53 isoforms in cellular senescence, ageing, and age-related disorders to enhance
our knowledge and advance clinical applications.
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Figure 5. A model for the regulation of cellular senescence, ageing, and age-related disorders by
full-length p53 and p53 isoforms. Various stresses induce not only full-length p53 activation, but also
changes in p53 isoform expressions depending on the cell type and p53 status, such as abundant ∆40p53
or decreased ∆133p53α and increased p53β, resulting in cellular senescence through cell-autonomous
functions including the loss of functional cells and regenerative capacity. Senescent cells also show non
cell-autonomous effects, mainly SASP. Autocrine SASP can reinforce senescence, in turn, paracrine
SASP influences neighboring cells to induce senescence and activate immune responses, leading to
ageing, and tumor suppression. At the same time, SASP also promotes cell proliferation, fibrosis,
angiogenesis, and tumor invasiveness, resulting in tumor progression and age-related diseases. This
dual effect by cell-autonomous and non-cell-autonomous functions is modulated by full-length p53
and different p53 isoform expressions. Moreover, the different p53 isoform expressions may be crucial
for senescence- and age-associated outcomes, and some p53 isoforms may modulate the dual effect of
the senescence program dependently or independently of full-length p53.
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