
R E S E A R CH A R T I C L E

Common abnormality of gray matter integrity in substance use
disorder and obsessive-compulsive disorder: A comparative
voxel-based meta-analysis

Benjamin Klugah-Brown1 | Chenyang Jiang1 | Elijah Agoalikum1 | Xinqi Zhou1 |

Liye Zou2 | Qian Yu2 | Benjamin Becker1 | Bharat Biswal1,3

1The Clinical Hospital of Chengdu Brain

Science Institute, MOE Key Laboratory for

Neuroinformation, School of Life Science and

Technology, University of Electronic Science

and Technology of China, Chengdu, Sichuan,

China

2Exercise & Mental Health Laboratory, School

of Psychology, Shenzhen University,

Shenzhen, China

3Department of Biomedical Engineering, New

Jersey Institute of Technology, Newark, New

Jersey

Correspondence

Benjamin Becker and Bharat Biswal, The

Clinical Hospital of Chengdu Brain Science

Institute, MOE Key Laboratory for

Neuroinformation, School of Life Science and

Technology, University of Electronic Science

and Technology of China, No.2006, Xiyuan

Avenue, West Hi-Tech Zone, Chengdu,

Sichuan 611731, China.

Email: ben_becker@gmx.de (B. B.);

bbiswal@gmail.com (B. B.)

Funding information

Science, Innovation and Technology

Department of the Sichuan Province, Grant/

Award Number: 2018JY0001; National Natural

Science Foundation of China, Grant/Award

Number: 91632117; National Key Research

and Development Program of China, Grant/

Award Number: 2018YFA0701400

Abstract

The objective of the current study is to determine robust transdiagnostic brain structural

markers for compulsivity by capitalizing on the increasing number of case-control studies

examining gray matter volume (GMV) alterations in substance use disorders (SUD) and

obsessive-compulsive disorder (OCD). Voxel-based meta-analysis within the individual

disorders and conjunction analysis were employed to reveal common GMV alterations

between SUDs and OCD. Meta-analytic coordinates and signed brain volumetric maps

determining directed (reduced/increased) GMV alterations between the disorder groups

and controls served as the primary outcome. The separate meta-analysis demonstrated

that SUD and OCD patients exhibited widespread GMV reductions in frontocortical

regions including prefrontal, cingulate, and insular. Conjunction analysis revealed that

the left inferior frontal gyrus (IFG) consistently exhibited decreased GMV across all disor-

ders. Functional characterization suggests that the IFG represents a core hub in the cog-

nitive control network and exhibits bidirectional (Granger) causal interactions with the

striatum. Only OCD showed increased GMV in the dorsal striatum with higher changes

being associated with more severe OCD symptomatology. Together the findings demon-

strate robustly decreased GMV across the disorders in the left IFG, suggesting a trans-

diagnostic brain structural marker. The functional characterization as a key hub in the

cognitive control network and casual interactions with the striatum suggest that deficits

in inhibitory control mechanisms may promote compulsivity and loss of control that

characterize both disorders.

K E YWORD S

compulsivity, coordinate-based meta-analysis, obsessive-compulsive disorder, substance use
disorder, voxel-based morphometry

1 | INTRODUCTION

Obsessive-compulsive disorder (OCD) and substance use disorder

(SUD) represent two neuropsychiatric disorders characterized by

maladaptive and persistent repetitive behaviors. Typically, OCD

involves either hidden or overt ritualistic acts to obtain relief, whereas

SUD engages in the consumption of a substance for rewarding effects

or relief of distress. Initially, these behaviors serve a specific goal such
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as relief from emotional, physical, or social distress or a rewarding

experience. However, during the transition into the pathological state

of the disorders, the initial goal-directed behavior becomes progres-

sively habitual and ultimately compulsive. Although compulsivity rep-

resents a transdiagnostic key symptom of both disorders and

overarching models emphasize the contribution of Pavlovian and

instrumental learning mechanism to the development of compulsive

behavior in both disorders (Robbins, Gillan, Smith, de Wit, &

Ersche, 2012; Robbins, Vaghi, & Banca, 2019) the transdiagnostically

shared neurobiological mechanisms of the disorders remain to be sys-

tematically examined. Also, SUD and OCD often co-occur (Blom

et al., 2011; Lochner et al., 2014; Mancebo, Grant, Pinto, Eisen, &

Rasmussen, 2009; Ruscio, Stein, Chiu, & Kessler, 2010) and co-

morbidity has been reported to be a potential source of inefficient

treatment (Glazier, Calixte, Rothschild, & Pinto, 2013).

Accumulating evidence from different lines of research suggests

shared brain dysregulations between the disorders, such that both dis-

orders have been characterized by dysregulations in central gluta-

matergic (Blom et al., 2011; Gass & Olive, 2008; Pittenger, Bloch, &

Williams, 2011) and dopaminergic signaling which has been associated

with key symptoms of both disorders as well as the regulation of

behavioral control, associative learning, and compulsivity (Bari &

Robbins, 2013; Bellini et al., 2018; Cools, 2008). Moreover, functional

neuroimaging studies emphasize an important role of frontocortical

circuits in compulsive behavior, and accumulating evidence suggests

that neurofunctional dysregulations in specific frontocortico-striatal

pathways facilitate the development of compulsive symptoms in both

disorders (Gonçalves et al., 2016; Milad & Rauch, 2012; Vollstädt-

Klein et al., 2010; Zhou et al., 2019).

Despite evidence from previous meta-analyses suggesting robust

brain structural alterations in both, SUD and OCD patients relative to

control subjects, shared and separable brain structural alterations

between the disorders have not been systematically determined. Pre-

vious overarching conceptualizations and neuroimaging studies point

to some candidate brain systems that have been identified most con-

sistently, particularly frontostriatal circuits and cortical regions such as

the insula (Everitt & Robbins, 2005; Goldstein et al., 2009; Koob &

Volkow, 2010). Additionally, quantitative and qualitative voxel-based

morphometry (VBM) studies have suggested altered gray matter indi-

ces in SUDs (see cocaine; Crunelle et al., 2014; Ide et al., 2014; Rando,

Tuit, Hannestad, Guarnaccia, & Sinha, 2013), Cannabis; (Cousijn

et al., 2012; Wetherill et al., 2015), Alcohol; (Xiao et al., 2015; Yang

et al., 2016), and Nicotine; (Hanlon et al., 2016; Zubieta et al., 2001).

Moreover, recent meta-analyses suggest robust changes in gray mat-

ter in OCD (L�azaro et al., 2011; Joaquim Radua, Van Den Heuvel, Sur-

guladze, & Mataix-Cols, 2010; Rotge et al., 2010; So et al., 2008), with

recent mega-analyses further confirming OCD-associated brain struc-

tural changes (Boedhoe et al., 2018; Thompson et al., 2020; van den

Heuvel et al., 2020) which may partly overlap with mega-analytically

determined brain structural changes in SUD (Thompson et al., 2020),

also effects of medication may contribute to some of the reported

gray matter alterations in OCD (Boedhoe et al., 2017). However,

shared gray matter alterations between the disorders have not been

systematically examined determined. The determination of shared

structural alterations between the disorders may not only facilitate to

ascertain the neurostructural basis of compulsivity but may addition-

ally enable the development of clinical interventions, including the

determination of promising targets for invasive or noninvasive brain

modulation techniques.

Against this background, the present study aimed at determining

shared and robust brain structural markers for the disorders by capi-

talizing on the increasing number of case-control studies examining

gray matter alterations in SUD patients and OCD patients relative to

healthy control subjects. To this end, we combined original studies

from three prevalent substances abused (Alcohol, Cocaine, and Nico-

tine) which we individually analyzed in a first step. Next, we investi-

gated the shared brain gray matter alterations between SUDs and

OCD via voxel-based meta-analysis. This meta-analytic approach has

the potential to address the inconsistencies and lack of replicability

that often characterizes the original studies on brain structural alter-

ations in psychiatric disorders (Button et al., 2013; Ioannidis, 2011).

Based on previous results from functional imaging studies and over-

arching models of compulsivity we hypothesized that SUDs and OCD

will exhibit shared GMV alterations in frontostriatal regions.

Additionally, we aimed to further characterize the identified com-

mon region both on the behavioral and network level. To this end, we

employed Neurosynth to identify functional co-activation networks of

the identified region and employed Granger causality analysis (GCA)

to resting-state data from an independent sample of healthy controls

to further map the causal relationship between the identified region

and the striatum.

2 | METHODS

The present meta-analysis followed the Preferred Reporting Items for

Systematic Reviews and Meta-Analyses (PRISMA; Moher et al., 2014)

and the principles of conducting coordinate-based meta-analysis

(Müller et al., 2018). This study has been preregistered on the OSF

repository (Registration DOI: 10.17605/OSF.IO/7YG6J). In the initial

step, we identified original studies examining brain structural alter-

ation in SUD (Cocaine, Alcohol, and Nicotine) and OCD through MRI-

based VBM. For the literature search, four databases (PubMed, Web

of Science, Neurosynth, and Scopus) were utilized and original articles

were identified based on relevant references in review studies. Titles

and abstracts returned by the search results were examined for subse-

quent full-text screening and inclusion. Only English language studies

reporting whole-brain results in terms of coordinates (three-

dimensions [x, y, z] and in Talairach or Montreal Neurological Institute

stereotactic space) and published between the year 2000–2020 were

included. The screening process resulted in original peer-reviewed

studies employing case-control designs in SUD and OCD, respectively.

The following search terms were applied: “Cocaine” OR “Cocaine use

disorder” OR “Alcohol” OR “Alcohol use disorder” OR “Nicotine” OR

“Smoking” OR “Obsessive-compulsive disorder” AND (Morphometry

OR Voxel-based OR voxelwise). Only articles with case-control

3872 KLUGAH-BROWN ET AL.

http://10.0.68.197/OSF.IO/7YG6J


designs reporting differences between the respective diagnostic

group and healthy control subjects were included. Additional exclu-

sion criteria were as follows: (a) articles reporting only region-of-

interest (ROI) results, (b) articles with poly-drug users and samples

with high comorbidities with psychiatric or somatic disorders

(e.g., schizophrenia or HIV), (c) articles focusing on parental drug expo-

sure, and (d) articles reporting results from the same dataset from pre-

vious studies, five studies including samples lower than N = 10 per

disorder.

2.1 | Meta-analytic approach

The meta-analysis of VBM studies was performed using the Seed-

based d Mapping (formerly “Signed Differential Mapping”) (SDM)

software version 6.21 (https://www.sdmproject.com/software/). Sub-

sequent functional decoding of the identified regions was conducted

via the Neurosynth database (Yarkoni, Poldrack, Nichols, Van Essen, &

Wager, 2011; https://neurosynth.org/). The analysis pipeline included

the following steps: (a) Extraction of coordinates from peak clusters

including their effect sizes (J. Radua et al., 2012; representing the gray

matter differences between patients and controls) either t-value, z-

value, or p-value (all values in z and p were converted to t-value using

the statistical converter; https://www.sdmproject.com/utilities/?

show=Statistics); (b) To account for differences between the reported

coordinates and the standard space, we created MNI maps of the GM

for each study using the anisotropic Gaussian kernel with Full-width

at half maximum (FWHM) set at 20 mm and a voxel size of 2 mm. The

FWHM is used to assign values to gray matter voxel close to each of

the reported coordinates (Albajes-Eizagirre, Solanes, Vieta, &

Radua, 2019). It is noteworthy that the kernel is different from the

one used to smooth normalized f/MRI original data; (c) To account for

potential effects of age in each original study mean of the samples

was included as a covariate; and (d) Using the effective size maps and

the sample sizes of each study variance maps were obtained. We next

performed a voxel-wise computation to derive the mean maps by

using the weighted mean study maps (obtained using the sample size,

variances, and the between-study difference). In the analysis, we first

computed the SDM for each disorder, and next a conjunction map

was derived by computing the common regions to identify shared

brain structural alterations between the four disorders. All meta-

analytic results employed statistical significance testing by

thresholding the derived maps by voxel-level uncorrected p <.001 and

FWE <0.05 (10 voxels) thresholds.

2.2 | Sensitivity analysis

We performed whole-brain, voxel-based jackknife sensitivity analysis

to determine the robustness of the results by setting a repetition

value equal to the number of studies in each sample. The analysis in

each of the groups was systematically repeated for 12, 9, 10, and

30 times, respectively, while discarding a single study each time. The

number of repetitions equals the total number of studies in each sam-

ple, that is, Alcohol (n = 12), Cocaine (n = 9), Nicotine (n = 10), and

OCD (n = 30). This process was repeated until the last study was

removed and placed back. The analysis was aimed at determining

whether the observed findings are driven by single studies and thus

testing the robustness of the group-level results.

2.3 | Exploratory analyses of functional
characterization: meta-analytic co-activation, causal
connectivity, and linear model analysis

To functionally characterize regions exhibiting shared alterations

across the disorders a co-activation analysis of the conjunction results

across the diagnostic groups was performed. In the co-activation anal-

ysis, we used the inferior frontal gyrus (IFG) ROI co-ordinate to search

for networks in the Neurosynth database, the result reflects regions

extracted from a large database of previous studies that functionally

co-activated with our ROI. Next, based on our apriori hypothesis of

the importance of frontostriatal circuits in both disorders and compul-

sivity, we aimed to investigate causal relationships in the intrinsic

interaction between the identified prefrontal (IFG) region and the stri-

atum. Accordingly, resting-state fMRI data from n = 50 subjects (male;

n = 28, mean age = 21.60, SD = 2.01 and female; n = 22, mean

age = 21, SD = 2.24) all right-handed were included (for standardized

resting-state data preprocessing see [Liu et al., 2019]) to examine the

causal interaction of the left IFG with the ipsilateral striatum. We

employed GCA (GCA derivation similar to [Klugah-Brown

et al., 2019]) to investigate the connectivity between the IFG and the

targeted areas as it may allow us to explore the interactions between

the identified region and the striatum on a causal level. For the techni-

cal details of GCA, refer to the manuscript by Zang, Yan, Dong, Huang,

and Zang (2012). Based on the meta-analytic determined overlapping

GMV alterations between the SUDs and OCD, we defined the IFG as

seeds (3 mm-radius sphere) and striatum (left ventral and dorsal, seeds

also known as targets), respectively. The striatal target-seeds were

obtained from the human connectome atlas (https://atlas.

brainnetome.org/bnatlas.html) and used 3 mm radius ROIs for left

striatum comprising of the dorsal and ventral striatum, respectively.

Furthermore, voxel-wise, residual-based GCA evaluations were made

on the mask of the gray matter using the REST toolbox (http://www.

restfmri.net).

GCA: briefly, the analysis is based on the notion that given previ-

ous information of Q(t) and R(t), we predict R based on the informa-

tion of Q(t), such that Q is said to have a causal influence on R. Here,

we used the residual version of the GCA, implemented based on auto-

regression as follows:

Rt ¼
Xp

k¼1

bkR t�kð Þ þεt ð1Þ

Var εtð Þ¼V1 ð2Þ
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Qt ¼
Xp

k¼1

b0kQ t�kð Þ þε0t ð3Þ

Var ε0t
� �¼W1 ð4Þ

where εt and ε0t are the residuals, V1 and W1 represent the variances

of the residuals, respectively. Using the joint regression, we obtained

V2 and W2 as follows:

Rt ¼
Xp

k¼1

XkR t�kð Þ þ
Xp

k¼1

YkQ t�kð Þ þμt ð5Þ

Var μtð Þ¼V2 ð6Þ

Qt ¼
Xp

k¼1

X0
kQ t�kð Þ þ

Xp

k¼1

Y 0
kQ t�kð Þ þμ0t ð7Þ

Var μ0t
� �¼W2 ð8Þ

where μt and μ0t are the residuals of the joint regressive representa-

tion, V2 and W2 are the variances associated with the residuals. Qt and

Rt indicate the time series of two events at a certain time t whereas

Q(t� k) and R(t� k) are the time series at time t� k and p is the number

of lagged time points. Finally, the GCA outputs Xk, X
0
k , Yk, and Y 0

k as

the signed maps and autoregression maps, respectively.

To compute the magnitude of causality to-and-from the two time

series a bidirectional and net-direction is derived as follows:

Inflow;

Mq!r ¼ ln
V1

V2
ð9Þ

Outflow;

Mr!q ¼ ln
W1

W2
ð10Þ

Net-direction:

Netflow;

ΔM¼ Mr!qð Þ� Mq!rð Þ ð11Þ

Equations (9) and (10) represent the magnitude of causality of

Q or R given the prediction of R or Q. The final step measures the net

influence of the direction of causality, that is if ΔM is positive the

net direction of causality if from Qt to Rt, if the ΔM is negative then

the net direction of causality is from Rt to Qt, respectively. The causal

parameters; Mq! r, Mr! q, and ΔM representing the inflow (to seed),

outflow (from seed), and out-in-flow (Netflow) were also computed.

The inflow (from the striatum to IFG), outflow (from IFG to striatum),

and out-inflow (net flow) were also computed. The resultant inflow,

outflow, and net flow were further transformed to z-score to improve

normality to facilitate the statistical analysis.

To further account for the previously reported effects of disorder

duration and medication on brain structural alterations in OCD a linear

model analysis with the duration of the disorder and medication (per-

centage of medicated patients) as our variables of interest was per-

formed in the OCD dataset. Moreover, we performed meta-regression

to explore further associations with disorder-relevant indices. To this

end associations with duration of substance use in SUD and OCD symp-

tom severity as assessed by the Yale-Brown Obsessive-Compulsive Scale

(YBOCs, [Castro-Rodrigues et al., 2018; Goodman et al., 1989]) in OCD,

respectively, were examined. Spearman correlation with 95% confidence

levels and thresholded at p <.05 were employed.

3 | RESULTS

Literature search performed according to our criteria resulted in a total

of 31 original GM VBM studies in SUD (n = 1,191, mean age = 40.03,

SD = 10.87) and 31 OCD (n = 1,293, mean age = 29.18, SD = 10.34)

that compared brain structure via VBM to controls (SUD: n = 1,585,

mean age = 42.63, SD = 14.27, OCD: n = 1,374, mean age = 28.97,

SD = 9.96), Figure 1 shows the flowchart of selection procedure. The

demographic characteristics of the samples from the included studies

are presented in Table 1. There are no significant differences among

the four groups (p <.05, F = 8.83). The breakdown of the 31 SUD study

group comprising of three diagnostic categories is shown in Table 2.

3.1 | Main GMV results

Results from the disorder-specific SDM-PSI meta-analysis are shown in

Figure 2. After FWE correction was performed within each diagnostic

category, reduced GMV for each diagnostic category as compared to

healthy controls was mainly located in the bilateral anterior insula,

except for the nicotine group, in which the reduced GMV was

restricted to the left insula. Additionally, all diagnostic categories

exhibited GMV reductions in the adjacent inferior frontal gyrus, as well

as the dorsal anterior cingulate (dACC), and the adjacent medial frontal

gyrus (Figures 2a–d). No regions with increased GMV were observed in

any of the SUDs relative to healthy controls. An additional conjunction

analysis in the three SUDs additionally revealed convergently

decreased GMV in the left insula/IFG and the prefrontal cortex across

the SUDs (results displayed in Figure S1). The conjunction analysis rev-

ealed that all four disorders exhibited convergently reduced GMV in

the left IFG (Figure 3a). The detailed GMV changes in each disorder

compared to healthy controls are presented in Tables S1–S4. The

results remained robust in the jackknife sensitivity analyses (Table S5).

3.2 | Exploratory analyses: linear model analysis
and neural decoding

To functionally characterize the region identified, a functional co-

activation analysis was conducted. Co-activation analysis revealed

3874 KLUGAH-BROWN ET AL.



that the identified IFG region primarily co-activated with broad

regions of the frontal and parietal regions encompassing mainly the

frontoparietal control network (Figure 3b). Findings from the GCA in

the sample of healthy subjects revealed that causality was observed

between the IFG and the striatum, specifically, an inflow pattern from

left striatum regions to the IFG except for left dorsal putamen (dPu.L;

p <.05; Figure 4a). Generally, the pattern of bidirectional causal flow

indicated a higher inflow from the target regions to the IFG (p <.05)

with inflow/outflow between IFG and dCa.L showing the highest cau-

sality. In these results, we found that there was only positive NetFlow

from the seed region to the left ventral putamen (vPu.L), signifying

the causal influence from the IFG to this subregion of the striatum

(Figure 4b). The meta-regression revealed no significant associations

(age, duration of substance use for SUD). The linear model analyses

further revealed effects of disorder duration and medication (clinical

characteristics of medication use in OCD are displayed in Table S6),

with both, increased as well as decreased GMV in OCD. Positive asso-

ciations between duration and GMV were found in the left calcarine

(p = .0009) and right insula (p = .022), whereas negative associations

were found in the bilateral superior frontal gyrus, medial frontal

(p = .0009), and left putamen/insula (Figure 5a, Table S7). Also, posi-

tive associations between medication use and GMV were found in the

left postcentral gyrus (p = .0009) and right hippocampus/thalamus

(p = .005), whereas, negative associations were found in the bilateral

insula (p = .0009), and middle cingulate gyrus (p = .003; Figure 5b,

Table S8). Furthermore, the meta-regression revealed a significant

positive association between OCD symptom severity in the left dorsal

striatum. Specifically, a higher OCD symptom load as assessed by

YBOCS scores was associated with increased left putamen GMV in

the OCD patients (Figure 6a,b).

4 | DISCUSSION

The present meta-analytic study examined for the first time shared

GMV alterations between SUDs and OCD. The disorder-specific

voxel-wise meta-analysis revealed widespread medial frontal and

insular GMV reductions within the SUD and OCD compared to con-

trols and the conjunction meta-analysis revealed that the disorders

are transdiagnostically characterized by reduced GMV in the left IFG.

Subsequent exploratory analysis that aimed at functionally character-

izing the identified region revealed that the left IFG functionally co-

activated with a broad network including bilateral parietal and frontal

regions, suggesting that this region represents a core node in the

F IGURE 1 PRISMA flowchart
of the selection procedure.
Number of experiments included
in the analysis of interest

KLUGAH-BROWN ET AL. 3875



TABLE 1 Demography of included studies

n.p M_ageP SD Edu SD Duration SD n.c M_ageC SD Edu SD

Alcohol

van Holst, de Ruiter,

van den Brink,

Veltman, and

Goudriaan (2012)

36 43.2 11.0 NA NA 11.69 9.7 54 35.3 10.1 NA NA

Mechtcheriakov

et al. (2007)

22 53.6 NA 9.7 2.6 10 NA 22 53.7 NA 10.1 2.3

Wang et al. (2016) 20 43.95 6.3 11.6 2.7 NA NA 20 40.5 8.7 9.15 4.18

Chanraud et al. (2007) 26 47.7 7.1 7.58 2.96 NA NA 24 45 6.72 8.7 3.36

Wiers et al. (2015) 22 42.14 6.2 10.86 1.25 14.82 7.4 21 41.95 6.41 11.62 1.62

Galandra et al. (2020) 22 45.59 7.99 9.91 2.65 10.11 6.57 18 44.83 8.86 10.11 2.78

Demirakca et al. (2011) 50 46.6 8.2 NA NA 12.4 7.4 66 45 10.1 NA NA

Chanraud et al. (2009) 24 47.8 7.7 7.75 2.99 NA NA 24 45 5.6 8.7 3.37

Nurmedov et al. (2016) 24 40.79 9.8 NA NA 19 9.19 29 37.45 10.87 NA NA

Segobin et al. (2014) 19 44.4 6.07 11.15 1.9 29.05 7.76 20 46.7 4.25 10.6 2.58

Galandra et al. (2018) 23 45.69 7.82 10 2.62 10.8 7.21 18 44.83 8.86 10.11 2.78

Jang et al. (2007) 20 43.5 6 14.3 4.2 NA NA 20 44.5 7.4 15.3 2.6

Cocaine

Sim et al. (2007) 40 41.4 6.9 NA NA 15.3 6.3 41 38.7 8.8 NA NA

Vaquero et al. (2017) 30 24 6 NA NA NA NA 30 24 6 NA NA

Franklin et al. (2002) 13 42 6.3 12 1.1 13 6.5 16 36.2 1 17 2.6

Yip et al. (2018) 37 42.43 6.1 12.38 1.11 NA NA 37 38 11.03 14.38 1.92

Parvaz et al. (2017) 19 42.58 7.63 12.68 2.75 12.74 7.42 12 39.33 8.66 12.71 1.6

Hanlon, Dufault,

Wesley, and

Porrino (2011)

24 38.9 0.9 NA NA 11.1 1.2 25 36.2 1 NA NA

Gardini and

Venneri (2012)

14 31.07 5.86 11.21 3.33 13.41 4.94 24 33.21 7.06 12.75 2.47

Bachi et al. (2018) 24 45.8 7.8 12.7 1.6 16.8 9.5 24 41.9 7.9 14.6 1.9

Barr�os-Loscertales

et al. (2011)

20 33.3 6.94 9.2 1.7 NA NA 16 33.38 9.17 8.53 1.45

Nicotine

Brody et al. (2004) 19 39.5 10.3 NA NA 14.5 NA 17 37.9 12.9 NA NA

Franklin et al. (2014) 80 33.85 10.96 14.44 2.22 14.05 10.13 80 32.08 7.4 13.89 2.11

Gallinat et al. (2006) 22 30.8 7.5 NA NA 13.9 7.3 23 30.3 7.9 NA NA

Hanlon et al. (2016) 58 31.69 NA 20.97 1.02 NA NA 60 29 NA 21.53 0.88

Liao, Tang, Liu, Chen,

and Hao (2012)

44 28.1 5.5 13.2 2.92 10.4 5.72 44 26.3 5.84 15 2.6

Morales, Lee,

Hellemann, O'Neill,

and London (2012)

25 35.4 1.8 14.1 0.3 NA NA 18 30.1 2.2 14.6 0.4

Peng et al. (2017) 27 32.26 3.73 19.3 1.32 12.7 8.3 53 30.83 5.18 19.32 1.29

Wang et al. (2014) 22 22.48 2.48 15.14 1.83 4.95 2.27 20 21.8 1.32 15.2 1.19

Yokoyama et al. (2018) 50 37.73 7.9 NA NA NA NA 50 35.93 9.08 NA NA

Fritz et al. (2014) 315 44.1 11.84 NA NA 26.8 3 659 51.49 14.45 NA NA

OCD YBOCS

Britton et al. (2010) 15 13.5 2.4 NA NA 4.1 2 20 13.6 2.4 NA NA 3.34

Carmona et al. (2007) 18 13 2.76 NA NA NA NA 18 13.03 3.04 NA NA 21.39

Cheng et al. (2016) 30 10.8 2.1 4.6 2.2 NA NA 30 10.5 2.2 14.4 1.8 5.21
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frontoparietal control networks. Based on the consistently reported

role of frontostriatal circuits in SUD as well as OCD the intrinsic

causal influence of the identified IFG region over the striatum was

examined in an independent dataset of healthy subjects and revealed

that the causal influence propagated from the left striatum to the left

IFG, whereas the IFG exerted causal influence over the ventral puta-

men. Finally, we found that only OCD exhibited increased GMV, spe-

cifically in the left dorsal striatum (putamen) which positively

correlated with OCD symptom severity (as assessed by the YBOCs) in

OCD. The findings generally remained robust when subjected to

TABLE 1 (Continued)

n.p M_ageP SD Edu SD Duration SD n.c M_ageC SD Edu SD

Christian et al. (2008) 21 38 9.6 27 4.2 NA NA 21 38.9 9.8 27 4.2 27

De Wit et al. (2014) 412 32.1 9.6 13.7 2.8 NA NA 368 30.2 9.3 13.7 2.8 3.35

Gilbert, Mataix-Cols,

et al. (2008)

25 37.5 10.7 NA NA NA NA 20 29.8 7.86 NA NA 26.9

Gilbert, Keshavan,

et al. (2008)

10 12.9 2.7 NA NA NA NA 10 13.4 2.6 NA NA 26.5

Gonçalves et al. (2017) 15 31.67 11.44 13 3.55 NA NA 15 30.07 8.22 13 3.55 4.14

Hashimoto et al. (2014) 15 32.5 7.7 13.6 1.8 5.2 2.5 30 32.5 6.7 13.6 1.8 5.61

Van Den Heuvel

et al. (2009)

55 33.7 9.19 NA NA 50 31.4 7.64 NA NA 22.83

Kim et al. (2001) 25 27.4 7 8.4 8.4 25 27 6.2 15.3 NA 24.2

Kobayashi et al. (2015) 20 31.1 8.5 NA NA 11.5 7.5 30 31.2 8.5 NA NA 2.46

Kopřivov�a et al. (2009) 14 28.6 6.1 NA NA 15.6 8.3 15 28.7 6.5 NA NA 5.92

Matsumoto

et al. (2010)

16 32.8 7.5 NA NA NA NA 32 32.6 8.7 NA NA 3.37

Moon and Jeong (2018) 18 27.6 8 14.4 1.8 6.5 5.3 18 30.7 7.5 14.4 1.8 3.71

Moreira et al. (2017) 40 26.28 6.62 13.53 2.25 NA NA 40 26.45 5.39 13.53 2.25 3.36

Okada et al. (2015) 37 34.4 10.5 13.8 2.1 8.8 6.2 37 36.8 10.8 13.8 2.1 2.52

Pujol et al. (2004) 72 29.8 10.5 13 13 72 30.1 10.2 14 NA 26.7

So et al. (2008) 71 26.61 7.5 NA NA 8.02 6.1 71 26.68 6.09 NA NA 3.89

Soriano-Mas

et al. (2007)

30 29.8 10.5 11.3 11.3 30 30.1 10.2 13.1 NA 21

Subirà et al. (2013) 30 32.23 9.05 NA NA NA NA 95 33.92 10.53 NA NA 4.45

Subirà et al. (2015) 71 32.11 8.45 NA NA NA NA 87 32.13 9.57 NA NA 4.12

Szeszko et al. (2008) 37 13 2.7 NA NA NA NA 26 13 2.6 NA NA 24.9

Tan et al. (2013) 28 25.35 7.24 13.73 2.99 NA NA 22 27.88 8.02 13.73 2.99 4.14

Tang et al. (2013) 18 25.5 6.7 NA NA 11.1 3.9 26 25.2 6.6 NA NA 4.48

Tang et al. (2015) 26 25.5 4.9 14.1 2.7 4.8 2.55 32 26.2 5.1 14.1 2.7 5.5

Tang et al. (2016) 18 27.3 10.4 13.5 2.4 8.1 5.7 16 26.8 9.8 13.5 2.4 5.4

Togao et al. (2010) 16 32.8 7.5 14 1.6 12.09 8.5 32 32.6 8.7 14 1.6 5.05

Valente et al. (2005) 19 32.7 8.8 18.3 18.3 15 32.3 11.8 10.4 NA 24.6

So et al. (2008) 71 26.6 7.49 NA 8 71 26.68 6.09 NA NA 22.84

Abbreviations: Duration, mean duration of illness in years; Edu; mean education in years; M_ageP, mean age of patients; NA, not applicable; n.c, the

number of controls; n.p, the number of patients; SD, standard deviation.

TABLE 2 Details of SUD category

SUD Controls

Category No. studies Participants Mean age Standard deviation Participants Mean age Standard deviation

Alcohol 12 308 45.4685 8.2472 336 42.9538 9.6344

Cocaine 9 221 38.1661 9.2458 225 35.5804 9.2636

Nicotine 10 662 38.1255 11.5931 1,024 44.0869 15.917
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jackknife sensitivity analyses. Together, the meta-analytic approach

allowed us to determine common GMV alterations between SUD and

OCD which may underly the shared symptoms on the behavioral

level, specifically compulsive behavior and loss of behavioral control

which characterizes both disorders.

4.1 | Implications—SUD

The frontocortical GMV decreases in the SUD groups broadly resem-

ble findings from the previous meta- and mega-analysis in subjects

with SUD (e.g., [Ersche, Williams, Robbins, & Bullmore, 2013; Mackey

et al., 2019; Yang et al., 2016]). Across the SUDs examined, the insula

showed marked decreases in the GMV. The insula alteration was

functionally shown in our previous study suggesting common

neurofunctional alterations in this region across SUDs (Klugah-Brown

et al., 2020) as well as between SUDs and OCD (Klugah-Brown -

et al., 2021). The insula has increasingly been noted as addiction rele-

vant region, probably via its important role in interoceptive

processing, decision making, and/or risky behavior which may pro-

mote substance abuse despite being aware of the negative conse-

quences (Naqvi & Bechara, 2009). Structural deficit and/or functional

alteration of the insula has been repeatedly described and associated

with an increased relapse risk (Paulus, Tapert, & Schulteis, 2009).

Moreover, the SUDs were characterized by medial frontal GM

decreases, a region involved in decision making, self-awareness, and

regulatory control, such that deficits in this region have been shown

F IGURE 2 Reduced GMV in each of the diagnostic group
(patients < controls), corrected at FWE <0.05

F IGURE 3 Conjunction and meta-analytic co-activation analysis.
(a) Reduced GMV overlap among the four groups (Patients < controls),
corrected at FWE <.05, (b) the meta-analytic co-activation derived from
the Neurosynth database

F IGURE 4 Causality between the seed region and target ROIs.
(a) Each group of bars represents GCA residual computation from
seed region IFG to selected striatal regions and vice versa. (b) the
overall causality between the IFG and the striatum regions. Seed
region computed from the conjunction GMV of all diagnostic
disorders' y-axis values are the z-scores computed from the residual
GCA. Target ROI extracted from Brain connectome project atlas. dCa,
dorsal caudate; dPu, dorsal putamen; vCa, ventral caudate; vPu,
ventral putamen. The error bar shows the percentage standard error.
MNI are the center location of the region
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to promote dysregulated reinforcement (Bechara, Tranel, &

Damasio, 2009; Mackey et al., 2016). Decreased GMV in this network

thus may neurally accompany the relationship between maladaptive

decision, self-awareness, and deficient regulatory control characteriz-

ing addictive disorders.

4.2 | Implications—OCD

In OCD, widespread regions of the bilateral insula and focused regions

in the IFG as well as dorsal anterior cingulate exhibited decreased

GMV. On the functional level, the frontocortical and cingulate regions

have consistently been found to be disrupted in OCD patients relative

to controls in a number of fMRI studies examining resting-state

(Y. Cheng et al., 2013; de Vries et al., 2019; Swedo et al., 1989; Yun

et al., 2017) and task-based (Friedman et al., 2017; Maltby, Tolin,

Worhunsky, O'Keefe, & Kiehl, 2005; Marsh et al., 2014; Yücel

et al., 2007) neural activation. Our meta-analysis in OCD patients

determined a decreased GMV in a similar network and previous studies

have linked the identified network to cognitive control and inhibitory

control mechanisms (Chamberlain, Blackwell, Fineberg, Robbins, &

Sahakian, 2005; Yücel et al., 2007). Additionally, our meta-regression

revealed an association between higher symptom scores in OCD

patients and GMV increases of the dorsal striatum (putamen), a region

F IGURE 5 linear model analysis of confounding effect. (a) reduced and increased GMV effect due to the duration of disorder in years.
(b) reduced and increased GMV effect due to medication, the values taken are the percentage of patients on medication. All images were
corrected at FEW<0.05

F IGURE 6 Meta-regression.
(a) Meta-regression showing a
relationship between OCD
severity (measured using mean
Yale-Brown Obsessive–
Compulsive Scale [YBOCS] scale)
and GMV in left putamen. Each

dot shows studies included in the
regression; the different sizes
symbolizes greater sample sizes.
The meta-regression SDM-Z
values indicate the proportion of
studies that reported GM
alterations close to the voxel.
(b) Increase GMV in OCD:
L. Putamen, corrected at FWE
<0.05. Significant clusters were
overlaid on a mni_icbm152
template for display
purposes only
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that has been previously reported in functional neuroimaging studies in

OCD (Baxter, Brody, Colgan, et al., 1996; Rapoport & Wise, 1988;

Saxena, Brody, Schwartz, & Baxter, 1998).

4.3 | Implications—common decreases in IFG GMV

The principal aim of the present meta-analysis was to determine

shared GMV alterations between the disorders to facilitate the identi-

fication of brain structural commonalities that may underpin compul-

sivity, thus representing a key transdiagnostic symptom across SUDs

and OCD. The corresponding conjunction analysis revealed that the

left IFG exhibited shared volumetric decreases across the disorders.

The left insular and adjacent IFG is known to play an important role in

regulatory top-down control, particularly response inhibition (Devito

et al., 2013), a neurocognitive function that has been found to be

impaired in both disorders and may promote the development of com-

pulsive behavior (Chamberlain et al., 2005; Zilverstand, Huang, Alia-

Klein, & Goldstein, 2018). Moreover, the subsequent exploratory anal-

ysis that aimed at functionally characterizing this region suggests that

the identified IFG region co-activates with widespread regions in the

parietal and frontal cortex that highly resembles the front-parietal

cognitive control network critically engaged in executive functions

and behavioral control (Chen et al., 2018; Dixon et al., 2018; Fiske &

Holmboe, 2019; Gürsel, Avram, Sorg, Brandl, & Koch, 2018; Rein-

eberg, Gustavson, Benca, Banich, & Friedman, 2018; Stern, Fitzgerald,

Welsh, Abelson, & Taylor, 2012). Based on previous conceptualiza-

tions and studies proposing a critical engagement of the frontostriatal

circuits in both, SUD and OCD we employed GCA to examine the

causal relationship between the identified IFG region and the stria-

tum. Results confirmed a causal information flow between the two

structures, specifically left striatal subregions causally influenced the

IFG whereas the IFG controlled the ventral putamen. With respect to

SUD, both the ventral striatal and the dorsal striatum have been

engaged in maladaptive reward processing and the development of

compulsive behavior (Andrews et al., 2011; Patel et al., 2013). Thus,

the causal relationships and the main conjunction meta-analytic result

support the suggestion that compulsivity and altered response to

reward and/or punishment may be linked via these pathways that

have been involved in both addiction and OCD. Interestingly previous

studies have suggested shared alterations in this circuit between OCD

and behavioral addiction (pathological gambling [Scherrer, Xian,

Slutske, Eisen, & Potenza, 2015]), or between SUD and obesity

(Tomasi & Volkow, 2013), suggesting a potential transdiagnostic

marker for compulsivity-related disorders. Moreover, some previous

deep-brain stimulation studies have shown that compulsive behavior

in OCD and addiction can be significantly attenuated through

decreasing frontostriatal connectivity (De Ridder, Vanneste, Kovacs,

Sunaert, & Dom, 2011; Dunlop et al., 2016; Figee et al., 2013; Kravitz

et al., 2015; Valencia-Alfonso et al., 2012).

Summarizing, shared GMV loss in a region of the IFG which rep-

resents a principal node in the cognitive control network and critically

interacts with the striatum may characterize addictive disorders and

OCD. Together with the shared symptomatologic alterations in com-

pulsivity between SUD and OCD and the involvement of the fron-

tostriatal pathways in compulsivity the present findings may reflect a

general neurostructural marker for compulsivity. However, given that

a previous meta-analysis revealed decreased GMV in the bilateral

anterior insula (Goodkind et al., 2015) across several disorders we

cannot exclude that unspecific alteration in mental disorders may

have contributed to the robust identification of decreased GMV

across OCD and SUD.

It is noteworthy that, despite the important insights that the

meta-analytic approach may have allowed, some limitations hindered

the full examination of the topic. First, only a limited number of VBM

have been conducted in SUD resulting in a comparably low number of

studies for the separate SUDs. However, across the separate SUDs

convergent changes in the insula and prefrontal cortex were observed

suggesting substance-independent GM alterations in SUD and pooling

the data for the comparison with OCD increased the statistical power.

Nevertheless, findings in the individual SUDs need to be interpreted

cautiously. Secondly, since the disorders require different diagnostic

symptom assessments, a meta-regression with severity measures

could not be conducted across all disorders. Also, studies in each cate-

gory did not report consistent measures (some studies did not report

severity/duration and other measures). We, therefore, encourage

researchers to report these measures as it reflects the core relation-

ships between altered regions and symptoms.

5 | CONCLUSION

We capitalized on previous case-control VBM studies in three preva-

lent SUDs and OCD with the aim to determine shared brain struc-

tural alterations across the disorders. The left IFG exhibited

decreased GMV across all disorders suggesting a transdiagnostic

marker that may underly the key symptomatic feature of compulsiv-

ity that characterizes the disorders. The IFG plays an important role

in inhibitory control and our findings indicate that this region func-

tionally interacts with both, the cognitive control network and the

striatum, suggesting that this region plays a key role in the interac-

tion between frontal regulatory control functions and habitual and

reward-driven behavior. The findings emphasize that the symptom-

atological overlap may be rooted in common brain alterations and

may open a new venue toward transdiagnostic treatment

approaches that target brain alterations that promote compulsive

behavior.
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