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Introduction: Individuals with metabolic syndrome (MetS) are at increasing risk of
coronary artery disease (CAD). We investigated the common metabolic perturbations of
CAD and MetS via serum metabolomics to provide insight into potential associations.

Methods: Non-targeted serum metabolomics analyses were performed using ultra high-
performance liquid chromatography coupled with Q Exactive hybrid quadrupole-orbitrap
high-resolution accurate mass spectrometry (UHPLC-Q-Orbitrap HRMS) in samples from
492 participants (272 CAD vs. 121 healthy controls (HCs) as cohort 1, 55 MetS vs. 44
HCs as cohort 2). Cross-sectional data were obtained when the participants were
recruited from the First Affiliated Hospital of Zhengzhou University. Multivariate statistics
and Student’s t test were applied to obtain the significant metabolites [with variable
importance in the projection (VIP) values >1.0 and p values <0.05] for CAD and MetS.
Logistic regression was performed to investigate the association of identified metabolites
with clinical cardiac risk factors, and the association of significant metabolic perturbations
between CAD and MetS was visualized by Cytoscape software 3.6.1. Finally, the receiver
operating characteristic (ROC) analysis was evaluated for the risk prediction values of
common changed metabolites.

Results: Thirty metabolites were identified for CAD, mainly including amino acids, lipid,
fatty acids, pseudouridine, niacinamide; 26 metabolites were identified for MetS, mainly
including amino acids, lipid, fatty acids, steroid hormone, and paraxanthine. The logistic
regression results showed that all of the 30 metabolites for CAD, and 15 metabolites for
MetS remained significant after adjustments of clinical risk factors. In the common
metabolic signature association analysis between CAD and MetS, 11 serum
metabolites were significant and common to CAD and MetS outcomes. Out of this,
nine followed similar trends while two had differing directionalities. The nine common
metabolites exhibiting same change trend improved risk prediction for CAD (86.4%) and
MetS (90.9%) using the ROC analysis.
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Conclusion: Serum metabolomics analysis might provide a new insight into the potential
mechanisms underlying the common metabolic perturbations of CAD and MetS.
Keywords: coronary artery disease, metabolic syndrome, UHPLC-Q-Orbitrap HRMS, serum metabolomics, clinical
risk factors
INTRODUCTION

Nowadays, the significant increase of coronary artery disease
(CAD) populations has become a serious challenge all over the
world (1). According to the Global Burden of Disease Study 2016
(2), the incidence and years lived with disability (YLDs) of
cardiovascular diseases were 54.1 million and 33.5 million that
year, respectively. Interestingly, the risk factor-adjusted
proportional-hazards regression of CAD mortality was doubled
for the subjects with metabolic syndrome (MetS) in a 13-year
follow-up report (3). Using the Framingham database, the age-
adjusted relative risks for CAD with the MetS were 2.54 and 1.54
in men and women, respectively (4). If the association of CAD
and MetS can be explicated, its occurrence and progression
might be predicted. However, the association of CAD and
MetS remains ambiguous.

Multiple and complex molecular events characterize CAD,
which mainly refers to the myocardial dysfunction and/or
organic lesions caused by coronary artery stenosis and
insufficient blood supply (5, 6). Meanwhile, the underlying
mechanism of MetS is also complicated depending on its own
diverse features. According to the American Heart Association/
National Heart, Lung and Blood Institute (AHA/NHLBI)
criteria, metabolic syndrome is a clustering of cardiovascular
disease risk factors, which include abdominal adiposity, insulin
resistance, inflammations, genetic factor, abnormal
neuroendocrine, unhealthy lifestyle, intrauterine malnutrition,
and so on. Among these factors, abdominal adiposity and insulin
resistance play a key role in the incidence of MetS (7–9). To be
clear, there is a general consensus that cardiac risk factors should
be aggressively managed in individuals with MetS (10).

Metabolomics is powerful omics technology that has been
widely used for the unbiased identification of metabolic
alterations of diseases. Metabolites could clarify the common
metabolic perturbations of CAD and MetS. Fan et al. (11)
reported 12 panels of metabolomics-based biomarkers in
various clinical subgroups of CAD. Eighty-nine different
metabolites were identified, and the altered metabolic pathways
included downregulated phospholipid catabolism, tricarboxylic
acid cycle, biosynthesis of primary bile acid, and upregulated
amino acid metabolism, short-chain acylcarnitines. Another
study exhibited the similar alterations in the gut microbiota
and serum metabolites in different CAD subgroups (12). Besides,
a 90 plasma-based metabolomics studies of MetS showed
tyrosine, alanine, and propionylcarnitine increased and
asparagine, tryptophan/large neutral amino acid ratio
decreased (13). Nevertheless, serum metabolomics analysis to
explore the common metabolic perturbations of CAD and MetS
is still lacking.
n.org 2
Therefore, this work employs a serum metabolomic approach
to describe metabolic alterations of CAD and MetS by ultra-high
performance liquid chromatography coupled with Q Exactive
hybrid quadrupole-orbitrap high-resolution mass spectrometry
(UHPLC-Q-Orbitrap HRMS). The study’s specific objectives
were as follows: (i) to identify metabolic signatures associated
with CAD and MetS; (ii) to reveal the association of metabolic
perturbations between CAD and MetS; (iii) to explore the risk
predictive performance of common changed metabolites of CAD
and MetS. To our knowledge, this study is the first time to
explore the common metabolic perturbations of CAD and MetS
by metabolomics, which could provide an insight into potential
associations of the two diseases.
MATERIALS AND METHODS

Reagents and Chemicals
The HPLC-grade methanol and acetonitrile were obtained from
Fisher Scientific (Fair Lawn, NJ, USA). HPLC-grade formic acid
was acquired from Aladdin Biochemical Technology Co., Ltd.
(Shanghai, China). HPLC-grade H2O was prepared by the
Millipore system (Shanghai, China). The internal standards
and all the metabolite standards used in the method were
purchased from J&K Scientific Ltd. (Beijing, China) and
Sigma-Aldrich (St. Louis, MO, USA). Each standard substance
was dissolved in methanol and prepared into a mixed standards
solution (1.0 mg/ml for each compound).

Study Design and Participants
A total of 492 participants, including 272 CAD, 55 MetS patients,
and 165 HCs, were recruited from the First Affiliated Hospital of
Zhengzhou University. CAD groups were diagnosed according to
“Nomenclature and diagnostic criteria of ischemic heart disease” by
International Society and Federation of Cardiology (ISFC)
combined with World Health Organization (WHO) (14), which
included chest pain symptoms, cardiovascular risk factors,
pathological Q-wave on ECG, or elevated myocardial enzymes.
Coronary angiography was simultaneously applied to confirm the
diagnosis. MetS was diagnosed by the Chinese Diabetes Society
(CDS) criteria (15), which satisfied three or more of the following
index: overweight or obese [Body mass index (BMI) ≥25.0];
hyperglycemia [fasting plasma glucose (FPG) ≥6.1 mmol/L and/
or plasma glucose (PG) ≥7.8 mmol/L after 2 h]; hypertension
[systolic blood pressure (SBP)/diastolic blood pressure (DBP) ≥140/
90 Hg]; dyslipidemia [triacylglycerol (TG) ≥1.7 mmol/L and/or
high-density lipoprotein cholesterol (HDL-C) <0.9mmol/L for men
or <1.0 mmol/L for women]. The HCs were matched for age, sex,
and BMI, and several simple overweight or obese people who were
September 2021 | Volume 12 | Article 692893
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“healthy obese” were also included. Details of inclusion and
exclusion criteria are in the Supplementary Table 1.

Biochemical and Other Measures
at Baseline
Clinical characteristics of the 492 participants were recorded,
such as sex, age, height, weight. BMI was calculated as kg/m2. An
automated validated device was used to measure sitting brachial
blood pressure after a 10-min rest. HbA1c levels were measured
by a Bio-Rad Variant II hemoglobin testing system, and FPG
data were recorded. The alanine aminotransferase (ALT) and
aspartate transaminase (AST) levels were measured by a
sandwich enzyme-linked immunosorbent assay (ELISA)
system. Plasma total cholesterol (TC), triglycerides (TG), low-
density lipoprotein cholesterol (LDL-C), high-density
lipoprotein cholesterol (HDL-C), and serum creatinine were
measured using standardized methods from venous samples.
Glomerular filtration rate (eGFR) was calculated from serum
creatinine using the Chronic Kidney Disease Epidemiology
Collaboration (CKD-EPI) equation.

Sample Collection and Preparation
The blood samples were collected in Na2 EDTA tubes. Each
sample was centrifuged at 3,000 rpm for 10 min at 4°C to obtain
supernatant. A 100 ml serum of each sample was then
precipitated with 300 ml methanol containing 500 ng/ml
ketoprofen and 50 ng/ml 2-chloro-L-phenylalanine as internal
standard. The mixture was vortexed for 1 min followed by
centrifugation at 13,000 rpm for 10 min at 4°C. Then, a 200 ml
aliquot of supernatant was transferred into vials for analysis. For
the assessment in parallel of reproducibility and stability along
the run, quality control (QC) samples were obtained by mixing
all serum samples, respectively. One QC sample was injected
after every 10 samples throughout the run.

UHPLC-Q-Orbitrap HRMS for
Serum Metabolomics
A 5 ml aliquot of the prepared sample was injected into
ACQUITY UPLC BEH C18 column (100 mm × 2.1 mm,
1.7 mm, Waters, USA) maintained at 40°C using a Thermo
Scientific Dionex Ultimate 3000 UHPLC system for
chromatographic separation. The mobile phase consisted of
water containing 0.1% (v/v) formic acid (A) and acetonitrile
(B). The gradient elution was set as follows at a flow rate of 0.35
ml/min: 0–1 min, 5% B; 1–9 min, 5–100% B; 9–12 min, 100% B;
12–12.1 min, 100–5% B; 12.1–15 min, 5% B.

The mass spectrometry was performed on Q-Exactive
orbitrap system (Thermo Fisher Scientific, San Jose, USA)
equipped with a heated electrospray ionization source operated
in positive ion modes. The MS parameters were optimized and
set as follows: collision energy at 20, 40, and 60 eV, ion source
temperature at 350°C, capillary temperature at 320°Ct, spray
voltage at 3.50 kV, sheath gas flow rate at 40 arb, auxiliary gas
flow rate at 10 arb. Metabolomic profiles were acquired with a
mass range of 80–1,200 m/z. The full scan spectra and MS/MS
data were collected with the resolution of 70,000 and 17,500
Frontiers in Endocrinology | www.frontiersin.org 3
FWHM, respectively. The samples were injected in random
order, and all the mass data were acquired and processed using
Thermo Xcalibur 3.0 software.

Data Processing and Statistical Analysis
The mass spectrometry raw data were conducted by Compound
Discoverer 2.1 software (Thermo Fisher Scientific, San Jose,
USA). The spectra were selected from input LC-MS data files,
and retention time alignment was accomplished based on mass
tolerance and time shift criteria. Preliminary identification of
metabolites was realized by searching databases including
ChemSpider, Mass Lists, mzCloud, and mzVault. Multiple
nodes such as “Align Retention Times”, “Detect Unknown
Compounds”, “Group Unknown Compounds”, “Predict
Compositions”, “Fill Gaps”, and “Normalize Areas” were
combined to form an untargeted metabolomics workflow for
raw data processing (Supplementary Figure 1).

The data matrix obtained from Compound Discoverer was
imported into SIMICA 14.1 software (Umetrics AB, Umea,
Sweden) for multivariate statistical analysis, including
unsupervised principal component analysis (PCA), supervised
partial least-squares discriminant analysis (PLS-DA), and
orthogonal partial least-squares discriminant analysis (OPLS-DA).
The PCA analysis was applied to assess the reproducibility and
stability of QC samples, and the PLS-DA model was established to
describe general separation of samples from different groups. The
variables responsible for the discrimination between two groups
were identified by OPLS-DA, and permutation test was performed
200 times to assess the risk of overfitting for the OPLS-DA model.
In addition to the multivariate statistical method, the p value was
calculated by Student’s t-test and adjusted by the Benjamini-
Hochberg method (16). The metabolites with variable importance
in the projection (VIP) values >1.0 and p values <0.05 were screened
as significant altered metabolites for CAD and MetS, respectively,
the structures of which were further confirmed based on available
reference standards.

Logistic regression was performed to investigate whether the
significant metabolites for CAD and MetS were independent to
clinical cardiac risk factors. Firstly, the spectra area of the
metabolites and the clinical characteristics were subjected to
MetaboAnalyst 4.0 for log transformation and pareto scaling to
acquire the normalized data under the same dimension. Then the
odds ratios (ORs) and 95% confidence interval were obtained
adjusting for three models (Model 1: adjustment for BMI; model
2: adjustment for TC, TG, LDL-C, and HDL-C; model 3: further
adjustment for BMI, TC, TG, HDL-C, LDL-C, SDP, DBP, FGP,
HbA1c); the workflows were shown in Supplementary Figure 2.
Sample-size calculation was done to assess the sample size needed
for replicating the metabolic signatures associations of CAD with
clinical risk factors (http://www.powerandsamplesize.com/).

For association analysis of the metabolic perturbations of
CAD and MetS, the global comparison of 30 significant
metabolites for CAD and 26 significant metabolites for MetS
were conducted. The different metabolites were divided
according to the disturbed pathways. The association of
significant metabolic perturbations between CAD and MetS
September 2021 | Volume 12 | Article 692893
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was visualized by Cytoscape software 3.6.1. As well, the fold
change values described above were regarded as the trends of
metabolites levels variation.

For further confirmation of the association of CAD and MetS,
the binary logistic regression and ROC analysis were performed
to explore the risk predictive performance of the common
changed metabolites (17, 18). The covariates of significant
metabolites with same change trend were used as biomarkers
panel. Based on the protocol, logistic regression was proceeded
after log transformation and pareto scaling of the spectra area of
14 biomarkers to obtain the p value, then the AUC under the
classical univariate ROC curve was computed using biomarker
analysis of MetaboAnalyst 4.0.
RESULTS

A total of 492 participants were allocated to two cohorts. As
shown in Figure 1, 272 CAD patients and 121 HCs formed
cohort 1 and 55 MetS patients and 44 HCs formed cohort 2.
Supplementary Table 2 showed the clinical characteristics and
biochemical index of all the participants in this study. For CAD
Frontiers in Endocrinology | www.frontiersin.org 4
vs. HCs in cohort 1, age, sex, BMI, DBP, ALT, AST, TC, eGFR,
and CR were comparable among the two populations (p > 0.05).
However, compared with HCs, individuals with CAD had higher
SBP, HbA1c, FPG, TG, and LDL-C, but lower HDL-C levels.
Similarly, for MetS vs. HCs in cohort 2, MetS patients had
higher SBP, HbA1c, FPG, TC, TG, and LDL-C, but lower levels
of HDL-C. No obvious significant difference of age, sex, BMI, DBP,
ALT, AST, eGFR, and CR was found between MetS and HCs.

Metabolic Signatures Associated With CAD
The obtained typical total ion chromatograms (TIC) from the
three representative populations are shown in Supplementary
Figure 3. For the comparison of CAD vs. HCs in the cohort 1, a
total of 1,673 features from positive mode were detected, and 933
ions showed significantly changed with p < 0.05. PCA, PLS-DA,
and OPLS-DA score plots were performed to identify the
differences of the metabolic profiles between CAD and HCs,
which showed remarkable separations with cumulative R2Y at
0.873 and Q2 at 0.749 (Figures 2A, B and Supplementary
Figure 4). The volcano plot represents the variation of
metabolites amount for CAD vs. HCs according to the -log2
(fold change) (Figure 2C). In total, 30 identified metabolites
FIGURE 1 | Definition and design of the study. CAD, coronary artery disease (n = 272); MetS, metabolic syndrome (n = 55); HCs, healthy controls (n = 165). Model
1: adjustment for BMI; model 2: adjustment for TC, TG, LDL-C, and HDL-C; model 3: further adjustment for BMI, TC, TG, HDL-C, LDL-C, SDP, DBP, FGP, HbA1c;
Association 1: Logistic regression to investigate the association of identified metabolites with clinical cardiac risk factors; Association 2: Cytoscape software 3.6.1 to
visualize the association of significant metabolites identified from CAD vs. HCs and MetS vs. HCs.
September 2021 | Volume 12 | Article 692893
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showed significant by filtered with VIP > 1 and adjusted
p values < 0.05. The information of the significant metabolites
is presented in Table 1. And the altered pathways are shown in
Figure 2D. The heatmap for the different metabolites in CAD and
HCs is exhibited in Figure 2E. Combining with abundance
comparison (Supplementary Figure 5), we found that the CAD
patients had significantly different metabolite profiles compared
Frontiers in Endocrinology | www.frontiersin.org 5
with HCs. Of the 30 metabolites, most amino acids, lipid, primary
bile acid, short-chain acylcarnitines, and purine were similar with
the previous study (13, 14). The novel findings—such as
pseudouridine and dihydrothymine belong to pyrimidine,
niacinamide belongs to nicotinate and nicotinamide metabolism,
4a-Carbinolamine tetrahydrobiopterin belongs to folate—have
not been reported previously.
A B

D

E

C

FIGURE 2 | Metabolic signatures associated with CAD in the cohort 1. (A) The principal component analysis (PCA) compared for CAD (n = 272) to HCs (n = 121).
(B) The partial least squares discrimination analysis (PLS-DA) compared for CAD to HCs. (C) The volcano plot represents the variation of metabolites amount
between CAD and HCs according to the –log (p value). (D) Main disturbed pathways identified for MetS. Color of the circle means the metabolites are in the data
with different levels of significance, with yellow being the least and red being the most significant and the range of significance being 0.1 to 1×10−5. Size of the circle
means pathway impact values from the pathway topology analysis; the range of the circle size impact values is 0.00 to 0.20. (E) The heatmap represents the most
significant metabolites of CAD after one-way ANOVA and hierarchical clustering of the samples.
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TABLE 1 | Significant metabolites in CAD and MetS.

Metabolites RT (min) Molecular Weight Fold Change VIP p Value FDR Trend

CAD vs. HCs
Ala-Leu 1.889 202.132 2.599 1.424 5.14E-09 1.19E-08 ↑↑
4a-Carbinolamine tetrahydrobiopterin 6.419 239.231 2.597 1.519 1.27E-10 3.81E-10 ↑↑
Pseudouridine 6.757 244.068 2.576 1.492 4.64E-10 1.16E-09 ↑↑
7’-Carboxy-alpha-tocotrienol 8.641 346.461 1.681 1.497 2.17E-11 7.23E-11 ↑↑
Leu-Val 3.434 230.163 1.565 1.004 0.000606 0.000606 ↑↑
9,12-Hexadecadienoylcarnitine 7.340 395.303 1.498 1.001 3.29E-06 5.19E-06 ↑
N8-Acetylspermidine* 0.921 187.168 1.438 1.558 1.69E-10 4.61E-10 ↑
Dihydrothymine 0.951 128.058 1.377 1.050 1.65E-05 0.000020625 ↑
Hydroxyprolyl-Leucine 1.384 244.288 1.369 1.032 1.16E-05 1.58E-05 ↑
Dethiobiotin 1.385 214.131 1.363 1.538 1.02E-11 3.82E-11 ↑
LysoPE (20:2) 9.113 505.316 1.338 1.071 5.21E-05 6.01E-05 ↑
Acetylcarnitine* 1.380 203.115 1.217 1.056 5.13E-05 0.00006156 ↑
Glutamine* 1.141 146.069 1.139 1.274 2.47E-07 4.36E-07 ↑
Uracil* 1.391 112.027 0.903 1.014 0.000232 0.00024 ↓
Pyroglutamic acid* 1.386 129.042 0.836 1.381 3.81E-08 7.62E-08 ↓
LysoPC (P-16:0) 8.948 479.337 0.797 1.658 3.53E-12 2.12E-11 ↓
asp-leu 2.414 246.121 0.796 1.234 6.39E-07 0.000001065 ↓
LysoPC (16:0/0:0) 8.529 495.332 0.794 1.710 5.33E-13 3.99E-12 ↓
lysoPC (28:0) 0.943 663.519 0.780 1.073 6.61E-06 0.000009915 ↓
LysoPC (20:2) 8.998 547.363 0.779 1.548 9.8E-12 4.20E-11 ↓
Phosphorylcholine 8.254 183.066 0.778 1.836 2.95E-13 2.95E-12 ↓
2-Acyl-sn-glycero-3-phosphocholine 8.901 284.223 0.740 1.281 4.82E-08 9.04E-08 ↓
LysoPC (P-18:0) 9.837 507.368 0.728 1.667 7.45E-12 3.72E-11 ↓
Niacinamide 1.401 122.048 0.695 1.286 8.8E-06 1.26E-05 ↓
3-Methylcrotonylglycine 1.381 157.074 0.687 1.132 1.43E-05 1.87E-05 ↓
Hypoxanthine* 1.358 136.038 0.620 2.333 2.32E-21 3.48E-20 ↓↓
Chenodeoxyglycocholic acid 6.530 449.313 0.591 1.153 5.42E-05 5.81E-05 ↓↓
Docosahexaenoyl Ethanolamide 7.304 371.556 0.568 1.147 5.28E-05 5.87E-05 ↓↓
His-Trp 3.199 341.148 0.447 2.267 1.58E-24 4.74E-23 ↓↓
3,4-Dihydroxymandelaldehyde 4.240 168.147 0.360 1.463 2.45E-08 5.25E-08 ↓↓
MetS vs. HCs
Niacinamide 1.401 122.048 2.267 1.631 5.93E-06 0.0001779 ↑↑
Acetylcarnitine* 1.380 203.115 1.248 1.105 0.003739 0.00467375 ↑
Lysine* 0.777 146.105 0.884 1.137 0.002171 0.003101429 ↓
LysoPC (16:0/0:0) 8.529 495.332 0.865 1.357 0.000534 0.00100125 ↓
Uracil* 1.391 112.027 0.855 1.087 0.006973 0.008045769 ↓
Sphingosine 1-phosphate 7.734 379.248 0.848 1.273 0.002011 0.0030165 ↓
2-Acetyl-1-alkyl-sn-glycero-3-phosphocholine 9.375 523.363 0.845 1.249 0.002491 0.003396818 ↓
Phosphorylcholine 8.254 183.066 0.844 1.464 0.000166 0.000452727 ↓
Dihydrothymine 0.951 128.058 0.798 1.269 0.000836 0.00132 ↓
Valine* 1.352 117.079 0.797 1.361 0.000333 0.000768462 ↓
Tyrosine* 1.437 164.047 0.796 1.477 3.39E-05 0.000145286 ↓
LysoPC (P-16:0) 8.948 479.337 0.792 1.589 5.61E-05 0.000187 ↓
Ceramide 1-phosphate 8.547 505.352 0.771 1.600 6.37E-05 0.0001911 ↓
Ornithine* 0.776 132.090 0.770 1.381 0.000253 0.0006325 ↓
Citrulline* 0.917 175.095 0.764 1.334 0.000464 0.000928 ↓
Proline* 0.941 115.063 0.763 1.102 0.003577 0.004665652 ↓
PC (18:1 (9Z)e/2:0) 9.709 549.378 0.759 1.425 0.000563 0.000993529 ↓
Pyroglutamic acid* 1.386 129.042 0.746 1.722 1.81E-06 0.00000905 ↓
2-Acyl-sn-glycero-3-phosphocholine 8.901 284.223 0.724 1.918 7.16E-07 0.00000537 ↓
Kynurenine 2.592 191.058 0.722 1.564 4.69E-05 0.000175875 ↓
Cortisol 5.910 362.208 0.646 1.810 7.67E-07 0.000004602 ↓↓
Tryptophan* 3.669 408.179 0.601 1.900 1.99E-07 0.00000199 ↓↓
Tetrahydrocorticosterone 6.853 367.271 0.599 1.389 0.000667 0.001111667 ↓↓
Hypoxanthine* 1.358 136.038 0.585 2.223 8.67E-11 1.30E-09 ↓↓
Chenodeoxyglycocholic acid 6.530 449.313 0.413 1.197 0.003739 0.0044868 ↓↓
Paraxanthine* 3.636 180.064 0.249 1.378 0.000365 0.000782143 ↓↓
Frontiers in Endocrinology | www.frontiersin.org
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*Metabolites matched with commercial available reference standards; RT, retention time; Fold change, CAD/HCs in cohort 1 or MetS/HCs in cohort 2; VIP, variable importance in the
project obtained from CAD vs. HCs or MetS vs. HCs. FDR, the value was obtained from the false discovery rate (FDR) correction using Benjamini-Hochberg method.
↑↑: fold change >1.5; ↑: 1 < fold change <1.5; ↓: 0.67 < fold change <1; ↓↓: fold < 0.67.
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Metabolic Signatures Associated
With MetS
For the comparison of MetS vs.HCs in the cohort 2, a total of 920
features from positive mode were detected, and 475 ions showed
significantly changed (p < 0.05). After further filtering by VIP > 1
from PCA, PLS-DA, and OPLS-DA score plots (Figures 3A, B
and Supplementary Figure 6), 26 identified metabolites showed
Frontiers in Endocrinology | www.frontiersin.org 7
significant. The OPLS-DA showed remarkable separations with
cumulative R2Y at 0.978 and Q2 at 0.701. Figure 3C exhibited
volcano plot of the variation of metabolites amount for MetS vs.
HCs. And the pathways were showed in Figure 3D. The heatmap
for the different metabolites in MetS and HCs was exhibited in
Figure 3E. The information of the 26 significant metabolites is
presented in Table 1. Combining with abundance comparison
A B

D

E

C

FIGURE 3 | Metabolic signatures associated with MetS in the cohort 2. (A) The principal component analysis (PCA) compared for MetS (n = 55) to HCs (n = 44).
(B) The partial least squares discrimination analysis (PLS-DA) compared for MetS to HCs. (C) The volcano plot represents the variation of metabolites amount
between MetS and HCs according to the –log (p value). (D) Main disturbed pathways identified for MetS. The color of the circle means the metabolites are in the
data with different levels of significance, with yellow being the least and red being the most significant and the range of significance being 0.1 to 1×10−7. The size of
the circle means pathway impact values from the pathway topology analysis; the range of the circle size impact values is 0.00 to 0.70. (E) The heatmap represents
the most significant metabolites of MetS after one-way ANOVA and hierarchical clustering of the samples.
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(Supplementary Figure 7), we found that most of the
metabolism descended for amine acids, lipids, purine,
pyrimidine, primary bile acid, and steroid hormone, except for
elevated fatty acids and niacinamide. Compared to a previous
study (13, 19), new metabolites for MetS, including uracil,
hypoxanthine and paraxanthine, dihydrothymine, niacinamide,
cortisol, and tetrahydrocorticosterone, have not been
reported previously.
The Association of Metabolic
Perturbations With Clinical Cardiac
Risk Factors
Logistic regression was performed to evaluate the associations of
metabolic perturbations with clinical cardiac risk factors,
respectively. As shown in Figure 4 and Supplementary
Table 3, blue triangle represented model 1 (adjustment for
BMI), green circle represented model 2 (adjustment for
combination of TC, TG, LDL-C, and HDL-C), pink square
represented model 3 (adjustment for combination of BMI, TC,
TG, HDL-C, LDL-C, SDP, DBP, FGP, HbA1c). For the 30
metabolites, all of them remained significant after adjustment
for model 1, model 2, and even model 3 (p < 0.05).
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For the comparison of MetS vs. HCs, all the 26 metabolites
were significant after adjustment for model 1 (p < 0.05). On
further adjustment for model 2, associations were overall
attenuated, but 17 remained significant. And even for model 3,
15 metabolites remained significant (Supplementary Figure 8
and Supplementary Table 4).

In sample size calculation for estimating the metabolic
signatures associations of CAD and MetS with clinical risk
factors at power of 0.8, alpha level of 0.05 (20), required
sample sizes for cohort 1 (metabolites for CAD vs. HCs) and
cohort 2 (metabolites for MetS vs. HCs) are 426 and 21,
respectively (Supplementary Table 5).

The Association of the Metabolic
Perturbations of CAD and MetS
Herein, association analysis for the exploration of common
metabolic perturbations of CAD and MetS were conducted.
The heatmap of correlation coefficients calculated among the
significant metabolites of CAD or MetS is shown in
Supplementary Figures 9, 10. The metabolites were further
subdivided according to the KEGG and HMDB databases
(Figure 5A). We discovered 11 metabolites both changed for
CAD and MetS. Of the 11 metabolites, pyroglutamic acid,
FIGURE 4 | Metabolic signature associations of CAD with clinical risk factors based on results from logistic regression. Model 1 (blue): adjustment for BMI; model 2
(green): adjustment for TC, TG, LDL-C, and HDL-C; model 3 (pink): further adjustment for BMI, TC, TG, HDL-C, LDL-C, SDP, DBP, FGP, HbA1c. Error bars indicate
the 95% CI. Significance is indicated (Student-t test). ∗p < 0.05. BMI, body mass index; TC, total cholesterol; TG, triacylglycerol; HDL-C, high-density lipoprotein
cholesterol; LDL-C, low-density lipoprotein cholesterol; SBP, systolic blood pressure; DBP, diastolic blood pressure; FPG, fasting plasma glucose; HbA1c,
glycosylated hemoglobin.
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LysoPC(P-16:0), LysoPC(16:0/0:0), phosphorylcholine, 2-Acyl-
sn-glycero-3-phosphocholine, uracil, hypoxanthine, and
chenodeoxyglycocholic acid were downregulated, and
acetylcarnitine was upregulated in both CAD and MetS
patients. Conversely, dihydrothymine was upregulated in CAD
but downregulated in MetS, and niacinamide was downregulated
in CAD but upregulated in MetS. As shown in Figure 5B, the
involved pathways included reduced amino acids metabolism,
lipid metabolism, purine metabolism, primary bile acid
biosynthesis , and increased fatty acid metabolism.
Nevertheless, pyrimidine metabolism and nicotinate and
nicotinamide metabolism changed oppositely for CAD
and MetS.

The Risk Predictive Performance of
Common Changed Metabolites
Accurate risk prediction is a prerequisite for effective
management of diseases (21). The covariates of nine significant
metabolites with same change trend for CAD and MetS were
used as biomarkers panel to explore the risk predictive
performance, as well as further confirmation of the association
of CAD and MetS. For the comparison of CAD vs. HCs in the
cohort 1, the areas under the AUC curve, sensitivity, and
Frontiers in Endocrinology | www.frontiersin.org 9
specificity were 0.909, 82.7%, and 88.5% (Figure 6A).
Predictive value was 86.4% (Figure 6C). For the comparison of
MetS vs. HCs in the cohort 2, the areas under the AUC curve,
sensitivity, and specificity were 0.948, 86.4%, and 92.7%
(Figure 6B), and predictive value was 90.9% (Figure 6D).
The ROC curve of each metabolite in biomarker panel was
shown in Supplementary Figure 11. Odds ratios of the
biomarker panel and several clinical data were provided in
Supplementary Table 6.
DISCUSSION

It is noteworthy that MetS is associated with the risk factors of
CAD, which leads to approximately twice occurrence of the CAD
event in individuals with MetS (22–25). Nevertheless, the
association of CAD and MetS is still only understood partially
in humans. Here we report a serum metabolomics profile with
UHPLC-Q-Orbitrap HRMS to explore the common metabolic
perturbations of CAD and MetS. Impressively, all the 30
identified metabolites for CAD and 15 of 26 metabolites for
MetS remained significant after adjustments of combinatorial
variables of clinical risk factors.
A

B

FIGURE 5 | (A) Common metabolic signatures between CAD and MetS; (B) Fold change analysis of the 12 associated metabolites of CAD and MetS. Green:
Downregulated metabolites for CAD or MetS. Red: Upregulated metabolites for CAD or MetS. Pyroglutamic acid, LysoPC (P-16:0), LysoPC (16:0/0:0), phosphorylcholine,
2-Acyl-sn-glycero-3-phosphocholine, uracil, hypoxanthine, chenodeoxyglycocholic acid are downregulated both for CAD and MetS; Acetylcarnitine is upregulated both for
CAD and MetS; Dihydrothymine was upregulated for CAD and downregulated for MetS; Ni-acinamide was downregulated for CAD and upregulated for MetS.
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The association of CAD and MetS has been initially explored.
As shown in Figure 7, the increased short-chain acylcarnitines
levels suggest activated fatty acid metabolism in CAD and MetS
(26). Free fatty acid (FFA) could increase the levels of reactive
nitrogen species (RNS) and ROS to induce oxidative stress,
which lead to b cell dysfunction and insulin resistance by
regulating related signaling pathways (27, 28). On the other
hand, CAD andMetS patients have downregulated LysoPC(16:0/
0:0), LysoPC(P-16:0), phosphorylcholine, and 2-Acyl-sn-
glycero-3-phosphocholine. As known, a large number of
lysophosphatidylcholines in serum are generated from
phosphatidylcholines by the activity of lecithin cholesterol
acyltransferase (LCAT). Obviously, low activity of the LCAT
has been linked to CAD and MetS (29, 30). The lower
pyroglutamic acid related to glutathione metabolism is reduced
because CAD and MetS patients have increasing oxidative stress
and decreased antioxidant capacity, which lead to lower GSH
and higher GSSH (31). The farnesoid X receptor, an endogenous
sensor for bile acids, was activated by chenodeoxyglycocholic
acid. The inverse correlation has been reported between it and
CAD or MetS (32). The altered uracil, hypoxanthine, and
dihydrothymine are likely due to the disturbed purine
metabolism and pyrimidine metabolism. Uric acid (UA) is the
end product of purine metabolism, and either overproduction or
underexcretion of UAmay cause hyperuricemia (HUA), which is
positive correlated to CAD and MetS (33, 34). It has been
reported that, by increasing reactive oxygen species (ROS)
Frontiers in Endocrinology | www.frontiersin.org 10
production in ApoE-knockout mice, hypoxanthine increased
the levels of serum cholesterol and the area of atherosclerotic
plaque (35). On the other hand, hypoxanthine could aggravate
myocardial and renal graft ischemia/reperfusion injury by ROS
(36, 37). It is considered that xanthine oxidoreductase (XOR)
leads to reduced uracil and hypoxanthine and increased uric acid
in our study (38, 39).

As number of water-soluble vitamins, niacinamide is a
precursor of NAD and NADP to maintain the cellular
metabolisms, including energy metabolism, DNA repair and
aging, and oxidative stress. Nevertheless, excessive
nicotinamide could exert the toxic effect of MetS by inducing
the depletion of free methyl pool, to influence the NAD-
dependent enzymatic reaction and trigger oxidative stress (40).
Furthermore, niacinamide could be converted to N1-
methylnicotinamide (MNAM) by N-methyltransferase
(NNMT) (41). It has been reported that MNAM reduces
homocysteine secretion by 50%, and elevated homocysteine
stimulates atherosclerosis via oxidative stress, endothelial
dysfunction, and thrombosis and could be regarded as a
marker of atherosclerosis (42–44).

Our study has several strengths. First, some significant
metabolites, including pseudouridine, dihydrothymine,
niacinamide, 4a-Carbinolamine tetrahydrobiopterin for CAD,
uracil, hypoxanthine, paraxanthine, dihydrothymine,
niacinamide, cortisol, and tetrahydrocorticosterone for MetS,
have not been reported elsewhere (11–14, 19). Second, for the
A

B D

C

FIGURE 6 | The diagnostic performance is exhibited by the receiver operating characteristic (ROC) curves for CAD and MetS. (A) ROC of biomarkers panel for CAD
in cohort 1. (B) ROC of biomarkers panel for MetS in cohort 2. (C) The predictive accuracies of the biomarkers panel in the cohort 1. CAD (n = 272), HCs (n = 121);
(D) The predictive accuracies of the biomarkers panel in the cohort 2. MetS (n = 55), HCs (n = 44). AUC, area under the curve; CI, confidence interval.
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first time, the common metabolic perturbations of the pathologic
process of CAD and MetS have been performed based on
metabolomics profiling, and nine significant metabolites with
same change trend have showed excellent risk predictive values
(86.4% for CAD and 90.9% for MetS).

Our study also has several limitations. In the current design,
the identified metabolite signatures might reflect common
perturbation in CAD and MetS attributed to clinical cardiac
risk. Nevertheless, prospective cohort-based metabolomics study
should be a more proper design to study the specific association
between MetS and CAD among those patients after certain
follow-up years. Second, the CAD and MetS patients recruited
in this study were firstly diagnosed and have no relevant
medication history. In addition, the sample size of MetS vs.
HCs in the cohort 2 is a little small to be sufficiently powered,
which needs other replication in an independent cohort with
appropriate sample sizes for stratification. Finally, the
quantitative study of the altered metabolites is still lacking
because of insufficient metabolite standards, and the relative
molecular mechanism research to confirm the functions of
differential expressed metabolites in MetS and CAD is
recommended in future studies.
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