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MutSpot: detection of non-coding mutation hotspots

In cancer genomes
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Recurrence and clustering of somatic mutations (hotspots) in cancer genomes may indicate positive selection and involvement in
tumorigenesis. MutSpot performs genome-wide inference of mutation hotspots in non-coding and regulatory DNA of cancer
genomes. MutSpot performs feature selection across hundreds of epigenetic and sequence features followed by estimation of
position- and patient-specific background somatic mutation probabilities. MutSpot is user-friendly, works on a standard

workstation, and scales to thousands of cancer genomes.
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INTRODUCTION

Cancer is a genetic disease arising from (driver) mutations that
give cancer cells a selective advantage to proliferate and invade.
Early cancer genomics studies have mainly focused on the protein-
coding regions of the genome. However, even with thousands of
cancer exomes sequenced in the past decade, identification of
putative driver mutations in the coding regions has still not saturated
in many cancer types'?. Importantly, mutations in the non-coding
DNA that constitutes the other 98% of the human genome is even
less explored. Tumor whole-genome sequencing is, however,
gaining popularity and a recent study of over 2500 tumor whole
genomes by the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes
Network (PCAWG) estimated that up to 25% of all tumors harbor
non-coding driver mutations>. There is therefore a pressing need to
develop statistical methods that can leverage these large datasets to
predict driver mutations in the non-coding DNA.

Current tools designed to identify non-coding drivers are based
on mutation recurrence within regulatory elements*®, predicted
functional impact of somatic mutations’, or a combination of these
approaches®®. However, existing methods are designed to explore
mutations within defined regulatory regions, such as promoters,
enhancers or UTRs, therefore ignoring the rest of the non-coding
genome. As such, a typical non-coding cancer driver detection
method evaluates less than 5% of the 3 million bases sequenced in
a WGS experiment for signs of positive selection. Furthermore, by
restricting the analysis to annotated regulatory regions, current
tools will miss non-coding drivers that create de novo regulatory
elements in regions of unannotated DNA. For example, non-coding
mutation hotspots upstream of TALT and LMOT in T-cell acute
lymphoblastic leukemia lead to the formation of de novo MYB
binding sites that drives the overexpression of TALT and LMOT1
oncogenes'®'". Here, we present MutSpot, an R package that
systematically and unbiasedly scans the entire genome for
mutation hotspots with statistical evidence of positive selection.

RESULTS
Detection of mutation hotspots in gastric cancer genomes

MutSpot can be used to detect mutation hotspots either genome-
wide or in user-defined regions. In the genome-wide discovery

mode, MutSpot fits a genomic background model and scans for
mutation hotspots across the whole genome. In the regional
discovery mode, MutSpot fits a background model specific to the
user-defined regions, e.g., promoters, and predicts hotspots in the
specified regions only. While the genome-wide mode provides a
comprehensive scan of the entire genome, the regional mode can
be advantageous when the mutational processes in the regions of
interest are very different from the genomic background. To
demonstrate the utility of the regional analysis, we ran MutSpot
on 168 microsatellite stable gastric cancer whole genomes'? to
detect SNV hotspots (1) genome-wide and (2) in regions
comprising CTCF binding sites (CBS; 47,453 CBSs analyzed).
MutSpot identified 160 mutation hotspots genome-wide
(2,533,374,732 nucleotides evaluated) and 12 mutation hotspots
in CBSs (1,164,231 nucleotides evaluated) at FDR <0.05. In each
analysis, MutSpot outputs a Manhattan plot of the detected
hotspots and a barplot of the Z-values (quantifying association
with mutation rate) of the selected features in the fitted
background model (Fig. 1b, c). CBSs are known to be hypermu-
tated in gastrointestinal cancers, with a distinct mutation
spectrum enriched in A>G and A>C substitutions'>'3, In the
genome-wide background mutation model, CpG dinucleotides,
individual tumor mutation burden and local mutation rate are
among the top predictors of mutation probability. In contrast, and
consistent with the current knowledge, MutSpot identifies AA
dinucleotides as the most important predictor of mutation
probability in the CBS-specific model. Twenty-three mutation
hotspots at CBSs are identified in the genome-wide model.
However, only 12 remain significant in the CBS-specific model that
corrects for the elevated background mutation rate and unique
mutation spectrum at CBSs.

As there are few validated drivers in the non-coding DNA, we
validated the ability of MutSpot to identify known mutation
hotspots in the protein-coding regions. MutSpot identified 10
hotspots in four genes using the gastric cancer cohort (Supple-
mentary Fig. 1). All four genes are known drivers of gastric cancer
(TP53, CTNNB1, KRAS, and RHOA). There were a total of 38 unique
protein-altering mutations in the 10 hotspots, and 37/38 muta-
tions are found to be hotspot mutations by a previously published

pan-cancer analysis of protein-coding hotspots'*.
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Fig. 1 MutSpot analysis on 168 gastric cancer whole genomes. a MutSpot analysis workflow. b, ¢ For each analysis, MutSpot outputs three

types of descriptive figures: a Manhattan plot, a feature importance plot of features evaluated by the background mutation model, and
lollipop plots of the top hotspots. Figures produced by MutSpot from b a genome-wide analysis and ¢ a CBS-specific analysis of 168 gastric
cancer whole genomes. Hotspots with FDR <0.05 are labeled in magenta. d, e Comparison of the number of hotspots detected using MutSpot
with the number of hotspots detected using other statistical approaches in d the genome-wide and e CBS-specific analyses.

Performance of MutSpot on other tumor cohorts

The statistical power for detection of hotspots depends on factors
such as tumor cohort size and the passenger mutation rate in the
specific cancer type'. To further demonstrate the performance of
MutSpot, we ran MutSpot on two additional cancer cohorts with
different passenger mutation loads. First, we ran MutSpot on 31
paediatric T-cell acute lymphoblastic leukemia (T-ALL) tumors'"
using MutSpot default features and lymphocyte-specific epige-
netic profiles in the feature selection step (See Supplementary
Methods). We identified non-coding hotspots upstream of three
known T-ALL oncogenes (LMO1, LMO2, and TAL1; Supplementary
Fig. 2), demonstrating that hotspot detection could be useful even
in small cancer cohorts. Next, we performed hotspot discovery on
70 melanoma tumors®. The high passenger mutation load in
melanoma and the presence of local hypermutation at TF-binding
sites (TFBS)'>'® make hotspot detection in melanoma especially
challenging. To account for known mutational biases in mela-
noma, we included melanoma-specific epigenetic and sequence
features in addition to the default MutSpot features for feature
selection (See Supplementary Methods). MutSpot identified 79
mutation hotspots at 1% FDR, and the top hotspot identified
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overlaps the two known hotspot mutations in the TERT gene
promoter (Supplementary Fig. 3). Melanoma tumors are hyper-
mutated at active TFBSs in gene promoters due to impaired
nucleotide excision repair (NER) at these sites'”. The default
MutSpot model without tissue-specific features predicted 104
mutation hotspots with 47 hotspots overlapping gene proximal
TFBSs (Supplementary Fig. 3). Using instead a model also
correcting for local hypermutation at active TFBSs in melanoma,
only 25 out of the 79 significant hotspots identified were located
in active TFBSs in gene promoters. By examining common features
of the remaining NER-associated hotspots identified by MutSpot,
one could potentially identify additional covariates of the somatic
mutation processes acting on these sites. Such features could then
be modelled by MutSpot in an iterative manner to further refine
the background mutation model to reduce false-positive hotspots.

Comparison to existing methods

We compared MutSpot against other statistical approaches for
driver detection adopted by previous studies'’™'® (Fig. 1d, e,
Supplementary Fig. 4). Since none of these approaches are
available as standalone software packages for hotspot detection,
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Table 1.

Details of sequence, epigenetic and structural features that can be included in the MutSpot model.

Feature Feature detail

Rationale Source

Sequence context (SNVs) Identity of mutated base (A/T or C/G).
Trinucleotide and penta-nucleotide contexts

centered at the mutated base, and 1 bp and

Sequence context
(indels)

TF-binding profiles

Presence of poly-A/T or poly-C/G sequences
longer than 5 bp at the indel site.

ChlIP-Seq peak profiles of 132 TFs and 1 meta

cell lines.

Replication timing
cell lines.

APOBEC editing sites Predicted APOBEC editing sites.

Local mutation rate Mutation rate of 100 kb nonoverlapping

genomic bins.

Individual Mutation burden of individual tumors.

mutation count
Tissue-specific
epigenetic profile
COSMIC mutation
signatures

Chromatin accessibility and modification
profiles from matched tissue/cell type.

Proportion of mutations contributed by a
specific mutation signature for each tumor.

2 bp left and right flanks of the mutated base.

profile including peaks of all TFs from ENCODE

Mean replication timing profile of 13 ENCODE

Sequence context is a major covariate of
mutation probability. Although previous studies
typically considered trinucleotide contexts,
mutation rates could be affected by wider
sequence contexts?>.

Computed from
mutation data

Long mononucleotide repeats could lead to
artifacts in indel calling.

Computed from
mutation data

TF-binding sites have elevated mutation rates in Zerbino et al. 2
certain cancers due to impaired nucleotide

excision repair.

Replication timing is inversely correlated with Hansen et al. %/

mutation probability.

Elevated mutation rates at APOBEC editing sites
could lead to the formation of passenger
hotspots.

Buisson et al.?®
Table S2.

To correct for additional unexplained regional
variation in mutation rates.

Computed from
mutation data

To account for intertumor heterogeneity. Computed from

mutation data

Epigenetic profiles from the cell of origin better
predict the mutational landscape of tumors'>.

Supplied by the user

To further correct for specific mutational
processes in the tumor cohort.

Supplied by the user

we implemented four commonly used strategies: (1) Binomial
model based on the average genome-wide mutation rate in the
cohort, (2) Poisson Binomial model accounting for heterogeneity
in genome-wide mutation rates across individual tumors, (3)
Poisson Binomial model also correcting for variation in DNA
replication timing, and (4) Poisson Binomial correcting for both
DNA replication timing and local mutation rate. Expectedly,
models that integrated more information about confounding
factors predicted fewer candidate hotspots (Fig. 1d, e, Supple-
mentary Fig. 4). Hotspots predicted by only the simpler models are
likely false-positives, since their frequency can be explained by
genomic covariates of the somatic mutation rate. Overall, this
indicates that the larger covariate feature space modelled by
MutSpot reduces the number of potential false-positive hits.

A recent study by the PCAWG consortium has examined pan-
cancer non-coding drivers using an ensemble of different driver
discovery methods?®. However, most of these methods were
designed to identify positive selection in annotated regulatory
regions, and none of the methods work out of the box for genome-
wide hotspot detection. To further validate the performance of
MutSpot, we adapted three existing methods (OncoDriveFML’,
ncdDetect*?', and ActiveDriverWGS®) for genome-wide hotspot
detection by first identifying potential hotspot regions (short
windows with four or more mutations) and then used these regions
as input for each method (see Supplementary Methods). From the
cohort of 168 gastric cancer tumors, 87/90 hotspots identified by
MutSpot are also found by at least one other method (Supplemen-
tary Fig. 5). Similarly, in the cohort of 70 melanoma samples, 74/79
hotspots identified by MutSpot are found by at least one other
method (Supplementary Fig. 5). In summary, MutSpot is currently
the only standalone tool available for genome-wide identification of
mutation hotspots, and the predictions made by MutSpot are
generally concordant with other driver identification methods.

DISCUSSION

MutSpot offers the flexibility to incorporate any genomic or
clinical covariate into the background mutation model. This allows
users to include tissue-specific epigenetic features for the cancer
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type of interest, as well as other newly discovered mutational
biases into the background mutation model. As our current
knowledge of the mutational processes and biases is far from
complete, new insights into the processes underlying somatic
mutations will further improve the accuracy of hotspot detection.

In conclusion, MutSpot is a user-friendly tool for end-to-end
non-coding mutation hotspot identification from cancer genomes.
As an increasing number of cancer whole genomes become
available, MutSpot can facilitate the discovery of novel drivers in
the non-coding genome to further our understanding of tumor
biology.

METHODS
Input features for modeling background mutation rates

Non-coding hotspots are small, focal regions with high recurrence and
clustering of somatic mutations. By default, Mutspot defines a hotspot as a
21 bp region with at least two mutations. To accurately detect mutation
hotspots, MutSpot builds a logistic regression model to estimate patient-
and position-specific background mutation rates while correcting for
known covariates of mutation probability, such as local nucleotide context,
replication timing, and epigenomic features'? (Fig. 1a and Table 1). As
mutation hotspot detection can be sensitive to recurrent sequencing or
variant-calling artifacts, the users are recommended to prefilter the input
mutations to remove likely mapping and sequencing errors (see
Supplementary Methods). In addition, MutSpot excludes problematic
regions, such as poorly mappable regions and immunoglobin loci, from
the analysis. Poorly mappable regions are defined as regions with
mappability score <1 in the ENCODE 75mers Alignability track in the
UCSC genome browser. Separate background mutation models are built
for single nucleotide variants (SNVs) and small insertions and deletions
(indels), as they arise from different mutational processes. By default,
MutSpot automatically computes 763 sequence, epigenetic, and structural
features (Table 1). As replication timing profiles and transcription factor
(TF) binding profiles are not yet available for many tissue types, MutSpot
provides the mean replication profile of 13 ENCODE cell lines, and the
aggregate TF-binding profile over all available ENCODE cell lines as default
non-tissue-specific features. However, we expect tissue-specific epigenetic
profiles to be more predictive of the background mutation rates in
individual cancer types®>. Therefore, we recommend users to input tissue-
specific epigenetic features for feature selection if available. Additional
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epigenomic features such as DNase | hypersensitive sites (DHSs) and
histone modification profiles can be provided by the user in the bigwig or
bed format (Table 1). Tissue-specific DHSs and histone modification
profiles for a large number of tissues are readily available from the
Roadmap Epigenomics Project?>,

Feature selection using LASSO regression

The most predictive features of mutation probabilities are selected by a
LASSO logistic regression model. MutSpot randomly samples 1 million
mutated sites from the input mutation file (or all mutated sites if the total
number of mutations is less than 1 million) and an equal number of non-
mutated sites as the input for the LASSO logistic regression model. Then,
the mutation status of each site is regressed against all candidate
sequence or epigenetic features. The regularization parameter is chosen
as the value at which the error of the model is within one standard
deviation from the minimum, as determined by 10-fold cross-validation.
MutSpot performs LASSO regression on 100 bootstrap samples with 50%
of the data in each bootstrap, and selects for epigenomic features with
more than 75% recurrence frequency and sequence features with more
than 90% recurrence frequency. The user can adjust these thresholds to
control the number of features included in the final background mutation
model. To determine the number of mutations required for optimal
performance of feature selection, we repeated LASSO feature selection
on the gastric cancer and melanoma cohorts by sampling 50k, 100k,
250k, 500k, 750k, 1 million (default), 1.5 million, and 2 million mutated
sites, and an equal number of non-mutated sites in each experiment.
Then, we fitted logistic regression models based on features selected in
each experiment, and calculated the MacFadden'’s pseudo-R2 to estimate
the model fit. We found that the MacFadden’s pseudo-R2 levels off at
around 200k sampled sites (100k mutated sites) for both cohorts
(Supplementary Fig. 6). Overall, we recommend the tumor cohort to
have at least 100,000 mutations for optimal performance of feature
selection. MutSpot uses the ‘glmnet’ package for LASSO regression and
cross-validation.

Sample- and position-specific background mutation model

To account for interpatient heterogeneity, MutSpot corrects for the
mutation burden of individual tumors. Additional patient-specific features
such as mutation signatures and cancer subtypes can also be integrated
into the model. Finally, MutSpot fits a logistic regression model over all
positions in the genome to estimate patient- and position- specific
background mutation probabilities.

glm(y ~ BX, family = logit) )

Here, X includes sequence and epigenetic features selected by LASSO
regression as well as sample-specific features such as tumor mutation
count and clinical features.

Identification of mutation hotspots

To identify mutation hotspots, MutSpot evaluates the mutation recurrence
for I-bp regions with at least n mutated samples genome-wide (default /=
21, n=2). We set the default window size (/) to 21 nucleotides because
most TF-binding motifs are shorter than 20 nucleotides, and recurrent
mutations that create or abolish a specific TFBS should therefore cluster
within 20 bp. The user can set the recurrence parameter n based on the
desired minimum recurrence frequency (e.g., set n=20 for a cohort of
1000 tumors to detect hotspots with at least 2% recurrence). Increasing the
recurrence parameter decreases the compute time as fewer regions are
evaluated (Supplementary Fig. 7). The p-value of mutation recurrence is
computed using a Poisson binomial model that accounts for varying
mutation rates across different patient tumors'>'. Multiple hypothesis
testing is corrected using the Benjamini Hochberg method. Theoretically,
MutSpot evaluates each position in the genome and its 20 bp flank for
mutation recurrence, although in practice only regions with at least n
mutated samples are evaluated. Non-evaluated nucleotides with fewer
than two mutated samples in its 20 bp flanks are assigned P=1, and P-
values are corrected for multiple testing across all nucleotides in the
masked non-coding genome (2,533,374,732 nucleotides). In the region-
specific mode, the number of hypotheses is the number of nucleotides in
the masked regions of interest.

As it can be computationally expensive to fit genome-wide models with
multiple covariates, sparse matrices were implemented to minimize
memory usage and a multi-threading option is available to reduce the
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compute time. MutSpot takes less than 3 hours on a 4-core machine for
genome-wide hotspot discovery in 200 tumors, and it can be scaled up to
process thousands of tumors on a standard workstation (Supplementary
Fig. 8).

Preprint

A previous version of this manuscript was published as a preprint®*.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY

Gastric cancer mutation data are available as Supplementary Data 3 of Guo et al'? T-
ALL somatic mutations were obtained from Hu et al'’. Melanoma somatic mutations
are available for download at https://xenabrowser.net/. Roadmap Epigenomics data
are available for download at http://www.roadmapepigenomics.org/data/. ENCODE
data are available for download at ftp:/ftp.ensembl.org/pub/release-85/regulation/
homo_sapiens/.

CODE AVAILABILITY

MutSpot is implemented as an R package and is available at https://github.com/
skandlab/MutSpot/. All R code used to generate the figures and statistics of the paper
is included in Supplementary Data.
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