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Behavioral variant frontotemporal dementia (bvFTD) is a younger onset form of
neurodegeneration initiated in the frontal and/or temporal lobes with a slow clinical
onset but rapid progression. bvFTD is highly complex biologically with different
pathological signatures and genetic variants that can exhibit a spectrum of overlapping
clinical manifestations. Although the role of innate immunity has been extensively
investigated in bvFTD, the involvement of adaptive immunity in bvFTD pathogenesis is
poorly understood. We analyzed blood serum proteomics to identify proteins that are
associated with autoimmune disease in bvFTD. Eleven proteins (increased: ATP5B,
CALML5, COLEC11, FCGBP, PLEK, PLXND1; decreased: APOB, ATP8B1, FAM20C,
LOXL3, TIMD4) were significantly altered in bvFTD with autoimmune disease compared to
those without autoimmune disease. The majority of these proteins were enriched for
glycoprotein-associated proteins and pathways, suggesting that the glycome is targeted
in bvFTD with autoimmune disease.

Keywords: frontotemporal dementia, autoimmune disease, proteomics, serum, thyroid, glycoprotein,
glycome, biomarker
INTRODUCTION

Behavioral variant frontotemporal dementia (bvFTD) is a non-Alzheimer’s younger onset
neurodegenerative disease with a slow and subtle onset and rapid progression (1, 2). Affected
individuals exhibit marked behavioral disturbances (1, 2). bvFTD is biologically complex with
different pathological signatures and genetic variants that impact on similar cell types and networks
in the brain (1, 2). Therefore, deciphering the precise disease mechanism(s) that give rise to various
degenerative proteinopathies in the same neuronal systems in bvFTD remains a significant
challenge. As indicated in other neurodegenerative diseases, the immune system and
inflammation are involved, with innate immunity extensively investigated in bvFTD. There is
evidence of a significantly altered glial landscape in diseased brain regions (3–6), a consistent
association of bvFTD with the HLA immune loci (7, 8) and disease-causative genes that are
associated with inflammation in bvFTD (i.e. C9ORF72, PGRN, TREM2), as reviewed in detail
elsewhere (9).

Recently, we utilized a discovery proteomics approach to assess serum changes in patients with
bvFTD demonstrating significant peripheral changes in calcium ion binding and innate immune
org September 2021 | Volume 12 | Article 7362601
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pathway proteins (10). In contrast, the involvement of adaptive
immunity in bvFTD is poorly understood biologically and
remains to be explored. Evidence supporting a role for
autoimmunity in bvFTD includes bvFTD-associated genetic
variants linked to autoimmune conditions (11, 12), an
overrepresentation of autoimmune disease in bvFTD,
specifically non-thyroid autoimmune conditions linked to
clinical and genetic bvFTD variants (13–15), and the presence
of autoantibodies in individuals with bvFTD (16–19).

Autoimmunity is suggested to be an integral part of
neurodegeneration (20, 21) with considerable evidence of
immune system upregulation in neurodegenerative diseases,
implying that the body’s immune system attacks cells of the
CNS in a similar way to other autoimmune diseases (22). Indeed,
international retrospective studies have demonstrated a
significantly higher (80%) risk of dementia in middle-aged
individuals with autoimmune diseases (23) and individuals
admitted to hospital with an autoimmune disease are 20%
more likely to have a subsequent admission for dementia (24).

In this study we investigated alterations in adaptive
immunity, firstly by determining the prevalence of
autoimmune disease in our patient cohort, and then applying
our discovery proteomics approach to determine any blood
serum changes in bvFTD patients with and without
autoimmune disease.
MATERIALS AND METHODS

Patient Information
The proteomics dataset generated in our previous study (10) was
re-analyzed specifically for changes in proteins associated with
autoimmune disease. bvFTD patients were from FRONTIER, the
frontotemporal dementia clinical research group at the University
of Sydney Brain and Mind Centre, and from the ForeFront FTD
and motor neuron disease clinic at the University of Sydney Brain
and Mind Centre. Each patient in the cohort previously
underwent neurological examination including a comprehensive
cognitive assessment and structural brain MRI, and met current
consensus diagnostic criteria for bvFTD (25). In the present
study, the bvFTD cohort specifically were screened for
prevalence of a panel of pre-determined autoimmune diseases
that were collated from the Australian Society of Clinical
Immunology and Allergy (ASCIA) (26) and adapted from
previously published studies investigating autoimmune disease
in international bvFTD cohorts (13, 14). We compared bvFTD
patients with autoimmune disease (N=10) (Table 1) to those
without autoimmune disease (N=62). Human research ethics
approval was granted by the University of New South Wales
(approval number: HC12573). All information on the bvFTD
cohort and materials and methods relating to proteomics were
reported in our previous study (10).

Blood Sampling and Proteomics Analysis
The current data is derived from our previous proteomics
analysis (10). Briefly, blood samples (9 mL) were collected in
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tubes (BD Vacutainer SST II Advance Tube #367958), and serum
prepared by centrifugation at 3,500 rpm for 10 min at 4°C, which
was then aliquoted and stored at −80°C until use. A
comprehensive analysis of bvFTD serum proteins using
proteomics based on the advanced liquid chromatography-
tandem mass spectrometry (LC–MS–MS) technology was then
undertaken. Briefly, protein depletion method was used in which
96% of 14 high-abundant proteins (e.g. albumin, IgG) were
removed (27) using a 4.6 mm × 100 mm Multiple Affinity
Removal System column (MARS, Agilent, Santa Clara, CA,
USA) based on the depletion method (27) and following the
manufacturer’s instructions, allowing for greater accuracy in
identifying less abundant proteins. A total of 40 ml of serum
was diluted with 120 ml of buffer A and passed through a 0.22 mm
filter and centrifuged at 16,000g. The supernatant was injected
into a MARS column and the flow through collected. The
column was washed with buffer B, to elute the bound proteins,
before re-equilibrating with buffer A prior to the next sample.
Collected fractions were buffer exchanged into 100 mM TEAB.
Following this, we performed nano-capil lary liquid
chromatography-tandem mass spectrometry (LC-MS-MS)
using a Dionex Ultimate 3000 HPLC system (Thermo Fisher
Scientific, Waltham, MA, USA) coupled to an in-house fritless
nano 75 mm × 30 cm column packed with Repro-Sil Pur 120 C18
stationary phase (1.9 mm, Dr, Maisch GmbH, Germany).
Separated compounds were analyzed with an Orbitrap Fusion
Tribrid Mass Spectrometer (Thermo Fisher Scientific, Waltham,
MA, USA) and a synchronous precursor selection MS3 method
(28) was used for data collection. Proteome Discoverer 2.2
(Thermo Fisher Scientific, Waltham, MA, USA) was used to
analyze the MS data and the raw mass spectrometry data was
processed using MaxQuant (29). Proteomics data are available
from the corresponding author upon request.

Western Blotting
Serum (equal volumes) were heated with sample buffer (3.2%
SDS, 32% glycerol, 0.16% bromophenol blue, 100 mM Tris-HCl,
pH 6.8, 8% 2-mercaptoethanol), electrophoresed on Criterion
Stain-free 4-20% SDS-PAGE gels (Bio-Rad) and transferred onto
nitrocellulose membranes at 100 volts for 30 min. The
membranes were blocked with TBS containing 5% nonfat dry
milk and probed with anti-LOXL3 antibody (mouse monoclonal,
1:1000, Santa Cruz, sc377216) overnight at 4°C. The membranes
were then washed three times in TBS containing 0.1% Tween 20
TABLE 1 | Demographics of bvFTD patients with autoimmune disease.

Case Sex Age Autoimmune disease

Non-thyroid 1 M 67 DM1
2 M 68 Celiac
3 M 59 Psoriasis
4 M 78 DM1
5 M 64 Psoriasis
6 M 78 Psoriasis
7 M 67 DM1
8 M 74 Psoriasis + Rheumatoid arthritis

Thyroid 9 F 56 Hypothyroidism
10 M 84 Hyperthyroidism
Septe
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and incubated with horseradish peroxidase-conjugated
secondary antibody for 2 h at room temperature. Protein
bands were detected using enhanced chemiluminescence and
Gel Doc System (Bio-Rad). The blots were stripped and probed
for housekeeper proteins transferrin. The signal intensity was
quantified using Image Lab (Bio-Rad) and NIH ImageJ
software (v1.45s).

Gene Ontology Analysis
Two gene ontology software programs, Bioprofiling (30) (www.
bioprofiling.de, 16 Dec 2019) and STRING (31) v11 (16 Dec
2019), were used to interpret and predict function or pathway on
a set of proteins identified by the proteomics analysis. The
proteins that were significantly altered were inputted separately
into each of the programs following their instructions.

Statistical Analysis
Statistical analysis on proteomics data was performed as
previously described (10). Briefly, protein peak intensities were
log2 transformed and any missing values were imputed using the
k nearest neighbor algorithm (impute. knn function from the
impute package in R). Following imputation, protein intensities
were normalized across batches using the RUV-III (Removing
Unwanted Variation-III) algorithm (32). Default parameters
from the RUVIII function were used. After normalization, any
proteins that were originally missing were removed, and samples
with replicates averaged. Linear models were fitted using the
R/Bioconductor software package limma (33). A design matrix
which included age and sex as covariates was used and tested for
significance of disease status; neither age nor sex had any effect
on protein levels. The Benjamini–Hochberg method was used to
Frontiers in Immunology | www.frontiersin.org 3
control for multiple testing, and proteins with an adjusted P <
0.05 were considered to be statistically significant. For western
blotting data, statistical analysis was performed using SPSS
Statistics software (IBM, Chicago, Illinois), using a univariate
analysis (general linear model), with age and sex as covariates,
and statistical significance set at P < 0.05.
RESULTS

Analysis of Serum Proteins Altered in
bvFTD With Autoimmune Disease
We analyzed serum proteins in bvFTD patients with autoimmune
disease (bvFTD-autoimmune; N=10) (Table 1) and bvFTD
patients without autoimmune disease (bvFTD-nonautoimmune;
N=62) to identify proteins that are associated with autoimmune
disease in bvFTD. We found that 11 proteins were significantly
altered in bvFTD-autoimmune compared to bvFTD-
nonautoimmune covarying for age and sex. Six proteins were
significantly increased in bvFTD-autoimmune – ATP5B,
CALML5, COLEC11, FCGBP, PLEK, PLXND1; and 5 proteins
were significantly decreased – APOB, ATP8B1, FAM20C, LOXL3,
TIMD4 (Table 2). Although measuring proteins in serum by
western blotting is difficult, because of the low sensitivity of
interfering proteins, we were able to validate the decrease in
LOXL3 in bvFTD-autoimmune by this method (Figure 1). Also,
we separated non-thyroid autoimmune disease (bvFTD-
nonthyroid, N=8) (Table 1) from the bvFTD-autoimmune
group and compared them to bvFTD-nonautoimmune, and
found that 3 proteins were significantly altered; increased –
ATP5B, RAB11A; decreased – HRG (Table 3).
TABLE 2 | Significantly altered proteins in bvFTD-autoimmune compared to bvFTD-nonautoimmune serum.

Protein Uniprot
code

logFC P
value

Highlighted gene ontology molecular and biological functions

Increased
ATP5B* ATP synthase subunit beta Q0QEN7 11.9136 0.0133 ATP binding, proton-transporting ATPase activity, ATP synthase, angiostatin

binding
PLEK Pleckstrin P08567 8.8327 0.0002 Major protein kinase C substrate of platelets, protein kinase C signaling, actin

cytoskeleton reorganization
CALML5 Calmodulin Like 5 Q9NZT1 1.4170 0.0349 Calcium ion binding, enzyme regulator activity, signal transduction
COLEC11 Collectin Subfamily Member 11 Q9BWP8 0.8228 0.0133 Innate immunity, apoptosis, embryogenesis, complement activation (lectin pathway)
PLXND1* Plexin D1 Q9Y4D7 0.8111 0.0349 Protein domain specific binding, semaphoring receptor activity, cell signaling,

regulated migration of various cell types
FCGBP Fc Fragment Of IgG Binding Protein Q9Y6R7 0.4566 0.0478 Unknown, potential involvement in maintenance of mucosal structure
Decreased
TIMD4* T Cell Immunoglobulin and Mucin

Domain Containing 4
Q96H15 -7.0591 0.0133 Glycoprotein, phosphotidylserine receptor, enhances engulfment of apoptotic cells,

regulation of T cell proliferation and lymphotoxin signaling
LOXL3* Lysyl Oxidase Like 3 P58215 -5.1753 0.0133 Key regulator of glycoproteins, oxioreductase, copper ion binding, fibronectin

binding, protein-lysin-6-oxidase activity, scavenger receptor activity, inflammatory
response

ATP8B1 ATPase Phospholipid Transporting 8B1 O43520 -1.9138 0.0133 Translocase, ATPase coupled intramembrane lipid transporter activity, lipid
transport, ATP binding, binding of magnesium, metal and nucleotides

FAM20C* FAM20C Golgi Associated Secretory
Pathway Kinase

Q8IXL6 -1.1636 0.0133 Transferase, kinase, biomineralization, ATP binding, binding of calcium, manganese
and metal, protein serine/threonine kinase activity, phosphotransferase activity

APOB* Apolipoprotein B P04114 -0.5062 0.0402 Glycoprotein, heparin binding, cholesterol metabolism, lipid metabolism, lipid
transport, steroid metabolism, sterol metabolism, transport, phospholipid binding
*Proteins significantly enriched for UniProt keyword “Glycoprotein”.
September 2021 | Volume 12 | Article 736260

http://www.bioprofiling.de
http://www.bioprofiling.de
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Bright et al. Frontotemporal Dementia With Autoimmune Disease
Predicting Dysregulated Pathways in
bvFTD With Autoimmune Disease
We then used two gene ontology software programs, STRING
and Bioprofiling, to identify or predict functions/pathways
possibly altered in bvFTD with autoimmune disease. The 11
proteins altered in bvFTD-autoimmune compared to bvFTD-
nonautoimmune were assessed using Bioprofiling. Only one
prominent pathway was generated: “Extracellular region” with
5 hits (APOB, FAM20C, FCGBP, LOXL3, PLEK). This same
pathway was generated in STRING with the same 5 protein hits
(APOB, FAM20C, FCGBP, LOXL3, PLEK). Interestingly, 6 of
the 11 altered proteins in bvFTD-autoimmune (APOB, ATP5B,
FAM20C, LOXL3, PLXND1, TIMD4) and 2 of the 3 altered
proteins in bvFTD-nonthyroid (ATP5B and HRG) (Figure 2)
were enriched for the Uniprot keyword “Glycoprotein” (KW-
0325) and “Immune system process” (GO:0002376).
DISCUSSION

This study sought to investigate blood serum changes in the
context of adaptive immunity in an Australian clinical bvFTD
Frontiers in Immunology | www.frontiersin.org 4
cohort with and without the presence of autoimmune disease.
We analyzed our proteomics dataset to determine any blood
serum changes in bvFTD with autoimmune disease compared to
bvFTD without autoimmune disease. In addition, we determined
if there was any change in blood serum in bvFTD with non-
thyroid autoimmune disease, given previously published studies
reported an increased prevalence specifically of non-thyroid
autoimmune conditions in international FTD cohorts (13, 14).

Ten bvFTD individuals (14%) within the cohort were
identified to have an autoimmune disease, the majority of
which had non-thyroid autoimmune conditions (N=8). In
Australia, autoimmune disease occurs in 5% of the population
(26) and while our cohort is limited in number, the increased
prevalence of autoimmune disease does support previous
published findings of an overrepresentation of autoimmune
disease in international FTD cohorts (13–15). Interestingly, of
these individuals with autoimmune disease, nine were male
(90%) and of these bvFTD males with autoimmune disease, all
except one had non-thyroid autoimmune conditions.
Autoimmune diseases are typically more prevalent in females
than males (34, 35) and while analysis of any differences in sex
could not be determined given more males than females were
identified as having an autoimmune disease in this limited
cohort, which is a limitation of the present study, the
heightened presence of autoimmune disease in bvFTD males
could potentially represent specific adaptive immune alterations
driven by the combination of both male sex and autoimmune
disease in bvFTD. There is significant evidence demonstrating
clear differences between male and female immunity (35, 36)
thus potentially a heightened chronic inflammatory environment
such as that in neurodegeneration, could further exacerbate sex-
related adaptive and peripheral immune responses or vice versa.
Further investigation of potential sex-related differences
specifically in adaptive immunity within bvFTD is required.

Proteomics analysis of blood serum identified 11 proteins that
were significantly altered in bvFTD-autoimmune compared to
bvFTD-nonautoimmune participants. While each of the 11
proteins are involved in diverse molecular and biological
functions (Table 2), gene ontology analysis of these altered
proteins identified ‘Extracellular region’ (GO:0005576) as being a
significantly enriched pathway in bvFTD-autoimmune serum.
Whereas in bvFTD-nonthyroid individuals, only 3 proteins were
significantly altered, limiting the ability to perform gene ontology
analysis. Of particular interest in the present study is that the
FIGURE 1 | Validation of LOXL3 alteration in bvFTD-autoimmune compared to
bvFTD-nonautoimmune serum by western blotting; normalized to the
housekeeper protein transferrin (Transf) and optical density (OD) measurements
of the bands. Data represent mean and SE as error bars, *P < 0.05.
TABLE 3 | Significantly altered proteins in bvFTD-nonthyroid compared to bvFTD-nonautoimmune serum.

Protein Uniprot
code

logFC P
value

Highlighted gene ontology molecular and biological functions (UniProt)

Increased
RAB11A RAB11A, Member RAS Oncogene

Family
P62491 3.71 0.006 GTPase activity and binding, regulation of intracellular membrane trafficking

ATP5B* ATP synthase subunit beta Q0QEN7 9.13 0.007 ATP binding, proton-transporting ATPase activity, ATP synthase, angiostatin binding
Decreased
HRG* Histidine Rich Glycoprotein P04196 -0.81 0.020 Plasma glycoprotein, heme binding, angiogenesis, chemotaxis, immunoglobulin binding,

metal ion binding
*Proteins significantly enriched for UniProt keyword “Glycoprotein”.
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majority of the significantly altered proteins were enriched for the
Uniprot annotated keyword “Glycoprotein” (KW-0325) and the
pathway “Immune system process” (GO:0002376). Glycoproteins
play central and diverse roles in inflammatory processes and in the
pathophysiology of chronic low-grade inflammatory conditions
including diabetes type II, cardiovascular disease and cancer (37,
38). The process of glycosylation, is one of the most essential post-
translational modifications (39) and plays a critical role in regulating
functional immune responses via complex receptor-glycan motif
interactions (40, 41). Specifically, protein glycosylation is identified
to have a central role in the biochemical stabilization of 3D protein
structure, protein folding, protein trafficking on cell membranes as
antigen (42). The majority of glycoproteins are localized to the cell
surface and are involved in cell adhesion, signal transduction, and
structural maintenance of cells and tissues (42).

Glycosylation can be influenced by multiple factors including
the type of cell, its activation state, environmental factors, age of
the cell and inflammatory mediators such as cytokines (43). Each
of these factors can be altered in the setting of disease, therefore
Frontiers in Immunology | www.frontiersin.org 5
glycoprotein expression or in general the ‘glycome’ could
represent the overall health status of an individual (38, 44).
Indeed, alterations in the human glycome have been associated
with cancer and various autoimmune diseases (37, 38).
Specifically, glycan processing contributes to the pathogenesis
of autoimmune diseases, where abnormal glycosylation of one or
more glycoproteins can occur (38). In the adaptive immune
system, glycans have important roles in B and T cell
differentiation and alterations in glycosylation can modulate
inflammatory responses. Importantly, immunoglobulins are
themselves glycoproteins, whose biological functions are
modulated by their glycosylation patterns. Immunoglobulin
glycosylation patterns that are identified to skew the immune
system toward a pro- or anti-inflammatory direction are
involved in the pathophysiology of autoimmune disease as
reviewed in detail elsewhere (38, 45).

In the CNS, glycosylation is vital for maintaining normal brain
functions and various glycan-rich molecules within the brain are
involved in neural functions, including neuronal development,
A

B

FIGURE 2 | The significantly altered proteins in bvFTD-autoimmune (A) and bvFTD-nonthyroid (B) compared to bvFTD-nonautoimmune serum that were enriched
for the Uniprot keyword “Glycoprotein”. FC, fold change. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
September 2021 | Volume 12 | Article 736260

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Bright et al. Frontotemporal Dementia With Autoimmune Disease
migration and regeneration (42, 46, 47). In addition, inflammation
itself can induce glycan modifications that alter protein folding by
masking sites for protease cleavage. This prevents proteolysis and
extends the circulating half-life of serum proteins in addition to
altering their structure, therefore redirecting the protein to
different cell membrane receptors and altering its downstream
cellular effects (48, 49). Given inflammation is considered a
pathological hallmark of neurodegeneration, it is important to
consider what affect this inflammatory response could have on
adaptive immunity, particularly given adaptive immunity also
serves to support the function of innate immunity and the
dialogue between the two is critical and constant. In support of
neurodegeneration driving these immune processes, variation in
CSF glycan expression has been detected in multiple
neurodegenerative diseases, including Alzheimer’s disease (AD),
Parkinson’s disease, Huntington’s disease and amyotrophic lateral
sclerosis (46, 50–56). Our data adds bvFTD to this list of
CNS diseases.

There have been few investigations on the glycome in bvFTD.
In AD affected brain regions, there are marked differences in the
levels of soluble protein glycans compared to controls, particularly
O-GlycNAcytylated and N-O-glycosylated proteins. Of note,
individuals with FTD-tau Pick’s disease demonstrate similar
lower levels of protein O-GlcNAcylation compared to AD,
although they do not have the other AD variations in their
glycome. As previously suggested, the glycome of each
neurodegenerative disease is likely to differ and should be
examined independently (57) as the glycome changes and
adapts to maintain optimal function (42, 46, 47).

When comparing both neurodegeneration and autoimmunity, it
is important to distinguish that the type of inflammatory/immune
response involved in both is different. Autoimmune disease involves
adaptive immunity, whereas neurodegenerative disease primarily
involves innate immune responses. However, neurodegeneration
has been suggested to exist on the same disease spectrum as
autoimmunity, despite having different etiologies (20, 21). While
the innate immune system has been the focus of investigation in
FTD, adaptive immunity has yet to be fully examined, despite
evidence to suggest a link between FTD and autoimmunity.

To date, the association between autoimmune disease and
FTD has been unified by underlying TDP-43 pathology, and
extends to GRN carriers (13). Furthermore, GWAS studies have
identified novel risk loci that strongly implicate immune
pathways in the pathogenesis of TDP-43 specifically (8), and
an enrichment of FTD-associated genetic variants is observed in
multiple autoimmune disorders (11). While there has been
limited investigation into the glycome of sporadic bvFTD
specifically, it is important to note that the GRN gene is itself a
lysosomal glycoprotein critical for proper lysosomal function.
Furthermore, GRN mutations have also been linked to
autoimmunity with multiple studies reporting prominent
upregulation of serum GRN levels in individuals with various
autoimmune diseases (12, 58–62). In addition, antibodies to
GRN have been demonstrated in individuals with histories of
particular autoimmune conditions (63). This suggests that
bvFTD individuals with GRN mutations (not assessed in the
Frontiers in Immunology | www.frontiersin.org 6
present study) in combination with autoimmune disease could
have enhanced dysregulation of the glycome. Another bvFTD
susceptibility gene triggering receptor expressed on myeloid cells
2 (TREM2) located in 6p21.1 MHC/HLA region of the genome is
also a cell surface transmembrane glycoprotein (64, 65).
Variations in TREM2 are implicated in autoimmunity and
increased risk of autoimmune disease (66, 67).

Given the relationship between these FTD disease causative
and susceptibility genes, their involvement in both innate and
adaptive immunity, warrants further investigation of the link
between glycoproteins and the various FTD subtypes with and
without coinciding autoimmune disease. The genetic and
pathological attributes of our bvFTD cohort was beyond the
scope of the present study, however, in future to determine any
specific glycoprotein changes that may be specifically linked to
bvFTD and FTD overall further investigation in larger
independent cohorts with genetic and pathologically confirmed
individuals, with and without autoimmune disease is required.

Despite the need for further investigation and validation,
what makes the findings of glycoprotein-associated alterations
in bvFTD-autoimmune serum within our cohort particularly
interesting, is the clinical utility of assays that are able to measure
inflammatory glycoproteins. Unfortunately, sensitive and
specific biomarkers of disease for FTD remain elusive which
impedes the ability to make accurate diagnosis of the underlying
disease subtype during life and also prevents the ability to track
disease progression, both of these are critical features required to
inform clinical trials. However, in the context of glycoproteins,
newly established diagnostic and prognostic tests are able to
utilize information from measuring the amount or structure of
attached glycans to proteins which could be unique to both the
individual and the disease.

In summary, discovery proteomics and gene ontology analysis in
serums from bvFTD individuals with (14%) versus without
autoimmune disease identified numerous glycoprotein-associated
serum proteins and pathways that were significantly altered. While
an altered glycome is not a new concept in terms of
neurodegeneration or autoimmunity, this study provides evidence
to suggest that the glycome is particularly affected in individuals
with both bvFTD and autoimmune disease. This implies a unique
adaptive immune profile specific to bvFTD in the setting of
autoimmune disease, either driven by autoimmunity or
potentially disease pathogenesis. Future follow up investigation
utilizing quantitative glycoproteomics is required in larger
independent genetically and pathologically confirmed FTD
cohorts to confirm these findings and to further explore potential
sex differences that may be associated with bvFTD and
autoimmunity. The use of secreted and cell surface glycomes to
reflect overall cellular status is routinely assessed (38) and
quantified, not only to understand disease mechanisms, but also
to improve diagnosis, prognosis and risk prediction (37, 68, 69).
Further insights into the structure and function of the glycome in
bvFTD could offer an approach for therapeutic development and
the ability to fine tune immunological responses and inflammation
to optimize the performance of therapeutics specifically targeting
bvFTD, as has been suggested for other diseases (38).
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