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Abstract

Leishmaniasis has been considered as emerging and re-emerging disease, and its

increasing global incidence has raised concerns. The great clinical diversity of the dis-

ease is mainly determined by the species. In several American countries, tegumentary

leishmaniasis (TL) is associated with both Leishmania amazonensis and L. braziliensis,

while visceral leishmaniasis (VL) is associated with L. (L.) infantum. The major mole-

cules that determine the most diverse biological variations are proteins. In the present

study, through a DIGE approach, we identified differentially abundant proteins among

the species mentioned above. We observed a variety of proteins with differential abun-

dance among the studied species; and the biological networks predicted for each spe-

cies showed that many of these proteins interacted with each other. The prominent

proteins included the heat shock proteins (HSPs) and the protein network involved in

oxide reduction process in L. amazonensis, the protein network of ribosomes in L. brazi-

liensis, and the proteins involved in energy metabolism in L. infantum. The important

proteins, as revealed by the PPI network results, enrichment categories, and exclusive

proteins analysis, were arginase, HSPs, and trypanothione reductase in L. amazonen-

sis; enolase, peroxidoxin, and tryparedoxin1 in L. braziliensis; and succinyl-CoA ligase

[GDP -forming] beta-chain and transaldolase in L. infantum.

Introduction

Leishmaniasis is endemic in 98 countries, and it is estimated that globally approximately 0.2

million to 0.4 million cases of visceral leishmaniasis and 0.7 million to 1.2 million cases of cuta-

neous leishmaniasis occur per year. India, Bangladesh, Sudan, Brazil, and Ethiopia accumulate

more than 90% of the visceral leishmaniasis cases; and Afghanistan, Algeria, Colombia, Brazil,

Iran, Syria, Ethiopia, Sudan, Costa Rica, and Peru contribute to approximately 75% of the cuta-

neous leishmaniasis cases [1].
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Approximately 20 Leishmania species have been known to cause cutaneous or visceral

infections in humans [2]. In the American continent, Leishmania amazonensis, L. braziliensis,
and L. infantum are associated with a great clinical diversity. L. amazonensis is associated with

diffuse (DCL) and localized cutaneous leishmaniasis (CL) [3], L. braziliensis is associated with

localized cutaneous (CL) and mucocutaneous leishmaniasis (MCL) [4], whereas L. infantum is

responsible for the visceral form (VL) of the disease [1].

CL is characterized by chronic papular, erythematous, and/or ulcerative skin lesions. MCL

involves the destruction of the mucocutaneous tissues such as the nose, the nasal septum, the

oropharynx, and the palate tissues, therefore, is associated with a high morbidity [5]. DCL is

characterized by the presence of nodules and, in some cases, ulcerated lesions. In addition,

histopathological examination has shown that macrophages are intensely parasitized in DCL,

therefore, treatment is frequently ineffective. VL is the most serious form of the disease due to

systemic involvement and infection with viscerotropic L. infantum strains. The disease mani-

fests with persistent fever, enlargement of the liver and spleen, and pancytopenia, which is fatal

if left untreated. This broad clinical spectrum results from the complex interactions between

pathogenic virulence factors and the host immune system [6, 7].

Comparative analysis of the trypanosomatid genomes has revealed a high degree of synte-

nia, approximately 99% among Leishmania species [8–10]. Thus, proteomics represents an

aggregate of techniques that allows us to understand the cell based on the identification and

quantification of proteins under different conditions, with two-dimensional electrophoresis

(2-DE) being one of the important tools used for large scale study of proteins [11].

Proteomic studies in Leishmania were performed mainly to compare the different stages of

the life cycles of L. donovani [12], L. infantum [13, 14], and L. mexicana [15]. The differences

in the abundance of proteins among L. infantum strains [16, 17] and L. amazonensis strains

[18] have also been described. In addition, comparative studies were performed between the

species L. (V.) guyanensis and L. (V.) panamensis [19], and L. amazonensis and L. major [20].

These studies contribute to the understanding of several biological mechanisms of the parasite

associated with infection, survival, pathogenesis, as well as drug resistance.

Previously, we used a proteomic approach coupled with an in silico analysis and identi-

fied the most abundant and immunogenic proteins in L. amazonensis, L. braziliensis,and L.

infantum in order to improve the serological diagnostic tests for the tegumentar form [21].

In the present study, we focused on the differentially abundant proteins among the above-

mentioned species. Future investigation of these proteins will enhance our understanding

of the biological differences among these species and the probable association of these pro-

teins with clinical forms.

Materials and methods

Parasites

Leishmania amazonensis (IFLA/BR/1967/PH8), L. braziliensis (MHOM/ BR/1975/M2904),

and L. infantum (MHOM/BR/1972/BH46) promastigotes were grown at 23˚C in Schnei-

der’s medium (Gibco BRL, UK) supplemented with 10% heat-inactivated fetal bovine serum

(Sigma, MO, USA), 200 U of penicillin per mL (Sigma, MO, USA), and 100 μg of streptomy-

cin per mL (Sigma, MO, USA) at pH 7.4. Growth curve analysis revealed that all the species

reached the logarithmic phase at day 4. The logarithmic phase promastigotes were centri-

fuged at 2000 g for 20 min at 4˚C, and the pellet was collected and stored at −80˚C for pro-

tein extraction. Three independently growing cultures of each Leishmania species were

obtained (biological replicates).
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Protein extracts

The promastigote pellets were resuspended in a lysis buffer containing 8 M urea, 2 M thiourea,

4% CHAPS, 65 mM DTT, 40 mM Tris base, and a protease inhibitor mix (GE Healthcare, San

Francisco, CA), in the proportion of 500 μL of the lysis buffer/109 parasites. After 2 h of shak-

ing at room temperature, the cell lysate was centrifuged at 10,000 g for 30 min, and the soluble

fraction was stored at −80˚C until use. The protein content was measured using a 2D-Quant

kit (GE Healthcare, USA) following the manufacturer’s instructions.

Experimental design

First, three representative Coomassie 2D gels from each independent biological replicate of

Leishmania species (L. amazonensis, L. braziliensis, and L. infantum) were analyzed to evaluate

the coefficient of covariation for each biological replicate. A pool of three biological replicates

of each Leishmania species was used for analysis by DIGE. Five DIGE analyses were performed

and, in each gel, we included samples from two Leishmania species stained with different dyes

(Cy3 and Cy5) and an internal standard of the three species stained with Cy2. High intensity

spots from each Leishmania species sample (p-value < 0.01) were selected for identification by

mass spectrometry (MS).

DIGE

In order to perform DIGE, 50 μg of the extracted proteins from each species (L. amazonensis,
L. braziliensis, and L. infantum) was labeled with 400 pmol of N-hydroxysuccinimidyl-ester-

derivatives of the cyanine dyes Cy2, Cy3, and Cy5 (GE Healthcare, USA) following the manu-

facturer’s instructions. The reaction was quenched by incubating with 1 mL of 10 mM lysine

for 10 min on ice in the dark. A mixture of protein extracts from the three Leishmania species

was labeled with Cy2 as an internal standard. In each gel, protein extract of one species was

labeled with Cy3 and that of the other species was labeled with Cy5. The experiments were

performed in triplicate, and a dye-swap was performed for all species.

Differentially-labeled extracts were pooled, reduced with 2% DTT, complemented with 2%

ampholytes (pH 4–7) and adjusted to a final volume of 350 μL with a sample buffer (8 M urea, 2

M thiourea, and 4% CHAPS). Samples were then loaded onto IPG strips (18 cm, pH 4–7; GE

Healthcare, USA) by overnight passive rehydration at room temperature. Rehydrated IPG strips

were subjected to isoelectric focusing (IEF) in which the voltage was increased gradually to 8000

V and the maximum current was 50 μA/strip; electrophoresis was run for 60,000 Vh on an Ettan

IPGphor system (GE Healthcare, USA) at 20˚C. Focused IPG strips were equilibrated for 15 min

in equilibration buffer (50 mM Tris-HCl pH 8.8, 6 M urea, 30% glycerol, 2% SDS, 0.002% bro-

mophenol blue, and 125 mM DTT) and then alkylated for further 15 min in equilibration buffer

containing 13.5 mM iodoacetamide. The strips were then subjected to 12% sodium dodecyl sul-

phate-polyacrylamide gel electrophoresis (SDS-PAGE) within low-fluorescence glass plates (GE

Healthcare, USA), and 2D-gel electrophoresis was performed at 10˚C using a current of 25 mA/

gel for 30 min, followed by 50 mA/gel, with an Ettan DALT 6 unit (GE Healthcare, USA). Elec-

trophoresis was performed in the dark using a Tris/glycine/SDS buffer.

Gels were scanned using a Typhoon Trio laser imager (GE Healthcare, USA) with excita-

tion/emission wavelengths specific for Cy2 (488 nm/520 nm), Cy3 (532 nm/580 nm), and Cy5

(633 nm/670 nm). Images were analyzed using the DeCyder 2D software version 7.0 (GE

Healthcare, USA). The t-test with false discovery rate correction was used for statistical analy-

ses, and α< 0.05 was adopted as the level of significance. Protein spots that showed high abun-

dance in each Leishmania species (p-value < 0.01) were selected for an MS identification. To
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manually remove the selected spots, the DIGE gels were also stained with colloidal CBB G-250

following procedures described previously [22].

Identification of proteins by MS

Spots with differential abundance were manually excised, trypsinized, and desalted using Zip-

Tips (C18 resin; P10, Millipore Corporation, Bedford, MA) as per a previously described [23].

Approximately 0.5 μL of the sample solution was mixed with 0.25 μL of the saturated matrix

solution [10 mg/mL α-cyano-4-hydroxycinnamic acid (Aldrich, Milwaukee, WI) in 50% ace-

tonitrile/0.1% trifluoroacetic acid]. Tryptic peptides were analyzed with a MALDI-ToF-ToF

AB Sciex 5800 (AB Sciex, Foster City, CA) mass spectrometer. MS and MS/MS spectra were

acquired in reflector mode to ensure optimal mass accuracy and peak resolution. Usually up

to 15 most intense ion signals with signal-to-noise ratios above 2 were selected as precursors

for the MS/MS acquisition. During this data-dependent analysis, an exclusion list with com-

mon trypsin autolysis masses and keratin masses was used. External calibration in MS mode

was performed using a mixture of five peptides: des-Arg1- Bradykinin (m/z = 904.468), angio-

tensin I (m/z = 1296.685), Glu1-fibrinopeptide B (m/z = 1570.677), ACTH (18–39 clip) (m/

z = 2465.199), and ACTH (7–38 clip) (m/z = 3657.929). Similarly, tandem mass spectra were

externally calibrated using known fragment ion masses observed in the MS/MS spectrum of

Glu1-fibrinopeptide B.

Peaklists were created using the “peaks to mascot” tool in the Explorer software of the AB

Sciex 5800 mass spectrometer. Common settings were signal-to-noise ratio of 2 and minimum

peak area of 10. Database searches were performed against an in-house created “Leishmania”

(103,645 sequences) database. The following search parameters were used: no restrictions on the

protein molecular weight; tryptic cleavage products allowing two tryptic missed cleavages; vari-

able modifications of cysteine (carbamidomethylation), methionine (oxidation), asparagine and

glutamine (deamidation); and pyroglutamate formation at the N-terminal glutamine of pep-

tides. Decoy analysis revealed a false discovery rate of 0.8% considering the peptide identity. A

second database search against all entries (32,611,672 sequences) of the NCBI-non-redundant

database (www.ncbi.nlm.nih.gov/index.html) revealed nearly the same results and did not show

losses in the sensitivity of protein identification. The mass tolerance for the peptides in the

searches was 0.6 Da for the MS spectra and 0.4 Da for the MS/MS spectra. Peptides were identi-

fied when the scoring value exceeded the identity or the extensive homology threshold value cal-

culated by the MASCOT (p< 0.05).

Bioinformatics analysis

To determine the differences among the global protein profiles of the three Leishmania species

and to analyze the quality of the replicates, the principal component analysis (PCA) was per-

formed using the prcomp package from the R platform [24]. A heatmap was also generated

using the gplots and heatmap2 package implemented in the R platform for detecting the differ-

ences in protein profiles of the three species. For this, the fold change of the proteins with a

differential abundance was initially calculated for all species. The comparison was performed

using the ratio of the values of two species of Leishmania with respect to the third species,

named denominator. The fold changes were normalized using the Z score methodology [25].

To correct any redundancy of the annotations, the BLASTp tool (https://blast.ncbi.nlm.nih.

gov/Blast.cgi) was used to locate the similarity regions between the experimental and the

deposited sequences in the database. The statistical significance of the comparisons was calcu-

lated, considering the results of coverage higher than 95% and identity higher than 95% as sig-

nificant. After that, the correct protein NCBI ID list was obtained, and we used this list for our
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study. In addition, ID list from other databases such as the Uniprot and the TriTrypDB [26]

was also used whenever necessary.

To evaluate the potential relationships between the differentially abundant proteins and the

biological processes of the parasites, the protein-protein interaction (PPI) networks were pre-

dicted by input of the protein ID number in the STRING database version 11.0 (www.string-

db.org) [27]. In Basic Settings, a cut-off score of 0.4 was used to identify interaction and the

“Textmining” interaction source was deactivated. In addition, the “maximum number of inter-

actors to show” was adjusted to “no more than 10 interactors”. The predicted networks were

imported, edited, and analyzed in the program Cytoscape version 3.3.4 [28].

As STRING does not have a complete L. amazonensis and L. braziliensis database, another

BLASTp was performed to convert the original ID to a similar/close species ID. The L. amazo-
nensis ID proteins were converted to L. major, while L. braziliensis ID proteins were converted

to L. panamensis. These conversions were performed only for submission to the STRING data-

base; BLASTp was considered only for those proteins that showed� 95% similarity

and� 95% coverage.

The Gene ontology (GO) [29] functional enrichment analysis was performed using the Tri-

TrypDB (http://tritrypdb.org/tritrypdb/). The parameters for ontology analysis were biological

processes selected; evidence code was computed and curated; the GO slim terms were limited

and the p-value cutoff was 0.05. The redundant GO terms were summarized in clusters using

the REVIGO tool (http://revigo.irb.hr/) [30].

Western blotting

For fractionation of 30 μg of the promastigote protein extract from each Leishmania species at

the logarithmic phase, SDS-PAGE 12% gel was performed. The protein bands were transferred

onto nitrocellulose membranes (Hybond, Amershan, UK) in a trans-blot semidry transfer unit

(GE Healthcare) by applying a current of 1.6 mA/cm2 for 2 h. The membranes were rinsed with

PBS–Tween 0.1% and incubated with blocking buffer (5% low-fat milk powder in PBS–Tween

0.1%) at 4˚C for 1 h. The transblotted proteins were probed overnight with a rabbit polyclonal

anti-arginase antibody. Then, the membrane was washed with PBS–Tween 0.5% for 5 min

thrice, and incubated with horseradish peroxidase (HRP)–conjugated secondary antibodies

(1:1000 diluted). Specific binding was revealed with a western blotting detection ECL system

(Amersham, UK) and exposed to LAS 500 (GE Healthcare, Life Sciences). The band intensities

were quantified using the ImageJ 1.41 software (NIH, USA).

The gel loading control was determined by the number of parasites subjected to protein

extraction, dosage of the protein extract, and application of the same amount of proteins in

each well, and also by the quantification of the SDS-PAGE bands stained by Coomassie Bril-

liant Blue G250 [31].

Arginase activity

Arginase activity was measured using 108 logarithmic phase-promastigotes of each Leishmania
species. Arginase activity was determined by measuring the conversion of L-arginine to L-orni-

thine and urea [31–34]. Promastigotes were lysed by gently shaking in 50 μL of 0.1% Triton X-

100 for 30 min at room temperature. Then, 50 μL of 10 mM MnCl2 and 50 μL of 50 mM Tris-

HCl pH 7.5 were added, followed by incubation at 55˚C for 10 min. After that, 50 μL of the

supernatant was mixed with 50 μL of 0.5 mM L-arginine pH 9.7 and incubated at 37˚C for 1 h.

Finally, the reaction was stopped with 400 μL of the stop solution containing H2SO4 (96%),

H3PO4 (85%), and H2O in the raio of 1:3:7 (v/v/v). Then, 20 μL of α-isonitrosopropiophenone

(ISPF, Sigma) dissolved in 100% ethanol were added and the mixture was warmed to 95˚C for
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45 min to determine the concentration of urea. Two fold serial dilutions of 1 mg/mL urea solu-

tion were employed for standard curve construction. Urea concentration was monitored at

540 nm using a spectrophotometer (Multiskan GO, Thermo Scientific), and the arginase activ-

ity unit was defined as the amount of enzyme that catalyzed the formation of 1 μmol/min of

urea. These experiments were performed twice in triplicate.

Statistical analyses were performed using GraphPad Prism version 5.00 for Windows

(GraphPad Software, San Diego, CA, USA). Data have been represented as mean of the group.

Comparisons between different groups were made using one-way ANOVA followed by the

Bonferroni’s test and p< 0.05 was considered significant.

Results

DIGE

The protein extracts from L. amazonensis, L. braziliensis, and L. infantum were used for DIGE

analysis. The spot profiles obtained were highly reproducible (coefficient of variation� 10%)

in terms of the total number of spots and their relative positions and intensities. In L. amazo-
nensis, DIGE revealed 139 diferentially intense spots out of a total of 1154 spots (12.0%), of

which 102 spots (73.4%) showed higher intensity than that in L. braziliensis and 98 (70.5%)

showed higher intensity than that in L. infantum (Fig 1). In L. braziliensis, 95 out of the 1095

(8.7%) spots showed higher intensity as compared to the other two species, of which 83

(87.4%) were more intense than those in L. amazonensis and 61 (64.2%) were more intense

those that in L. infantum (Fig 2). In L. infantum, 104 out of the 1216 spots (8.5%) showed

higher intensity, of which 85 (81.7%) were more intense than those in L. amazonensis and 68

(65.4%) were more intense than those in L. braziliensis (Fig 3). All spots that showed higher

intensity in each species in comparison with the other two species were selected for an MS

Fig 1. 2D DIGE– 12% SDS-PAGE using IPG strips (18 cm, pH 4–7) of protein extracts from L. amazonensis. Note the spots showing higher

intensity in L. amazonensis compared to those in L. braziliensis (A) and L. infantum (B). The numbers correspond to the proteins identified in S1

Table. Molecular weights (MW) have been expressed in kDa.

https://doi.org/10.1371/journal.pone.0240612.g001
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analysis. The selected spots and proteins identified by MS have been listed in S1 Table. The

peptide sequences were deposited at http://www.peptideatlas.org/PASS/PASS01523.

Heatmaps and PCA

Heatmaps were constructed to reveal the overall difference in protein levels among different

Leishmania species, considering the fold change of each protein in the compared species in

Fig 2. 2D DIGE– 12% SDS-PAGE using IPG strips (18 cm, pH 4–7) of protein extracts from L. braziliensis. Note the spots showing higher intensity

in L. braziliensis compared to those in L. amazonensis (A) and L. infantum (B). The numbers correspond to the proteins identified in S1 Table.

Molecular weights (MW) have been expressed in kDa.

https://doi.org/10.1371/journal.pone.0240612.g002

Fig 3. 2D DIGE– 12% SDS-PAGE, IPG strips (18 cm, pH 4–7) of protein extracts from L. infantum. Note the spots showing

higher intensity in L. infantum compared to those in L. amazonensis (A) and L. braziliensis (B). The numbers correspond to the

proteins identified in S1 Table. Molecular weights (MW) have been expressed in kDa.

https://doi.org/10.1371/journal.pone.0240612.g003
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relation with the absent species used for the normalization of data. Heatmaps revealed the dif-

ferences in protein abundance between L. amazonensis and L. braziliensis (Fig 4A), L. amazo-
nensis and L. infantum (Fig 4B), and L. braziliensis and L. infantum (Fig 4C). Based on the

color intensities, the difference in protein abundance between L. braziliensis and L. infantum
was high, whereas the difference in protein abundance between L. amazonensis and L. infan-
tum was low. Moreover, PCA showed that L. amazonensis and L. infantum were closer to each

other, whereas both were more distant from L. braziliensis; and among the three, L. amazonen-
sis occupied a central position (Fig 5).

Bioinformatics analysis

One of the limitations of the gel proteomic approach is the overlapping of proteins at a spot,

which may lead to an identification of more than one protein per spot. This will prevent identi-

fication of the differentially abundant proteins. Therefore, in the present work, all spots con-

taining more than one protein were eliminated from subsequent analyses. In L. amazonensis,
43 out of the 115 spots contained more than one protein, therefore, 72 proteins were consid-

ered for analysis; in L. braziliensis, 25 out of the 77 spots contained more than one protein,

therefore, 52 proteins were considered; and in L. infantum, 20 out of the 71 spots contained

more than one protein, therefore, 51 proteins were considered for analysis. The proteins con-

sidered for bioinformatics analysis have been listed in S2 Table.

Protein-protein interactions. Protein-protein interaction networks were constructed to

evaluate the biological processes associated with the differentially abundant proteins in each

species, considering that only annotation does not indicate all the metabolic and signaling

pathways in which a protein can participate. Prediction of the interaction networks among

the most abundant proteins in L. amazonensis (Fig 6A), L. braziliensis (Fig 6B), and L. infan-
tum (Fig 6C) revealed that many of these proteins interacted with each other, suggesting that

despite the similarity of the genome sequence, specific metabolic or signaling pathways

could be differentially regulated at the protein level. The interaction networks represented

an enriched subset of differentially abundant proteins from networks of Leishmania species

previously constructed based on the literature data and prediction available in STRING. Pro-

teins have been represented by circles, and the possibility of physical interactions between

two proteins has been represented by an arrow connecting two circles; circles representing

differentially abundant proteins have been filled with green color. The prominent proteins

included the heat shock proteins and the protein network involved in oxide reduction pro-

cess in L. amazonensis, the protein network of ribosomes in L. braziliensis, and the proteins

involved in energy metabolism in L. infantum (Fig 6A, 6B and 6C).

Enrichment analysis. As described above, in L. amazonensis sample were enriched 72

proteins according to GO anrichment analysis, in the same way, in L. braziliensis were 52 pro-

teins, and in L. infantum were 51 proteins (S2 Table). Six functional GO categories of biological

processes were enriched in the protein set identified for each species studied: small molecule

metabolic process, catabolic process, homeostatic process, protein folding, generation of pre-

cursor metabolites and energy, and nucleobase-containing compound catabolic process, the

last two categories were enriched in L. braziliensis and L. infantum but not in L. amazonensis.
The differentially abundant proteins associated with each category of enriched biological

processes have been described in Table 1 (L. amazonensis), Table 2 (L. braziliensis), and

Table 3 (L. infantum). It was observed that 14 proteins in L. amazonensis and L. infantum,

and 11 proteins in L. braziliensis represented such categories. For the three Leishmania spe-

cies, a total of 27 non-redundant proteins were enriched and three of them
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Fig 4. A. Heatmap of the proteins differentially abundant between L. amazonensis (La) and L. braziliensis (Lb), using

the fold change of L. infatum as a denominator. B. Heatmap of the proteins differentially abundant between L.

amazonensis (La) and L. infantum (Li) using the fold change of L. braziliensis as a denominator. C. Heatmap of the

proteins differentially abundant between L. braziliensis (Lb) and L. infantum (Li), using the fold change of L.

amazonensis as a denominator.

https://doi.org/10.1371/journal.pone.0240612.g004

PLOS ONE Study of the differentially abundant proteins among Leishmania amazonensis, L. braziliensis, and L. infantum

PLOS ONE | https://doi.org/10.1371/journal.pone.0240612 October 15, 2020 9 / 22

https://doi.org/10.1371/journal.pone.0240612.g004
https://doi.org/10.1371/journal.pone.0240612


(2,3-bisphosphoglycerate-independent phosphoglycerate mutase, tryparedoxin1, and eno-

lase), due to their diversity of function, were classified into more than one category.

Noteworthy, although spots were selected based on the difference in their intensities in

the gels of each species, only 55.5% (15 out of the 27 proteins) were unique, whereas 44.4%

(12 out of the 27 proteins) were present in two or more species. This overlap occurred as a

result of poin isoeletric (PI) and/or molecular weight (MW) variations of the selected spots

containing the protein and, consequently, of the proteins as well. For example, the trypare-

doxin protein, identified in the three investigated species, has a theoretical MW of approxi-

mately 16.5 kDa and a theoretical PI of 5.2. However, in L. amazonensis it was identified in

spot #104 with 6.01 kDa MW and 5.6 PI; in L. braziliensis, it was identified in spot #254 with

16.3 kDa MW and 6.5 PI and in spot #291 with 8.2 kDa MW 5.4 PI; and in L. infantum, it

was identified in spot #383 with 8.3 kDa MW and 5.5 PI. For proteins that presented differ-

ent experimental and theoretical MW and PI, the functions could not be reliably discussed

based on the databases because these proteins had undergone alterations, probably post-

transcriptional alterations, which altered their functions. Notably, all proteins identified in

more than one species showed differences between theoretical and experimental MW and/or

PI, and were disregarded for discussion of their functions.

Proteins unique to each species and having experimental MW and PI similar to the theoretical

ones were considered for discussion. We are calling "unique" proteins that were more abundant

in only one of the species studied, we know that they are common proteins in this genus, and

therefore, are not exclusive to any species. We identified eight such proteins. For L. amazonensis:
arginase, ATP synthase subunit beta mitochondrial, GDP-mannose pyrophosphorylase, HSP-70

related protein 1 mitochondrial precursor, proteasome alpha 1 subunit, proteasome alpha 3 sub-

unit, trypanothione reductase, and UDP-glucose pyrophosphate; five proteins for L. braziliensis:
enolase, peroxiredoxin, proteasome alpha 7 subunit, tryparedoxin1, and vacuolar proton pump

subunit B; and five proteins for L. infantum: inosine adenosine guanosine nucleosidehydrolase,

Fig 5. PCA analysis showing the approximation of L. infantum and L. amazonensis, and the distance from the

first one in relation to L. braziliensis. The analyses considered the number and level of proteins with differences in

the abundance between the species. Components 1 and 2 together represented 97.23% of the data variance.

https://doi.org/10.1371/journal.pone.0240612.g005
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Fig 6. A. The interaction networks constructed on the basis of literature data and prediction available in the STRING

representing an enriched subset of the differentially abundant proteins in L. amazonensis relative to L. braziliensis and

L. infantum. The circles filled with green color represent the protein network involved in oxide reduction process. B.

The interaction networks constructed on the basis of literature data and prediction available in the STRING

representing an enriched subset of the differentially abundant proteins in L. braziliensis relative to L. amazonensis and
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peroxidoxin, proteasome alpha 2 subunit, succinyl-CoA ligase [GDP-forming] beta-chain, and

transaldolase. Almost all these proteins were also found in PPI networks, suggesting a prominent

role in regulating protein-protein interactions and consequently biological processes.

Differential arginase abundance and activity

Proteomic analysis revealed arginase to be one of the differentially abundant proteins among

the three species, with higher abundance in L. amazonensis. To confirm this, we performed

immunoblotting using an anti-arginase antibody which revealed a signal at the same molecular

L. infantum. The circles filled with green color represent the protein network of ribosomes. C. The interaction

networks constructed with on the basis of literature data and prediction available in the STRING representing an

enriched subset of the differentially abundant proteins in L. infantum relative to L. amazonensis and L. braziliensis. The

circles filled with green color represent the protein network involved in energy metabolism.

https://doi.org/10.1371/journal.pone.0240612.g006

Table 1. Proteins associated with biological processes enriched in L. amazonensis.

Biological Process Proteins Gene ID Spots# MW pI

Theoric Exp Theoric Exp

Small molecule metabolic process ATP synthase subunit beta, mitochondrial, putative LmjF.25.1170 18 56,349 62,01 5.14 5.1

34 55,65 5.1

UDP-glucose pyrophosphorylase LmjF.18.0990 17 54,536 54,3 5.58 5.8

GDP-mannose pyrophosphorylase LmjF.23.0110 126 41,770 41,7 5.66 5.7

Phosphoenolpyruvate carboxykinase [ATP], glycosomal LmjF.27.1805 66 58,194 30,05 8.23 6.1

139 28,42 5.5

Arginase LmjF.35.1480 51 36,132 36,12 6.32 6.3

Phosphomannomutase, putative LmjF.36.1960 88 28,101 20,03 5.18 5.5

100 18,10 5.2

2,3-bisphosphoglycerate-independent phosphoglycerate mutase LmjF.36.6650 80 60,713 35,23 5.26 5.9

Catabolic process Proteasome alpha 3 subunit, putative LmjF.14.0310 76 32,139 32,10 5.32 5.4

Proteasome beta 3 subunit, putative LmjF.28.0110 143 22,463 22,01 5.32 5.8

Tryparedoxin 1, putative LmjF.29.1160 104 16,544 6,01 5.02 5.6

Proteasome alpha 1 subunit, putative LmjF.35.4850 92 27,223 27,4 6.83 6.2

2,3-bisphosphoglycerate-independent phosphoglycerate mutase LmjF.36.6650 80 60,713 35,2 5.21 5.9

Homeostatic process Protein disulfide isomerase LmjF.36.6940 33 52,377 52,4 5.42 5.1

Trypanothione reductase LmjF.05.0350 24 53,144 53,03 7.79 6.2

120 60,01 6.3

Peroxidoxin LmjF.23.0040 97 25,346 15,1 6.43 5.7

99 15,2 5.5

142 22,03 5.8

Tryparedoxin 1, putative LmjF.29.1160 104 16,544 8,2 5.02 5.6

Protein folding Heat shock 70-related protein 1, mitochondrial precursor, putative LmjF.30.2470 11 71,877 70,12 5.68 5.9

13 70,02 5.9

15 70,00 6.0

111 70,01 5.6

Heat shock protein 83 LmjF.33.0318 35 80,406 38,02 5.09 5.0

40 38,02 5.1

123 38,04 5.3

Proteins are identified by their ID number and spots # (Fig 1) in which were found; and are characterized by the theoretical and experimental MW (Molecular Weight)

and pI (Isoeletric Point).

https://doi.org/10.1371/journal.pone.0240612.t001
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mass for all species; the signals were stronger in L. amazonensis than in other species (Fig 7A).

The immunoblotting semiquantitative data as obtained by the ImageJ software has been

shown in Fig 7B, which confirmed the visual evaluation of the immunoblotting signals in Fig

7A. The ratio of the signals between the strains was 2.78, 1.04, and 1.0 arbitrary units for L.

amazonensis, L. braziliensis, and L. infantum, respectively. These data indicate that arginase is

upregulated in L. amazonensis, corroborating the results of our proteomic analysis.

Next, we evaluated the arginase activity in L. amazonensis, L. braziliensis, and L. infantum
using logarithmic phase-promastigotes. As shown in Fig 7C, arginase activity in L. amazonen-
sis was three fold higher than that in other species (p< 0.05). The average activity values were

657 U, 193.8 U, and 139 U for L. amazonensis, L. braziliensis, and L. infantum, respectively.

Discussion

Using integrated genomic and proteomic analyses, it is possible to identify the genes and pro-

teins that can function as biomarkers for diagnosis of leishmaniasis, identify potential targets

Table 2. Proteins associated with biological processes enriched in L. braziliensis.

Biological Process Proteins Gene ID Spots# MW pI
Theoric Exp Theoric Exp

Small molecule metabolic process Enolase LbrM.14.1330 259 46,107 46,1 5.71 6.24

282 6.43

Vacuolar proton pump subunit B, putative LbrM.28.2630 216 55,530 55,5 5.29 5.3

2,3-bisphosphoglycerate-independent

phosphoglycerate mutase

LbrM.35.7010 266 60,959 60,9 5.54 5.7

Catabolic process Enolase LbrM.14.1330 259 46,107 46,1 5.71 6.24

282 6.43

Proteasome alpha 3 subunit, putative LbrM.14.0310 244 32,181 28,5 5.46 5.6

Proteasome beta 3 subunit, putative LbrM.28.0120 247 22,556 22,5 5.09 5.2

Tryparedoxin 1a, putative LbrM.29.1230 254 16,305 16,3 5.32 6.5

291 8,2 5.4

Proteasome alpha 7 subunit, putative LbrM.27.0200 286 25,475 25,3 5.98 6.3

2,3-bisphosphoglycerate-independent

phosphoglycerate mutase

LbrM.35.7010 266 60,959 60,8 5.54 5.8

Homeostatic process Peroxiredoxin PRX1A LbrM.15.1080 249 22,503 22,01 5.81 5.5

274 22,51

Tryparedoxin 1a, putative LbrM.29.1230 254 16,305 16,3 5.32 6.5

291 8,2 5.4

Protein folding Heat shock 70-related protein 1,

mitochondrial precursor, putative

LbrM.30.2420 200 70,529 140,9 5.9 5.5

201 140,9 5.55

209 90,5 6.0

210 70,5 5.9

T-complex protein 1, beta subunit, putative LbrM.27.1370 222 57,739 57,7 5.62 6.0

Chaperonin HSP60, mitochondrial

precursor

LbrM.35.2250 263 59,513 70,02 5.34 5.3

264 62,1 5.32

Generation of metabolites and energy precursor AND

Nucleobase-containing compound catabolic process

Enolase LbrM.14.1330 259 46,107 46,1 5.71 6.24

282 6.43

2,3-bisphosphoglycerate-independent

phosphoglycerate mutase

LbrM.35.7010 266 60,959 60,8 5.54 5.8

Proteins are identified by their ID number and spots# (Fig 2) in which were found; and are characterized by the theoretical and experimental MW (Molecular Weight)

and pI (Isoeletric Point).

https://doi.org/10.1371/journal.pone.0240612.t002
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for treatment, study the establishment and progression of the disease, as well as enhance the

understanding of parasite biology.

The main objective of this study was to contribute to the knowledge about the differences

among Leishmania species by identifying the differentially abundant proteins in them. In our

Table 3. Proteins associated with biological processes enriched in L. infantum.

Biological Process Proteins Gene ID Spots# MW pI

Theoric Exp Theoric Exp
Small molecule metabolic process Enolase LINF_140018000 327 46,037 50,05 5.33 5.7

Transaldolase–putative LINF_160013000 406 36,972 36,9 5.55 6.0

ATP synthase subunit beta—mitochondrial—putative LINF_250018000 405 56,293 45,2 5.14 6.1

Inosine-adenosine-guanosine-nucleosidehydrolase—

putative

LINF_290035800 341 36,532 36,5 4.86 4.8

Phosphomannomutase—putative LINF_360026300 410 28,142 21,02 5.37 5.6

Succinyl-CoA ligase [GDP-forming] beta-chain—

putative

LINF_360037500 364 44,070 26,2 6.77 5.3

408 44,0 6.7

2 -3-bisphosphoglycerate-independent phosphoglycerate

mutase

LINF_360078300 310 60,760 60,6 5.26 5.3

Catabolic process Enolase LINF_140018000 327 46,037 50,05 5.33 5.7

Proteasome alpha 2 subunit—putative LINF_210026800 373 25,073 25,1 5.43 5.4

Tryparedoxin 1 –putative LINF_290017500 383 16,697 10,02 5.2 5.5

2 -3-bisphosphoglycerate-independent phosphoglycerate

mutase

LINF_360078300 310 60,760 60,6 5.26 5.3

Homeostatic process Peroxidoxin LINF_230005400 375 25,370 25,3 6.43 5.5

413 25,3 5.7

Tryparedoxin 1 –putative LINF_290017500 383 16,697 8,3 5.2 5.5

protein disulfide isomerase 2 LINF_360081500 322 52,344 52,3 5.42 5.5

328 5.6

Protein folding Heat shock 70-related protein 1—mitochondrial

precursor—putative

LINF_300030100 306 71,658 142,1 5.76 5.68

313 80,02 5.5.6

314 80,02 5.58

385 10,23 6.4

Chaperonin HSP60—mitochondrial precursor LINF_360027200 308 59,358 140, 5.33 5.7

311 80,02 5.5

312 80,03 5.6

318 70,3 5.2

317 75,03 5.3

T-complex protein 1—theta subunit—putative LINF_360081100 316 57,739 57,7 5.62 5.3

Generation of metabolites and energy

precursor

Enolase LINF_140018000 327 46,037 50,05 5.33 5.7

Rieske iron-sulfur protein—mitochondrial precursor—

putative

LINF_350020400 349 33,726 37,9 5.91 5.6

2 -3-bisphosphoglycerate-independent phosphoglycerate

mutase

LINF_360078300 310 60,760 60,6 5.26 5.3

Succinyl-CoA ligase [GDP-forming] beta-chain—

putative

LINF_360037500 364 44,070 26,2 6.77 5.3

408 44,0 6.7

Nucleobase-containing compound

catabolic process

Enolase LINF_140018000 327 46,037 50,05 5.33 5.7

2 -3-bisphosphoglycerate-independent phosphoglycerate

mutase

LINF_360078300 310 60,760 60,6 5.26 5.3

Proteins are identified by their ID number and spots# (Fig 3) in which were found; and are characterized by the theoretical and experimental MW (Molecular Weight)

and pI (Isoeletric Point).

https://doi.org/10.1371/journal.pone.0240612.t003
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study, we used only one strain of each investigated species and we suggest that our data may be

representative of each species; however, differences can also occur between strains of the same

species. For example, PCA, which represents the global difference between the samples, shows

that L. amazonensis and L. infantum are closer to each other and distant from L. braziliensis;
this finding is in agreement with the phylogenetics of these species [35]. In addition, L. amazo-
nensis occupies the central position in PCA, corroborating the fact that it causes a cutaneous

lesihmaniasis like that caused by L. braziliensis and has visceral potential similar to that of L.

infantum.

One limitation of the 2-DE proteomic approach was protein overlapping at the same spot,

which led to an uncertainty regarding the protein of interest; therefore, spots containing more

than one protein were excluded from the study. The total number of spots identified was ini-

tially 115 for L. amazonensis, 77 for L. braziliensis, and 71 for L. infantum. However, after

excluding spots that contained more than one protein, the numbers of spots were 72, 52, and

51 for L. amazonensis, L. braziliensis, and L. infantum, respectively. In addition, we also

observed that the mass and charge of several proteins were different from those predicted by

the leishmanial genome, which has been reported to be a common feature of most proteomic

analyses, probably reflecting the effect of protein maturation events including co- or post-

translational modifications [36]. The database information was based on native proteins with

theoretical MW and PI values, hence, the functions of these modified proteins could not be

Fig 7. Validation of the proteomic analysis and arginase activity in Leishmania promastigotes. (A) Comparative western

blot of L. amazonensis (L. a), L. braziliensis (L. b), and L. infantum (L. i) using anti-arginase antibody and the control. (B)

Intensity measurement of the bands, in arbitrary units, by the ImageJ software (Wayne Rasband, NIH, USA, http://rsb.info.

nih.gov/ij/). (C) Arginase activity in the logarithmic phase-promastigotes. These experiments were performed twice in

triplicate. The arginase activity unit (U) was defined as the amount of enzyme that catalyzed the formation of 1 μmol/min of

urea. �corresponds to p< 0.05 by one-way ANOVA.

https://doi.org/10.1371/journal.pone.0240612.g007
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deduced from the databases. Further studies on these modifications will be required to under-

stand the function of these proteins.

In the present study, we focused on the identification of the differentially abundant proteins

among three Leishmania species. We began with the identification of over 100 proteins selected

by DIGE; however, after enrichment analysis and exclusion of proteins with experimental MW

and PI different from the theoretical values, we narrowed down to 18 proteins that could be

involved in biological differences in these species. The prominent proteins included heat shock

proteins and the protein network involved in oxide reduction process in L. amazonensis, the

protein network of ribosomes in L. braziliensis, and the proteins involved in energy metabolism

in L. infantum. According to the PPI network results, enrichment categories, and exclusive pro-

teins analysis, the important proteins were arginase, HSPs, and trypanothione reductase in L.

amazonensis; enolase, peroxidoxin, and tryparedoxin 1 in L. braziliensis; and succinyl-CoA

ligase [GDP -forming] beta-chain and transaldolase in L. infantum.

For validation of the proteomic data, we evaluated the difference in arginase abundance

among all three species by western blotting. It was observed that arginase was 2.6 times more

abundant and showed higher activity in L. amazonensis than that in L. braziliensis and L. infan-
tum, corroborating the results of proteomic analysis. Some researches have reported increased

arginine metabolism associated with an increased arginase activity, leading to an increase in the

availability of polyamines which favors the replication of the parasites [37]. The role of polyamines

in parasite replication was studied using an arginase-deficient L. major; these parasites required

nutritional supply of polyamines or L-eritin for their growth [38]. Polyamines are involved in the

regulation of macrophage oxidative response through competition of arginine with iNOS. This

competition may favor the progression of the disease and lead to a high multiplication rate of the

parasites in macrophages infected by L. amazonensis. In addition, arginine provides nutrition to

intracellular parasites and is also involved in the parasite’s replication in insects and mammals

[37, 39–41]. L. amazonensis promastigotes showed increased arginase activity than those exhibited

by amastigotes [42], which corroborates the hypothesis called pre-adaptation, supported by other

research [43–45], which states that this preparation is essential for survival of the parasite in the

host cell phagolysosome. Arginase is essential for infectivity, proliferation, and virulence of the

parasite [46, 47], and the finding that it is increased in L. amazonensis relative to L. braziliensis
and L. infantum will help us understand the reason of considerable increase in the counts of the

parasite in L. amazonensis infections as compared to the infections by the other two species.

HSPs participate in a large number of biochemical and immunological pathways. They

behave as chaperones, as immunodominant antigens, and are also implicated in the antigen-

processing pathway [48]. When a parasite enters a mammalian host, it encounters an environ-

ment with a higher temperature, which leads to the synthesis of proteins responsible for cellu-

lar response against high temperatures and other stresses, stimulating the differentiation to an

intracellular form. In this context, HSP70 plays a key role and its absence leads to a decreased

replication and virulence of the parasite [49]. Leishmania secretes virulence factors into the

host cytoplasm, where they interact with host signaling molecules to subvert the host immune

responses [50]. HSP70 and enolase have been identified among the proteins present in the

exoproteome of L. donovani, L. mexicana, and L. braziliensis, and are potential targets for the

development of new antileishmanial drugs and/or new vaccines for leishmaniasis [51]. The

presence of HSPs in exosomes most likely ensures the correct folding of exosomal proteins,

consequently functioning as virulence factors. We suggest that the increased abundance of

HSP70 in L. amazonensis may corroborate its ability to establish an infection at several sites

including the skin and the viscera.

According to the existing literature, trypanothione reductase (TR) activity has been directly

associated with the infectivity of L. amazonensis. Castro Pinto et al., 2004 evaluated TR activity
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based on the consumption of NADPH (nicotinamide adenine dinucleotide phosphate hydro-

gen); a higher consumption of NADPH and consequently higher enzyme activity was observed

in infective promastigotes as compared to those in the non-infective ones [52]. Moreover,

when compared with promastigotes, amastigotes showed an even higher enzymatic activity

than that in the flagellate forms. In most organisms, the intracellular redox environment is

maintained by glutathione reductase, however, in trypanosomatids, this enzyme is absent and

TR is responsible for maintaining trypanothione in its reduced form, protecting the parasite

from reactive oxygen species produced by the host [53–55].

Enolase (2-phospho-D-glycerate hydrolase, EC 4.2.1.11) is known to catalyse the reversible

dehydration of D-2-phosphoglycerate (2PGA) to phosphoenolpyruvate (PEP) in glycolysis as

well as gluconeogenesis, the two metabolic pathways vital for cellular function. This enzyme

is generally highly conserved, with similar overall fold and identical catalytic residues in all

organisms. Enolase is found in the secretome as well as in association with the surface of Leish-
mania spp., where it probably functions as a plasminogen receptor, playing a role in the para-

site’s invasiveness and virulence, a function possibly present in other trypanosomatids as well.

This location and possible function of enolase offer additional perspectives for both drug dis-

covery and vaccination [56]. In fact, a recent study demonstrated the prophylactic effect of L.

donovani enolase on L. donovani infected hamsters [57]. Enolase is also upregulated in pro-

mastigotes as compared to that in the amastigotes, at least in L. major, L. infantum, L. dono-
vani, and L. pifanoi [58]. Thus, enolase has multiple functions and locations, making it very

difficult to understand, or even speculate, the role of its increased abundance in L. braziliensis.
Proteins such as peroxidoxin and tryparedoxin peroxidase (TryP) interact with each other,

and both are associated with virulence [59] and drug resistance of Leishmania [60, 61]. Peroxi-

doxins comprise a family of antioxidants that have been recently discovered in numerous pro-

karyotes and eukaryotes and play key roles in defense against oxidative stress. Both

peroxidoxin and TryP are critical to the survival of Leishmania during oxidative stress gener-

ated by macrophages and drugs [62]. TryP participates in defense against oxidative stress by

catabolism of hydrogen peroxide into water molecules [63]. In addition to cellular detoxifica-

tion of reactive oxygen species, TryP has been involved in other processes such as signaling

cellular proliferation and differentiation [64]. The complex expression pattern of TryP variants

found in L. amazonensis promastigotes suggests that TryP is especially important throughout

the growth and differentiation process [59]. Our results suggest that L. braziliensis may be

more effective in this redox pathway than those observed in L. amazonensis and L. infantum.

However, this hypothesis needs to be tested and it is also necessary to investigate the effect of

this greater abundance on the biology of this species.

Finally, in L. infantum, several proteins involved in energy metabolism were identified to

be more abundant than in the other two species, including the succinyl-CoA ligase [GDP-

forming] beta-chain and transaldolase (which were exclusively abundant in this species). In

Leishmania, very few studies have been undertaken to evaluate the role of these enzymes, and

it was shown that L. donovani overexpressing transaldolase (TAL-OE) were less susceptible

to oxidative stress and more resistant to sodium antimony gluconate (SAG), amphotericin B

(AmB), and miltefosine because of increased availability of NADPH which maintained the

intracellular redox balance perturbed by the cited drugs. Moreover, the authors showed that

parasites TAL-OE prevented an oxidative stress-induced protein carbonylation and lipid per-

oxidation [65]. The succinyl-CoA ligase [GDP-forming] beta-chain participates in the tricar-

boxylic acid cycle, a nearly universal metabolic pathway in which the acetyl group of acetyl

coenzyme A is effectively oxidized to two molecules of CO2 and four pairs of electrons are

transferred to coenzymes. This enzyme is downregulated in the mid-logarithmic phase L. pifa-
noi promastigotes [58], but is constitutively expressed in L. amazonensis promastigotes [42].
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An increase in the abundance of this enzyme was observed in the potassium antimonyl tartrate

(SbIII)-susceptible lines of L. braziliensis [61], whereas the SbIII-resistant line of L. infantum
showed a reduction in this protein [60]. Taken together, the proteins abundant in L. infantum
favor an enhanced glycolysis, which provides energy for their proliferation and helps reduce

oxidative stress. However, the role of these proteins in the greater chronicity of L. infantum
infection remains unknown.

The difference in protein abundance among different Leishmania species is a broad field of

study and can reveal several unexplored aspects of Leishmania biology. We believe that our

study has revealed certain potential targets for diagnosis and treatment of leishmaniasis. How-

ever, additional investigations must be performed to understand several aspects of Leishmania
species and clinical forms.
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