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ABSTRACT
This study aimed to screen key biomarkers and investigate immune infiltration in pulmonary 
arterial hypertension (PAH) based on integrated bioinformatics analysis. The Gene Expression 
Omnibus (GEO) database was used to download three mRNA expression profiles comprising 
91 PAH lung specimens and 49 normal lung specimens. Three mRNA expression datasets were 
combined, and differentially expressed genes (DEGs) were obtained. Gene ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses and the protein-protein interac-
tion (PPI) network of DEGs were performed using the STRING and DAVID databases, respec-
tively. The diagnostic value of hub gene expression in PAH was also analyzed. Finally, the 
infiltration of immune cells in PAH was analyzed using the CIBERSORT algorithm. Total 182 
DEGs (117 upregulated and 65 downregulated) were identified, and 15 hub genes were 
screened. These 15 hub genes were significantly associated with immune system functions 
such as myeloid leukocyte migration, neutrophil migration, cell chemotaxis, Toll-like receptor 
signaling pathway, and NF-κB signaling pathway. A 7-gene-based model was constructed and 
had a better diagnostic value in identifying PAH tissues compared with normal controls. The 
immune infiltration profiles of the PAH and normal control samples were significantly differ-
ent. High proportions of resting NK cells, activated mast cells, monocytes, and neutrophils 
were found in PAH samples, while high proportions of resting T cells CD4 memory and 
Macrophages M1 cell were found in normal control samples. Functional enrichment of DEGs 
and immune infiltration analysis between PAH and normal control samples might help to 
understand the pathogenesis of PAH.
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Research highlights

1. A 7-gene-based model had better diagnostic 
value in identifying PAH tissues.

2. The immune infiltration analysis might help 
understand the pathogenesis of PAH.

3. Bioinformatics provides a new perspective for 
the study of pathogenesis of PAH.

1. Introduction

Pulmonary arterial hypertension (PAH) can be 
a separate disease or pathophysiological syndrome 
of abnormally elevated pulmonary artery pressure 

caused by known or unknown reasons, with 
a relatively low survival rate [1,2]. The prevalence 
rate of PAH is 15–50 cases/million people/year, with 
an incidence rate is 5–10 cases/million people [3]. 
Untreated pulmonary hypertension patients had an 
average survival time of about 2.8 years before 
approximately 40 years ago [4]. Just like the diagno-
sis and therapy progression of PAH, its mortality rate 
has greatly improved, although it is still high, with 
a 5-year survival rate of 61.2% for newly diagnosed 
PAH patients [5]. Thus, to further search for clinical 
molecular markers, the pathogenesis and progression 
of PAH is still an important and urgent event that 
could help save more PAH patients.
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Data mining has been used in a variety of geno-
mic analyses, including genomics, transcriptomes, 
and epigenetics. Gene chip technology combined 
with bioinformatics analysis can provide a new 
and effective method to explore the molecular 
mechanisms of various diseases through 
a comprehensive analysis of potential changes in 
gene expression between abnormal and paired 
normal tissues. CIBERSORT is a R/Web-based 
tool that can be applied to deconvolve the gene 
expression profiles of human immune cell sub-
types based on linear support vector regression. 
The CIBERSORT analysis tool can use standar-
dized gene expression data to estimate the propor-
tion of 22 types of immune cell components in 
different samples [6]. It has the advantages of high 
resolution and the ability to simultaneously quan-
tify multiple types of immune cells [6,7]. The 
pathogenesis of PAH is not well understood. 
Although some studies have shown that chronic 
inflammation can cause PAH [8], and there are 
a few studies on gene expression and immune cells 
in the big data related to PAH.

In the present study, we re-analyzed the 
GSE15197, GSE113439, and GSE117261 datasets 
previously reported by Rajkumar et al. [9], Mura 
et al. [10], and Stearman et al. [11]. Three micro-
array mRNA expression datasets were combined, 
and differentially expressed genes (DEGs) were 
obtained. Functional enrichment analyses and 

construction of the protein-protein interaction 
(PPI) network of DEGs were performed using 
the STRING and DAVID databases, respectively. 
The diagnostic value of hub gene expression in 
PAH was also analyzed. Finally, the infiltration of 
immune cells in PAH was analyzed using the 
CIBERSORT algorithm. Figure 1 shows the work-
flow of the study (Figure 1). We intend to use the 
information of PAH patients in the GEO database 
for bioinformatics analysis to identify diagnostic 
markers and target genes for treatment so as to 
reduce the harm caused by invasive diagnostic 
techniques and reduce the side effects caused by 
nonspecific treatments.

2. Materials and methods

2.1 Microarray data acquisition

The Gene Expression Omnibus (GEO) (https:// 
www.ncbi.nlm.nih.gov/geo/) is a database that 
stores chips, second-generation sequencing, and 
high-throughput sequencing data [12,13]. Gene 
expression data submitted by the research institu-
tions were included in the GEO database. Three 
GEO series (GSE15197, GSE113439, and 
GSE117261) were chosen in our study based on 
the following selection criteria: (a) keywords of ‘pul-
monary artery hypertension (PAH)’ or ‘pulmonary 
hypertension (PH)’; (b) inclusion of gene expression
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data of PAH and normal lung tissue samples with 
the same GEO platform; (c) excluding other diseases 
except PAH and normal tissues, such as pulmonary 
fibrosis or interstitial pneumonia; (d) datasets con-
taining a minimum of 10 PAH and normal tissue 
samples and inclusion of > 5000 genes in the GEO 
platform. Three mRNA expression data (GSE15197, 
GSE113439, and GSE117261), after normalization 
and log2 transformation, were obtained from 
GEO. GSE15197 was tested on the GPL6480 plat-
form containing gene expression information from 
18 PAH lung specimens and 13 normal lung speci-
mens. GSE113439 and GSE117261 were both based 
on the GPL6244 platform containing 15 PAH lung 
specimens, 11 normal lung specimens, 58 PAH lung 
specimens, and 25 normal lung specimens, respec-
tively. All the samples came from different indivi-
duals and did not match with each other. Table 1 
shows detailed information on the three mRNA 
expression datasets (Table 1).

2.2 Data processing

After these three microarray expression matrices 
were downloaded, R software (version 3.6.3) was 
used to convert the probe names into gene sym-
bols [14]. The probes were mapped to their respec-
tive gene symbol identifiers based on their probe 
annotation files, and probes annotated to the same 
gene symbol identifier were aggregated by their 
mean value [15,16]. The three datasets were inte-
grated as one, and the ‘sva’ package in R software 
was applied to eliminate batch effects [17].

2.3 Screening of DEGs

The DEGs between PAH lung specimens and nor-
mal lung specimens were screened out via the 
‘limma’ package in R software (version 3.6.3) 
[18]. The threshold of DEGs was set as |log2 fold 
change (FC)| > 0.5, and Padj-value < 0.05 [19,20].

2.4 Functional analysis of DEGs

The DAVID database (https://david.ncifcrf.gov/) is 
a biological information database that integrates 
biological data and analysis tools to provide sys-
tematic and comprehensive annotated biological 
function information for large-scale gene or

Figure 1. The workflow of this study.

Table 1. Details of three GEO datasets.
Dataset Tissue Platform PAH Normal Reference (PMID)

GSE15197 lung GPL6480 18 13 20,081,107
GSE113439 lung GPL6244 15 11 30,963,672
GSE117261 lung GPL6244 58 25 30,562,042

Note: GEO, Gene Expression Omnibus; PAH, Pulmonary arterial 
hypertension 
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protein lists to help users extract biological infor-
mation from them [21,22]. To further explore the 
biological function of DEGs in PAH, functional 
enrichment analyses, including Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment analysis, were per-
formed based on the DAVID database. GO breaks 
down the function of genes into three categories, 
including biological process (BP), cellular compo-
nent (CC), and Molecular Function (MF), and 
based on these three aspects, we will get the gene 
annotation information [23]. KEGG enrichment 
analysis can help researchers understand the sig-
naling pathways that DEGs are involved in [24]. 
Statistical significance was set at P < 0.05.

2.5 Construction of PPI network and module 
analysis

The study of the interaction network between pro-
teins helps to mine core regulatory genes. At pre-
sent, there are many databases of protein 
interactions, among which the Search Tool for 
the Retrieval of Interacting Genes (STRING) data-
base (http://string-db.org/) is the one with the 
highest species coverage and the largest interaction 
information [25]. In this study, a PPI network of 
DEGs was built based on a minimum interaction 
value of >0.4. Next, the PPI network was uploaded 
to Cytoscape software (version 3.7.2) for visualiza-
tion [26]. Then, the Molecular Complex Detection 
(MCODE) plug-in Cytoscape software was applied 
to identify the module in the PPI network with the 
threshold as flow: the degree cutoff was 2, the node 
score cutoff was 0.2, the k-core was 6, and the 
max. depth was100. Further, the GO and KEGG 
analysis were performed for the genes in the mod-
ule of the PPI network via ‘clusterProfiler’ package 
in R software. Statistical significance was set at 
P < 0.05.

2.6 Construction of LASSO model and receiver 
operating characteristic (ROC) curve analysis

The least absolute shrinkage and selection opera-
tor (LASSO) has a strong predictive value and 
low correlation and is applied to select the best 
features for high-dimensional data [27]. To dis-
tinguish PAH from control, the ‘glmnet’ package 

in R software was used to construct LASSO 
model according to the expression profile of 
hub genes and the diagnosis of the 140 samples. 
According to the binary output variable in the 
processed data, we used a binomial distribution 
variable in the LASSO classification as well as the 
lambda value with the smallest average error in 
order to build the model with decent perfor-
mance but the least number of variables. The 
expression levels of the hub genes and the diag-
nosis of the 91 samples were obtained from the 
probe-matched matrix file. The drawing of the 
receiver operating characteristic (ROC) curves 
and the calculation of the area under the curve 
(AUC) were conducted by the ‘ROCR’ package in 
R, and the samples were randomly assigned to 
the training or testing cohort in an approxi-
mately 7:3 ratio. Thus, we investigated the feasi-
bility of the hub genes for prediction using the 
AUC value. An area under the curve (AUC) >0.9 
indicated a good diagnostic value [28–30].

2.7 Immune cell infiltration analysis

The CIBERSORT algorithm was applied to eval-
uate the proportions of 22 subtypes of infiltrating 
immune cells based on the normalized gene 
expression data from 91PAH lung specimens 
and 49 normal lung specimens obtained pre-
viously [6]. CIBERSORT is a deconvolution algo-
rithm that contains gene expression reference 
values from a signature matrix of 547 genes in 
22 types of immune cells [6]. The gene expres-
sion matrix was uploaded to the CIBERSORT 
online website (https://cibersort.stanford.edu), 
and the default signature matrix was set as 
1000 permutations, and the samples with 
P-value < 0.05 were significant [31]. The 
P-value of CIBERSORT reflected the statistical 
significance of the deconvolution results over all 
cell subsets and was used to filter out deconvolu-
tion with less significant fitting accuracy [32]. 
The difference in immune cell infiltration 
between PAH lung specimens and normal lung 
specimens was assessed, and the significant 
immune cells between PAH lung specimens and 
normal lung specimens were screened using the 
Wilcoxon test at P < 0.05.
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2.8 Statistics analysis

Categorical variables were presented as percen-
tages, while normally distributed continuous vari-
ables were presented as the mean ± standard 
deviation (SD). The moderate t-test was used for 
screening DEGs [33]; GO and KEGG annotation 
enrichments were analyzed using Fisher’s exact 
test [34]. Immune cell analysis was performed 
using Wilcoxon’s test. R software (version 3.6.3) 
was used to perform all statistical analyses and 
image visualization.

3. Results

We intend to use the information of PAH patients 
in the GEO database for bioinformatics analysis to 
identify diagnostic markers and target genes for 
treatment so as to reduce the harm caused by 
invasive diagnostic techniques and reduce the 
side effects of nonspecific treatments. We screened 
out the important target genes associated with 
PAH by comparing the differences in gene expres-
sion profiles between lung samples of PAH and 
their normal samples. Total 182 DEGs and 15 hub 
genes were identified, and their functional enrich-
ment analyses were performed. These 15 hub 
genes are involved in multiple immune responses 
and immune cell chemotaxis. Meanwhile, 
a 7-gene-based model was constructed and showed 
that the diagnostic value of seven genes (S100A8, 
CD14, ITGAM, C5, CSF3R, PPBP, and CCL21) in 
distinguishing PAH tissues from normal samples 
were excellent. Furthermore, we applied the 
CIBERSORT algorithm to probe immune cell infil-
tration in PAH. The results showed that the 
immune cell infiltration of PAH samples was sig-
nificantly different from that of the normal 
samples.

3.1 Identification of DEGs in PAH

In our study, 182 DEGs were identified between PAH 
lung specimens and normal lung specimens. Among 
them, 117 were upregulated (log2 FC>0.5) and 65 
were downregulated (log2 FC< −0.5) (Table 2). The 
volcano plot and heatmap of gene expression are 
shown in Figures 2A and 2B.

3.2 Function analysis of DEGs

To explore the function of 182 DEGs in PAH, 
GO analysis of these 182 DEGs was performed 
using the DAVID database (Table S1). The top 
five GO terms are shown in Table 3, and the top 
ten GO terms are shown in Figure3A-3C accord-
ing to the P-value. In BP analysis, DEGs mainly 
participated in neutrophil chemotaxis, inflamma-
tory response, positive regulation of smooth 
muscle cell proliferation, cell chemotaxis, and 
positive regulation of inflammatory response. In 
CC analysis, DEGs significantly participated in 
the extracellular space, extracellular region, cell 
surface, extracellular exosome, and extracellular 
matrix. MF analysis showed that DEGs signifi-
cantly participated in integrin binding, 3ʹ,5ʹ- 
cyclic-AMP phosphodiesterase activity, calcium 
ion binding, heparin-binding, and growth factor 
activity. After uploading the 182 DEGs to the 
DAVID database, KEGG analysis was performed 
to explore the pathways of these 182 DEGs 
(Table S2). The top ten KEGG terms of DEGs 

Table 2. Screening DEGs in PAH by integrated analysis of 
microarray.

DEGs Gene names

Up- 
regulated

LTBP1, HBB, ACE2, SECISBP2L, PDE4D, ABCC9, PDE3A, 
TSHZ2, WIF1, DLG2, ITGB6, PDE7B, FREM1, EPHA4, 
MACC1, MALL, POSTN, IGF1, HIVEP2, N4BP2, ZFX, 
PLCB1, SFRP2, PI15, KLHL4, MACF1, PDE1A, PDE8B, 
ABCG2, ACADL, PREX2, CA1, PLCB4, IQGAP2, XAF1, 
ANKRD36B, FGFR2, INHBA, RGS5, TXLNG, ECM2, 
NT5E, ETV5, RASEF, LRRC36, VPS13A, FGD4, GEM, 
ANKRD36, MXRA5, CFH, ZNF521, CA2, C5, PAMR1, 
BMP6, GFRA1, RSPO3, THY1, PIEZO2, CCL21, DCLK1, 
ANKRD50, ALAS2, GBP5, SLC4A7, OGN, SULF1, 
NR1D2, SYNPO2, RGS1, ASPN, EML4, TFPI2, VCAM1, 
KIT, WEE1, ABCB1, HLTF, ANGPT2, RASGRP1, ITGB3, 
PSD3, CCL5, HMCN1, ITGA2, CCDC80, IL13 RA2, 
EPHA3, FABP4, HBD, CD5L, LRRC17, PHEX, GZMK, 
ENPP2, ESM1, PDGFD, TTN, MME, TFCP2L1, CD69, 
EYA4, NCKAP5, CXCL9, EDN1, SEMA3D, PKP2, IDO1, 
FAP, CPB2, ANKRD22, FMO5, SFRP4, PPBP, AREG, 
IGHA1

Down- 
regulated

RNASE2, CSF3R, GIMAP6, ADRA1A, LILRA2, GLT1D1, 
ITGAM, MGAM, NKD1, TBX3, S100A9, S100A8, 
LILRB2, SOSTDC1, CD14, SAA2, NQO1, QPCT, TLR8, 
SLC9A3R2, KRT4, CXCR1, AQP9, AGTR1, GALNT13, 
SLCO4A1, RNF182, VNN2, S100A12, S100A3, BPIFA1, 
SULT1B1, USP9Y, ZFY, IL1R2, SLCO2A1, LRRC32, 
SAA1, BTNL9, TXNRD1, MNDA, UTY, MS4A15, CR1, 
EIF1AY, CDH13, LRRN4, CXCR2, PROK2, KDM5D, 
VIPR1, BPIFB1, CHL1, CA4, SERPINA3, CHIT1, LCN2, 
MMP8, FAM107A, DDX3Y, OLFM4, FCN3, RPS4Y1, 
PLA2G7, HMOX1

DEGs, differentially expressed genes; PAH, Pulmonary arterial 
hypertension. 
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based on the P-value are shown in Table 4 and 
Figure 3D. As shown, these DEGs were mainly 
enriched in Hematopoietic cell lineage, African 

trypanosomiasis, Rap1 signaling pathway, Renin 
secretion, and Chemokine signaling pathway 
(Table 4 and Figure 3D).

Figure 2. Identification of DEGs from three mRNA expression datasets. (a) Volcano plot of three mRNA expression datasets after 
integrated as one via R software. log FC, log2 Fold Change. (b) Heatmap of differentially expressed gene expression. The heatmap 
was generated using pheatmap package in R. The expression profiles greater than the mean are colored in red and those below the 
mean are colored in green. PAH, Pulmonary arterial hypertension.
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3.3 Construction of PPI network and hub gene 
analysis

The STRING database and Cytoscape software 
were used to establish the PPI network of the 
DEGs. A PPI network containing 137 genes and 
417 edges was constructed (Figure 4A). In the PPI 
network, the average node degree was 4.77, and 
the average local clustering coefficient was 0.443. 
Among these 182 genes, only one module (includ-
ing 15 genes) was identified by the MCODE plug- 
in (Figure 4B). Further, function analysis was per-
formed for DEGs in the module with a Padj-value 
< 0.05. These 15 hub genes were significantly 
related to immune system function, such as neu-
trophil chemotaxis, myeloid leukocyte migration, 
neutrophil migration, cell chemotaxis, neutrophil 
extracellular trap formation, IL-17 signaling path-
way, Toll-like receptor signaling pathway, and NF- 
κB signaling pathway (Figure 5 and Table S3).

3.4 Exploring candidate biomarkers by lasso 
regression and receiver operating characteristic 
curves

To select the best biomarkers of PAH, the 15 hub 
genes were further analyzed. The LASSO 

regression method was used to identify seven 
potential biomarkers (Figure 6A, 6B) with coeffi-
cients of −0.0017, −0.0298, −0.1630, 0.1779, 
−0.1700, 0.0258, and 0.1532 for S100A8, CD14, 
ITGAM, C5, CSF3R, PPBP, and CCL21, respec-
tively. ROC curve analysis was used to evaluate the 
ability of the LASSO model to distinguish PAH in 
the training and testing sets. ROC curve analysis 
(Figure 6C, 6D) indicated that the AUC of the 
7-gene-based model was 0.95, in the training set 
and 0.96, in the testing set, suggesting that these 
seven genes have a good diagnostic value for dis-
tinguishing PAH from normal controls.

3.5 Immune cell infiltration analysis

Ninety PAH and 49 normal control samples that 
matched the requirements of CIBERSORT P-value 
< 0.05 were filtered out. The CIBERSORT algo-
rithm was applied to investigate the relative pro-
portion of the 22 types of immune cells in 90 PAH 
samples and 49 normal control samples (Figure 7). 
The proportions of T cells CD4 memory resting 
(P = 0.012) and Macrophages M1 (P = 0.011) in 
PAH samples were significantly lower than those 
in normal control samples (Figure 8). However, 
the proportion of NK cells resting (P = 0.044), 
Monocytes (P = 0.002), Mast cells activated 
(P = 0.033), and Neutrophils (P = 0.001) in PAH 
samples were significantly higher than those in 
normal control samples (Figure 8).

4. Discussion

PAH is defined as a type of chronic progressive 
malignant pulmonary vascular disease and has 
similar pathological characteristics to cancer, 
such as resistance to apoptosis, metabolic 
changes, and growth factor receptor overexpres-
sion. The hemodynamic criteria of PAH are as 
follows: mean pulmonary artery pressure 
(mPAP) ≥ 25 mmHg (1 mmHg = 0.133kPa) 
measured by sea level, resting time, and right 
cardiac catheterization [35]. According to the 
6th World Symposium on Pulmonary 
Hypertension (WSPH) recommendation, an 
mPAP ≥ 20 mmHg with a pulmonary vascular 
resistance (PVR) ≥ 3 Wood units was defined as 
PAH [36]. It has been reported that TLR3 is 

Table 3. GO analysis of DEGs in PAH.
Category Term Count P-value FDR

BP neutrophil 
chemotaxis

10 1.94E-08 2.62E-05

BP inflammatory 
response

19 5.34E-08 3.61E-05

BP positive regulation of 
smooth muscle cell 
proliferation

8 2.28E-06 1.03E-03

BP cell chemotaxis 8 3.94E-06 1.33E-03
BP positive regulation of 

inflammatory 
response

8 8.61E-06 2.33E-03

CC extracellular space 47 1.54E-14 2.73E-12
CC extracellular region 48 2.31E-12 2.04E-10
CC cell surface 19 4.97E-06 2.93E-04
CC extracellular exosome 48 6.73E-05 2.98E-03
CC extracellular matrix 11 5.97E-04 2.11E-02
MF integrin binding 9 1.04E-05 2.26E-03
MF 3�,5�-cyclic-AMP 

phosphodiesterase 
activity

5 1.21E-05 2.26E-03

MF calcium ion binding 20 1.05E-04 1.31E-02
MF heparin binding 8 1.15E-03 8.01E-02
MF growth factor activity 8 1.24E-03 8.01E-02

Note: GO, Gene Ontology; DEGs, differentially expressed genes; PAH, 
Pulmonary arterial hypertension; BP, biological process; CC, cellular 
component; MF, molecule function; FDR, false discovery rate 
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involved in endothelial cell apoptosis and pul-
monary vascular remodeling and may be 
a therapeutic target for PAH [37]. A recent 
study found that treatment with inhaled trepros-
tinil improved exercise performance and reduced 

NT-proBNP levels in patients with interstitial 
pulmonary disease due to PAH [38]. Although 
research on PAH has increased in recent years, 
the pathogenesis of PAH is still unclear, and the 
therapeutic effect is unsatisfactory.

Figure 3. Top 10 enriched GO terms and top 10 KEGG pathways of differentially expressed genes. (A-C) GO term enrichment analysis 
for (a) biological process, (b) molecular function, (c) cellular component. (d) KEGG pathway analysis. Node size represents gene ratio; 
node color represents P-value. GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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In the present study, we screened out the 
important target genes associated with PAH by 
comparing the differences in gene expression pro-
files between lung samples of PAH and their nor-
mal samples. In our study, 182 DEGs and 15 hub 
genes were identified, and functional enrichment 
analyses were performed. These 15 hub genes are 
involved in multiple immune responses and 
immune cell chemotaxis. Furthermore, we applied 
the CIBERSORT algorithm to probe immune cell 
infiltration in PAH. The results showed that the 
immune cell infiltration of PAH samples was sig-
nificantly different from that of the normal 
samples.

Establishing the PPI network has been verified 
to be helpful in the analysis of a disease because all 
the genes would be grouped and organized in the 
PPI network according to their interaction [39]. In 
the present study, we established a PPI network 
and 15 hub genes, including S100A8, VNN2, 
CD14, ITGAM, AQP9, C5, CSF3R, SAA1, 
MNDA, S100A9, PPBP, CCL21, S100A12, TLR8, 
and LILRB2. A 7-gene-based model was con-
structed and showed that the diagnostic value of 
seven genes (S100A8, CD14, ITGAM, C5, CSF3R, 
PPBP, and CCL21) in distinguishing PAH tissues 
from normal samples was excellent. S100A8 and 
S100A9 are the main proteins of peripheral blood 
mononuclear cells and neutrophils, also known as 
myeloid-related proteins (MRPs) 8 and 14, or 

calgranulins A and B [40]. S100A8 and S100A9 
are often combined by non-covalent bonds to 
form the S100A8/A9 heterodimer calprotectin to 
perform its function [41]. When S100A8/9 is 
secreted, it binds to a variety of protein receptors 
on different types of cells, of which the receptors 
of advanced glycation endproducts (RAGE) and 
Toll-like receptor 4 (TLR4) are particularly impor-
tant. Previous studies have suggested that RAGE 
may be critical in PAH by participating in the 
etiology of PAH [42,43]. The S100A8/A9 hetero-
dimer may induce endothelial cell (EC) dysfunc-
tion in the following ways: by promoting 
inflammatory responses by increasing the expres-
sion of inflammatory cytokines, including IL-6, IL- 
8, IL-10, IFNγ, VCAM-1, and ICAM-1 in ECs, 
which are involved in phenotypic transformation 
and proliferation of vascular smooth muscle cells 
[44–46]. These studies provide the basis for the 
involvement of S100A8 and S100A9 in the patho-
physiology of PAH. CD14 was known as 
a receptor for bacterial endotoxin (LPS) in 1990 
and was initially identified as a marker of differ-
entiation on the surface of monocytes and macro-
phages [47]. Studies have identified that CD14 
plays a critical role in inflammatory diseases, 
metabolic diseases, tumors, and other diseases 
[48]. CD14 promotes atherosclerosis by regulating 
the function of vascular endothelial cells and 
smooth muscle cells [48]. These results suggest 
that CD14 may be involved in the pathophysiolo-
gical process of PAH by regulating the inflamma-
tory response, vascular endothelial cells, and 
vascular smooth muscle cells. ITGAM, also called 
CD11b, is a marker of leukocytes and is closely 
associated with inflammation in PAH [49,50]. At 
present, the most studied PAH-related genes are 
BMPR2, ACVRL1, CAV1, SERT, and KCNK3 
[51–54]. Few studies have been conducted on the 
link between the key genes screened in this study 
and PAH, which may be new genes for the patho-
genesis of PAH. These genes not only provide 
a suggestion for future research on the pathogen-
esis of PAH but may also be potential molecular 
diagnostic markers of PAH.

According to the functional enrichment analy-
sis, 15 hub genes were mainly enriched in neutro-
phil chemotaxis, myeloid leukocyte migration, 
neutrophil migration, cell chemotaxis, Neutrophil 

Table 4. KEGG enrichment analysis of DEGs in PAH.
Category Term Count P-value FDR

hsa04640 Hematopoietic cell 
lineage

9 1.33E-05 1.83E-03

hsa04060 African 
trypanosomiasis

5 7.71E-04 5.28E-02

hsa05418 Rap1 signaling 
pathway

9 5.22E-03 2.39E-01

hsa04061 Renin secretion 5 8.86E-03 2.60E-01
hsa05144 Chemokine signaling 

pathway
8 9.48E-03 2.60E-01

hsa04614 Cytokine-cytokine 
receptor 
interaction

9 1.22E-02 2.78E-01

hsa04657 Hypertrophic 
cardiomyopathy

5 1.74E-02 3.33E-01

hsa04062 Nitrogen metabolism 3 1.94E-02 3.33E-01
hsa04064 Dilated 

cardiomyopathy
5 2.22E-02 3.38E-01

hsa05143 Morphine addiction 5 2.88E-02 3.91E-01

Note: KEGG, Kyoto Encyclopedia of Genes and Genomes; DEGs, differ-
entially expressed genes; PAH, Pulmonary arterial hypertension; FDR, 
false discovery rate 
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extracellular trap formation, IL-17 signaling path-
way, Toll-like receptor signaling pathway, and NF- 
κB signaling pathway. These results suggest that 
inflammatory and immune responses are vital for 

the occurrence of PAH, which is consistent with 
previous studies. The NF-κB signaling pathway is 
activated in the PAH model, and sevoflurane may 
inhibit the activation of the NF-κB signaling 

Figure 4. Construction of the PPI network. (a) The nodes represent proteins, and the edges represent the interaction of proteins, 
while blue and red circles indicate downregulated and upregulated DEGs, respectively. (b) The only one module in the PPI network. 
The nodes represent proteins, and the edges represent the interaction of proteins, while blue and red circles indicate downregulated 
and upregulated DEGs, respectively.
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pathway by downregulating the levels of p-IκB, 
p-p65, and p65, thereby reducing pulmonary 
fibrosis and preventing PAH [55]. It has been 

reported that inhibition of the TLR/NF-κB path-
way may also provide potential clinical signifi-
cance in patients with PAH, including the 

Figure 5. GO and KEGG analyses of module genes. (a) GO term enrichment analysis of module genes. (b) KEGG pathway analysis of 
module genes. Node size represents gene ratio; node color represents Padj-value. GO, gene ontology; KEGG, Kyoto Encyclopedia of 
Genes and Genomes.
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reduction of inflammatory/immune responses and 
pulmonary vascular remodeling [56]. Studies have 
shown that IL-1β, IL-6, and TNF-α are related to 
pulmonary vascular remodeling in PAH [57]. The 
TLR family is a pattern recognition receptor that 
recognizes microbial fragments and activates 
downstream NF-κB pathways. It has been found 
that decreased TLR3 expression contributes to 

endothelial cell apoptosis and pulmonary vascular 
remodeling [37]. These studies provide evidence 
for the role of inflammatory and immune 
responses in the pathophysiological process 
of PAH.

Immune dysregulation has been associated with 
various diseases, including PAH [58]. NK cells 
play an important role in preventing endothelial 

Figure 6. A model for predicting PAH. (a) LASSO model. (b) ROC curves analysis of training set. (c) ROC curves analysis of test set. 
AUC, area under the curve. PAH, Pulmonary arterial hypertension.
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injury and regulating vascular remodeling and 
regeneration, and NK cell defects may be related 
to the increased risk of death in patients with PAH 
[59]. In this study, we found that NK cells resting 
in PAH samples were significantly higher than 
those in normal control samples. Therefore, we 
consider that NK cells are important for the occur-
rence and development of PAH, but further stu-
dies are needed to determine the exact pattern of 
NK cells in patients with PAH. The main patho-
physiological process of PAH is pulmonary vascu-
lar remodeling, and studies have shown that mast 
cells may be involved in the pathophysiological 

process of pulmonary vascular remodeling [58]. 
Mast cells may be involved in the angiogenesis of 
pulmonary hypertension by secreting vascular 
endothelial growth factor [60,61]. Targeting mast 
cells against several causes of PAH may help 
improve vascular remodeling, according to the 
results from animal models. In this study, we 
found that mast cells activated in PAH samples 
were significantly higher than those in normal 
control samples. Therefore, we consider that mast 
cells are important for the occurrence and devel-
opment of PAH, but further studies are needed to 
determine the exact pattern of mast cells in PAH 

Figure 7. The bar plot visualizing the relative percent of 22 immune cell in each sample. Different colors represent different types of 
immune cells.

Figure 8. The difference of immune infiltration between PAH samples and normal control samples. Blue, normal controls group; Red, 
PAH group. PAH, Pulmonary arterial hypertension.
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patients. Immune cells play an indispensable role 
in the process of pulmonary hypertension vessel 
remodeling. Therefore, attention should be paid to 
the mechanism of immune cell infiltration in 
patients with PAH.

5. Conclusions

In this study, 182 DEGs and 15 hub genes were 
identified. Functional enrichment analysis of 
these genes provides more information for under-
standing the pathophysiological mechanism of 
PAH. The CIBERSORT method was used to 
investigate immune infiltration in PAH and 
found that there was a difference in the immune 
infiltration between PAH samples and normal 
control samples. The relationship between key 
genes and immune invasion in the occurrence 
and development of PAH needs to be studied 
further.
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