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Some studies suggest that methylphenidate (MPH) might be an effective treatment

for antisocial and aggressive behavior in adolescence. However, little is known about

the mechanism of action of MPH in adolescents with this kind of psychopathology.

MPH is a dopamine and norepinephrine reuptake inhibitor and thus it is likely to affect

dopaminergic mesocorticolimbic pathways. This is the first study to investigate the effect

of MPH on resting-state connectivity of three mesolimbic seed regions with the rest of

the brain in clinical referred male adolescents with a disruptive behavior disorder (DBD).

Thirty-six male DBD adolescents and 31 male healthy controls (HCs) were included.

DBD subjects were randomly allocated to a single dose of MPH (DBD-MPH, n = 20)

or placebo (DBD-PCB, n = 16). Seed-based resting-state functional connectivity of

the nucleus accumbens (NAcc), amygdala, and ventral tegmental area (VTA) with the

rest of the brain was compared between groups. The NAcc seed showed increased

connectivity in DBD-PCB compared to HC with the occipital cortex, posterior cingulate

cortex (PCC), precuneus, and inferior parietal lobule (IPL) and increased connectivity in

DBD-PCB compared to DBD-MPH with occipital cortex, IPL, and medial frontal gyrus.

The amygdala seed showed increased connectivity in DBD-PCB compared to HC with

the precuneus and PCC. The VTA seed showed increased connectivity in the DBD-MPH

compared to the DBD-PCB group with a cluster in the postcentral gyrus and a cluster

in the supplementary motor cortex/superior frontal gyrus. Both NAcc and amygdala

seeds showed no connectivity differences in the DBD-MPH compared to the HC group,

indicating that MPH normalizes the increased functional connectivity of mesolimbic seed

regions with areas involved in moral decision making, visual processing, and attention.
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INTRODUCTION

Antisocial behavior in children and adolescents constitutes a
huge problem for society. It can lead to serious damage to
themselves and their environment as well as to substantial
economic costs (1). Until now, the effectivity of programs
targeting these behaviors is only modest (2) and therefore it is
crucial to develop better interventions. Neuroimaging research
has shown that several brain areas are affected in disruptive and
antisocial behavior [see (3) for review] and these findings may aid
the development of new treatments.

Persistent patterns of antisocial behavior in adolescents
are clinically diagnosed as disruptive behavior disorders
(DBDs). DBD comprises oppositional defiant disorder (ODD),
characterized by a pattern of irritable mood, defiant behavior,
and/or vindictiveness, and conduct disorder (CD), characterized
by frequent violation of social rules and rights of others. DBD
is common in adolescents [prevalence 5–6% (4)] and currently
there are no registered pharmacological interventions for DBD.
Generally, guidelines advise to prescribe methylphenidate
(MPH) only in DBD patients with comorbid ADHD or
antipsychotics only in DBD patients with severe aggression (5).
While MPH is not recommended for the routine treatment
of DBD, some clinical studies indicated that MPH might
have benefits even in DBD patients without comorbid ADHD
(6–8), especially in more severe patients (9). In one study,
it was suggested that MPH can enhance the effectiveness of
psychotherapeutic interventions in DBD patients (10).

MPH is a dopamine re-uptake inhibitor; therefore,
dopaminergic interference in brain circuits reported to be
aberrant in patients with DBD may underlie the effectiveness
of MPH in DBD. Moreover, there is suggestive evidence for
the influence of dopamine genes on the development of DBD
(11–13), which fits the hypothesis that the dopamine system is
a potential target for pharmacological interventions. Finally,
a recent meta-analysis (14) of whole-brain fMRI studies has
revealed that compared to healthy controls (HCs), patients with
DBD show decreased activations in the anterior cingulate cortex
(ACC), the medial frontal cortex (MFC), and the ventral striatum
(VS), while region-of-interest analyses also revealed abnormal
amygdala activations [e.g., (15, 16)], i.e., brain areas that are
part of the mesolimbic fronto-striatal dopamine pathway. In this

pathway, the ventral tegmental area (VTA) releases dopamine
and projects via the medial forebrain bundle to the nucleus

accumbens (NAcc) and to other limbic structures, including the
septum, hippocampus, amygdala, orbitofrontal cortex (OFC),
ACC, and mPFC (17). Previous studies have shown that the
connectivity of amygdala and NAcc with other structures of the
fronto-striatal dopamine pathway are aberrant during decision
making and emotion processing in DBD (18–21). Reduced
top-down control over these limbic regions are suggested to
underlie dysfunctional decision making and emotion processing
in DBD (14, 22).

Resting-state (RS)-fMRI is a powerful tool because of its
task-free nature and it was recently advocated to study the
effects of MPH on intrinsic brain activity in DBD patients (23).
However, due to a large variety in analytic approaches, comparing
existing findings of RS-fMRI studies in DBD populations is

problematic. Several studies have found reduced connectivity in
or with the default mode network, hypothesized to be important
in self-referential and moral processing (24–27), but in one
study, this reduction was only seen after correction for ADHD
symptoms (26). Furthermore, in line with the hypothesized
aberrations in the mesolimbic fronto-striatal dopamine pathway
in DBD, Aghajani et al. (22) found abnormally increased
connectivity of the amygdala with a collection of regulatory
paralimbic brain regions along with posterior cingulate, sensory
associative, and striatal regions in CD youth high on CU (callous-
unemotional) traits.

Literature on the effect of MPH on resting-state connectivity
is beginning to emerge, with one study in patients with a cocaine
use disorder showing an effect on the connectivity within the
mesolimbic fronto-striatal dopamine pathway (28) and another
study in HCs showing reduced NAcc connectivity with other
parts of the reward circuit (29).

In the current between-subject, randomized double-blind
placebo-controlled pharmacologic fMRI study, we investigated
for the first time the effect of MPH on mesolimbic pathways in
adolescent males with DBD using a seed-based approach that
was used before by Konova et al. (28). We hypothesized that
(1) male adolescent DBD patients compared to HCs show an
abnormal resting-state connectivity pattern of the subcortical
NAcc, amygdala, and VTA seeds with cortical areas involved in
emotion and reward processing and (2) MPH will normalize this
abnormal connectivity pattern within the mesolimbic pathways
in male adolescent DBD patients.

MATERIALS AND METHODS

The present study is part of a larger project, approved
by the Central Committee on Research Involving Human
Subjects (CCMO) and registered in the Dutch Trial Register
(NTR, www.trialregister.nl; number NTR 4088). All participants
and their legal guardian(s) signed informed consent prior
to participation.

Participants and their parents or custodians were visited at
home for a structured psychiatric interview and questionnaires.
On a second occasion, participants visited the Spinoza Center
for neuroimaging in Amsterdam (The Netherlands) for MRI
scanning. Participants received a financial remuneration of e100
in vouchers.

Participants
Participants included adolescent DBD patients and HCs. Patients
were 14- to 17-year-old males, diagnosed with either ODD, CD,
or both, recruited at “De Bascule,” an academic center for child
and adolescent psychiatry in Amsterdam. In order to match
the HCs with the DBD participants, HCs were recruited via
regular secondary schools in neighborhoods with a low/middle
socioeconomic status (SES) and lower/mean education level in
the greater Amsterdam region. At the start of the study, patients
with DBD (n = 57) were randomly allocated to one of three
groups: one group received MPH (DBD-MPH; n = 25), one
group received an identical placebo (DBD-PCB; n = 24), and
one group did not receive any intervention (n = 8). Due to
low inclusion rates, we decided to stop assigning patients with
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FIGURE 1 | NAcc connectivity differences between HC, DBD-PCB, and DBD-MPH groups. (A) Location of the NAcc seed. (B) Clusters showing significant

connectivity differences (Z > 2.3, cluster p < 0.05). (C) Average Fisher-Z transformed NAcc connectivity in the significant clusters. Dark gray patches represent the

95% confidence interval and light gray patches represent the standard deviations. Black lines represent the group means. All shown coordinates are in MNI space.

NAcc, nucleus accumbens; OccPole, Occipital pole; Prec, Precuneus; MFG, medial frontal gyrus; IPL, inferior parietal lobule; PCC, posterior cingulate cortex; HC,

healthy control; PCB, placebo; MPH, methylphenidate; *cluster-p < 0.05; **cluster p < 0.001.

DBD to the non-intervention group and excluded them from
analyses. Overall, 88 male adolescents were included, 49 patients
with a clinical DBDdiagnosis and 39 age/SES/education-matched
HCs. General exclusion criteria were as follows: (1) violation of
MRI safety criteria, (2) use of psychotropic medication other
than MPH or dextroamphetamine or not willing or able to
refrain from MPH or dextroamphetamine use 72 h prior to
scanning, (3) IQ below 80, (4) actual steroid use, (5) history of
head trauma, (6) neurological disorder, (7) current or lifetime
history of psychosis, (8) Tourette’s syndrome, and (9) pervasive
developmental disorder. Furthermore, HCs were excluded if they
had a history of antisocial behavior (e.g., police contact, expelled
from school) or a current psychiatric diagnosis.

Assessment
The parent and youth versions of the Diagnostic Interview
Schedule for Children (DISC-IV) (30) were used to assess the
clinical diagnosis of ODD and CD, as well as ADHD. To
estimate IQ (31), the vocabulary and block design subtests of
the Wechsler intelligence scale for children (WISC) were used
(32). Further exclusion based on the criteria described above
was applied. Patients and HCs were matched on age, SES, and
education. SES of each participant was based on data from
The Netherlands Institute for Social Research (33). For each
zip code, a standardized score was provided, i.e., −1 (low), 0
(intermediate), or +1 (high). The Dutch version of the Youth
Psychopathy Inventory (YPI) (34)1 was used to assess CU traits.

1Das J, de Ruiter C. Youth Psychopathic Traits Inventory: Geautoriseerde

Nederlandse Vertaling [Youth Psychopathic Traits Inventory; Authorized Dutch

Translation]. (2003).

Methylphenidate
In this double-blind study, DBD patients were randomly assigned
to either a single dose of 0.3–0.4 mg/kg MPH (DBD-MPH)
or a single dose of placebo (Albocin) (DBD-PCB) ∼2 h before
the start of the resting-state scan. This dosage was similar
to previous studies in patients with ADHD (35, 36). Given
the previously reported correlation of resting-state connectivity
and CU traits in DBD (37), randomization was stratified for
a high vs. a low CU score on the YPI with a CU cutoff
score of 27 (38). Healthy controls did not receive any type of
pharmacological intervention.

Image Acquisition
Resting-state fMRI images were acquired on a 3-T whole-body
MR scanner (Philips Achieva XT, Best, The Netherlands) using
a 32-channel head coil with a gradient-echo EPI sequence (TR
= 2,000ms; TE = 27.63ms; flip angle = 76.1◦; FOV = 240 ×

240 mm2; acquisition matrix size= 80× 80; 37 3-mm slices with
a 0.3-mm gap; 4 dummy scans, 200 volumes total). Participants
were instructed to fixate on a crosshair presented on the middle
of a screen and to relax. In addition, 3D T1-weighted anatomical
images were acquired using an axial sequence (TR = 8.2ms; TE
= 3.8ms; flip angle= 8◦; 220 slices; resolution= 1× 1× 1mm3).

Data Pre-processing

Anatomical images were skull-stripped, segmented, and
normalized to the MNI152 template using the Advanced
Normalization Tools (ANTs) (39). Standard preprocessing steps
were performed and included the following: motion-correction,
registration to the anatomical brain, intensity normalization,
nuisance signal removal [including 24 motion parameters, five
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principal components derived from the CSF and white matter
signals [according to the compcor method, see Behzadi et al.
(40)], the average signal from the CSF, as well as the linear
and quadratic trends], and temporal filtering between 0.01 and
0.1 Hz.

Data preprocessing was performed using an alpha version of
the Configurable Pipeline for the Analysis of Connectomes (C-
PAC version 0.3.9, http://fcp-indi.github.io./). Three seed regions
(NAcc, amygdala, and VTA) were defined by centering bilateral
spheres with a radius of 5mm at the coordinates shown in
Figures 1–3. The location of these seeds was based on the study
by Konova et al. (28). To reduce multiple testing issues, we
decided not to include the hippocampus, thalamus, and rostral
ACC as seed regions, because these areas are not of primary
interest in DBD populations. Time series from these seeds were
extracted by warping the preprocessed resting-state images to
MNI space and averaging the signal in the seed regions. To test
our hypotheses, whole-brain correlation maps were calculated
separately for each bilateral seed region by correlating the time

series from each voxel (in MNI space) with the seed time course.
Subsequently, correlation maps were smoothed by applying a 4-
mm FWHMGaussian filter and transformed using Fisher R-to-Z
to improve normality.

Statistical Analysis
Eventual group differences in age, IQ, SES, head motion, tobacco,
alcohol, and cannabis use were analyzed with ANOVAs. Whole-
brain voxel-wise group analyses were performed using the Local
Analysis of Mixed Effects (FLAME) with the FLAME1+2 option
from the FMRIB Software Library (FSL, http://fsl.fmrib.ox.ac.uk)
for each seed (VTA, NAcc, Amygdala) separately. Age and IQ
were included as covariates in the model. Multiple comparisons
were corrected for by using Gaussian Random Field theory
implemented in the FSL script easythresh (Z > 2.3; cluster
significance p < 0.05 corrected).

A study-specific mask was generated by only including
voxels where 50% of the subjects had non-zero values. Planned

FIGURE 2 | Amygdala connectivity differences between HC, DBD-PCB, and DBD-MPH groups. (A) Location of the amygdala seed. (B) Clusters showing significant

connectivity differences (Z > 2.3, cluster p < 0.05). (C) Average Fisher-Z transformed amygdala connectivity in the significant clusters. Dark gray patches represent

the 95% confidence interval and light gray patches represent the standard deviations. Lines represent the group means. All shown coordinates are in MNI space.

PrecR, right posterior precuneus; PCC, posterior cingulate cortex; Hipp, hippocampus; PrecAM, medial anterior precuneus; PrecL, left posterior precuneus; HC,

healthy control; PCB, placebo; MPH, methylphenidate; *cluster-p < 0.05; **cluster p < 0.001.
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FIGURE 3 | VTA connectivity differences between HC, DBD-PCB, and

DBD-MPH groups. (A) Location of the VTA seed. (B) Clusters showing

significant connectivity differences (Z > 2.3, cluster p < 0.05). (C) Average

Fisher-Z transformed VTA connectivity in the significant clusters. Dark gray

patches represent the 95% confidence interval and light gray patches

represent the standard deviations. Lines represent the group means. All shown

coordinates are in MNI space. VTA, ventral tegmental area; PCG, post-central

gyrus; SMC, supplementary motor cortex; HC, healthy controls; PCB,

placebo; MPH, methylphenidate; *cluster-p < 0.05.

comparisons between groups (DBD-PCB vs. DBD-MPH, DBD-
PCB vs. HC) were performed using t-tests. To investigate
the possible confounding effect of ADHD, we conducted
whole-brain voxel-wise regression analyses for each seed in
the DBD-PCB group only, with the number of ADHD
symptoms as independent variable. We implemented this
approach because ADHD symptoms were collinear with group
status and could therefore not be added as an independent
variable to the second-level model. We checked for overlap

in brain areas significantly related to ADHD symptoms
and clinical group status. Additionally, to further investigate
the relationship between functional connectivity and ADHD
symptoms, we conducted Pearson correlation analyses between
average connectivity values of the significant clusters and
number of ADHD symptoms. Furthermore, average Fisher-
Z transformed correlation values from significant clusters
were extracted to examine possible associations with reported
number of days with cannabis use in the prior 30 days using
correlation analysis.

RESULTS

Subject Characteristics
Out of the 88 included subjects, 85 completed the resting-
state scan (36 HC and 49 DBD). Of these, 18 were excluded
(5 HC and 13 DBD): 2 HC because they met diagnostic
criteria for ODD and/or ADHD and 4 DBD because they did
not meet DBD criteria on the DISC-IV, 1 HC and 1 DBD
because of an IQ < 80, and 2 HC, 5 DBD-PCB, and 3 DBD-
MPH subjects because of excessive head motion based on
their average motion statistic [mean framewise displacement
calculated according to the Jenkinson method (41)]. The final
analyses thus included 31 HC and 36 DBD subjects, 16 in
the placebo group and 20 in the MPH group. Groups differed
in tobacco and cannabis use. Post-hoc testing revealed that
both DBD groups used more tobacco compared to the HC
group and that the DBD-MPH group used more cannabis
compared to the HC and the DBD-PCB groups. There was no
difference in the history of stimulant medication use between
the DBD groups. There were no significant differences in age,
IQ, mean motion, or SES between the three groups (see Table 1
for statistics).

Connectivity Differences
The NAcc seed showed increased connectivity in the DBD-
PCB compared to the HC group with five clusters (Figure 1):
two clusters in the bilateral occipital cortex (BA 18, primary
visual), a cluster in the posterior cingulate cortex (PCC), a
cluster in the precuneus, and a cluster in the left inferior
parietal lobule (IPL). The NAcc seed also showed increased
connectivity in the DBD-PCB compared to the DBD-MPH
group with four clusters: two clusters in the bilateral occipital
cortex, a cluster in the left IPL, and a right medial frontal
gyrus (BA 8/44/47). The amygdala seed showed increased
connectivity in the DBD-PCB compared to the HC group
(Figure 2) with a cluster comprising parts of the right
posterior precuneus, PCC, and hippocampus, a cluster in
the left posterior precuneus, and a cluster in the anterior
medial precuneus.

Both the NAcc and amygdala seeds showed no connectivity
differences in the DBD-MPH compared to the HC group.

The VTA seed showed increased connectivity in the DBD-
MPH compared to the DBD-PCB group with a cluster in the
postcentral gyrus and a cluster in the supplementary motor
cortex/superior frontal gyrus (Figure 3). See Table 2 for a
summary of the statistics.
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Effect of Comorbid ADHD
Results from the regression analysis in the DBD-PCB group
only showed a positive relation between ADHD symptoms
and NAcc connectivity with the PCC and precuneus. This
cluster was partially overlapping with the clusters of increased
connectivity in the DBD-PCB vs. the HC group (Figure 4A).
The other seeds did not show any overlapping regions of clinical
group and ADHD-related connectivity differences. Average
connectivity strength between the NAcc seed and PCC and
precuneus were plotted against ADHD symptom scores (to
avoid double-dipping, we used the cluster-averages from the
DBD-PCB vs. HC comparison). These scatter plots are purely
explorative, but they showed that the normalizing effect of
MPH was independent of the number of ADHD symptoms
(Figure 4B). Correlation analyses showed that these correlations
were significant in the DBD-PCB group between ADHD
symptoms and NAcc–precuneus connectivity (r = 0.51, p =

0.04) and at-trend to significant between ADHD symptoms
and NAcc–PCC connectivity (r = 0.46, p = 0.07). Within
the DBD-MPH group and the HC group, there were no
significant correlations between ADHD symptoms and NAcc–
precuneus connectivity (HC, r = 0.17, p = 0.34; DBD-MPH,
r = 0.15, p = 0.53) and ADHD symptoms and NAcc–
PCC connectivity (HC, r = 0.11, p = 0.57; DBD-MPH,
r = 0.29, p= 0.21).

Effect of Cannabis Use
We found no significant correlations between the reported
number of days with cannabis use in the prior 30 days and values
within the significant clusters (see Supplementary Table 1).

DISCUSSION

This is the first study investigating the effect of a single dose of
MPH on resting-state functional connectivity of NAcc, amygdala,
and VTA-centered networks in male adolescents diagnosed with
a DBD. We replicated previous findings on the dysfunction
of amygdala- and NAcc-centered networks involved in reward,
decision making, empathy, and attention. More importantly, this
study is the first to suggest that MPH normalizes these aberrant
networks in male adolescents with DBD.

Comparing DBD patients in the placebo condition
(DBD-PCB) with matched HCs revealed the presence of
hyperconnectivity of the amygdala with the precuneus, PCC,
and left intra-parietal lobule (IPL). In addition, we found
hyperconnectivity of the NAcc with the occipital pole, PCC,
the precuneus, and the left IPL in DBD patients compared to
HCs. These results are in line with, and extend, recent studies by
Aghajani et al. (22) and DeWitt et al. (42), which also showed
increased connectivity of the amygdala with precuneus/PCC/IPL
in adolescents with CD and risk-taking behaviors, respectively.
Other studies in DBD patients have also reported resting-state
abnormalities in the precuneus, PCC, and IPL (43, 44). PCC,
precuneus, and IPL are all key regions in the default mode
network (DMN), mainly active during rest and involved in
self-referential activity and moral decision making (24). Previous
studies have shown decreased connectivity of the amygdala

with these DMN-subregions during passive avoidance learning,
emotional faces viewing and moral judgements in DBD patients
(15, 19, 21). Although directly comparing resting-state and
task-related functional connectivity should be done with great
caution, we may speculate that increased connectivity of the
amygdala and NAcc with the DMN could hinder other networks
to successfully “recruit” the amygdala and NAcc. This might
lead to impaired emotion processing, reward processing, and
learning, which have all been implicated in patients with
DBD (3). Alternatively, since the DMN is primarily active
during rest, increased connectivity with amygdala and NAcc
suggests activation of these structures during rest. This increased
“interference” of emotional and motivational input to the
DMN may disrupt normal functioning of the DMN, leading to
impaired moral reasoning and social judgement.

We also found increased connectivity of NAcc with the
occipital pole. Previous resting-state studies, although using
different metrics or network approaches, reported aberrances
in similar occipital regions (43, 45, 46). A recent study related
increased connectivity of the VS with the occipital pole with high
reward sensitivity, suggesting that VS modulates visual attention
to rewards (47). The hyperconnectivity of NAcc with the occipital
pole might reflect impairments in attention reported in DBD (48)
and antisocial adults (49) while Lu et al. (44) interpreted this
finding as reflecting aberrant top-down control. Furthermore,
increased NAcc–occipital connectivity may indicate heightened
reward motivation since previous research showed increased
visual cortex activation and visual stimulus processing during
states of reward motivation (50–54).

In the current study, we did not find connectivity
abnormalities between any of the seeds and other regions
of the mesolimbic fronto-striatal dopamine pathway, whereas
the meta-analyses of Alegria et al. (14) revealed functional
aberrances in (among other regions) the ACC, the MFC,
and the VS. Therefore, we post-hoc tested group differences
in connectivity between the seeds and a ROI containing
the Medial Frontal Orbital cortex, Rectus, and the anterior
and mid Cingulum. In line with the results of the planned
analyses, the post-hoc testing also revealed no significant group
differences in functional connectivity between the seeds and the
created ROI. As stated before, the lack of significant differences
may have been due to technical issues (low vmPFC signal).
However, the previously reported resting-state connectivity
abnormalities between the amygdala and the mPFC and ACC
(22) and task-related connectivity abnormalities between
amygdala and vmPFC (15, 18) and ACC (16) were observed
in patients high on CU traits and therefore may reflect CU
traits rather than DBD. A previous study of our own group
likewise indicated that CU traits have unique resting-state
correlations (37).

The comparison of DBD-PCB and DBD-MPH provides
evidence for a normalizing effect of MPH on aberrant resting-
state connectivity between the NAcc and the occipital cortex and
the IPL. Normalization of NAcc-PCC/Precuneus connectivity
was suggested by the cluster-averages plots in Figure 1, but
this effect was not statistically significant. We did not observe
differences between DBD-MPH and HC regarding NAcc or
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TABLE 1 | Characteristics of the HC and DBD groups.

HC MPH PCB Group differences

n = 31 n = 20 n = 16

Age, mean years (SD) 15.9 (1.1) 16,1 (1.0) 15.8 (0.9) F2,64 = 0.31, p > 0.74

IQ, mean (SD) 98.2 (11.1) 95.2 (9.7) 95.8 (10.8) F2,64 = 0.61, p > 0.55

SES, mean (SD) 0.2 (1.1) 0.0 (1.6) −0.3 (1.3) F2,62 = 0.92, p > 0.40

Right handed (%) 18 (86%) 19 (95%) 16 (100%) Fisher’s exact p = 0.55

Motion (FD Jenkinson) 0.15 (0.058) 0.17 (0.087) 0.15 (0.063) F2,64 = 0.37, p > 0.69

Low/high CallousUnemotional 3/17 3/13 Fisher’s exact p > 0.95

ADHD (%) 0 (0%) 7 (35%) 10 (63%) Fisher’s exact p = 0.18a

ODD (%) 0 (0%) 5 (25%) 6 (38%) Fisher’s exact p = 0.48a

CD (%) 0 (0%) 7 (35%) 4 (25%) Fisher’s exact p = 0.71a

CD & ODD (%) 0 (0%) 8 (40%) 6 (38%) Fisher’s exact p > 0.99a

Lifetime stimulant use 0 (0%) 10 (50%) 7 (44%) Fisher’s exact, p = 0.75a

Stimulant use last week (%) 0 (0%) 4 (20%) 4 (25%) Fisher’s exact p > 0.99

MPH study dose (mg), mean (SD) 22.5 (2.7)

Tobacco use, mean (SD), cigarettes/day 0.7 (3.5) 7.1 (5.9) 4.4 (6.6) F2,62 = 9.48 p = 0.00b

Alcohol use, mean (SD), days/month 0.90 (2.35) 2.5 (3.4) 1.1 (1.5) F2,60 = 2.33 p = 0.11

Cannabis use, mean (SD), days/month 0.1 (0.4) 11.9 (12.2) 2.6 (5.5) F2,60 = 16.32 p = 0.00b,c

aComparison between DBD-MPH and DBD-Placebo group.
bSignificant difference between HC and total DBD group.
cSignificant difference between DBD-PCB and DBD-MPH.

ADHD, Attention Deficit/Hyperactivity Disorder; DBD, Disruptive Behavior Disorder; FD, Framewise displacement, calculated according to the Jenkinson method (41); HC, Healthy

Control; IQ, Intelligence Quotient; MPH, Methylphenidate; ODD, Oppositional Defiant Disorder; PCB, Placebo; SD, Standard Deviation; SES, Socioeconomic Status.

TABLE 2 | Clusters and coordinates of between group differences in connectivity.

Peak voxel MNI Coordinates

Region(s) N voxels p-value MAX Z-value x y z

NAcc seed

PCB > HC

Precuneus Bilateral 1,100 1.28e−05 4.55 −12 −66 28

Occipital pole L 757 0.000408 4.61 −26 −98 6

Posterior cingulate cortex 495 0.00833 3.98 6 −30 36

Occipital pole R 470 0.0114 3.86 24 −98 10

Inferior parietal lobule L 434 0.018 4.01 −36 −58 44

PCB > MPH

Occipital pole L 1123 3.41e−05 4.36 −24 −98 10

Inferior parietal lobule L 750 0.00107 3.9 −52 −66 40

Occipital pole R 734 0.00125 3.84 14 −100 13

Medial frontal gyrus R 508 0.0136 4.71 30 16 40

Amygdala seed

PCB > HC

Posterior precuneus R/ Posterior cingulate cortex/

Hippocampus Bilateral

1,904 9.03e−09 4.24 12 −68 28

Anterior precuneus Medial 830 0.000158 3.91 6 −42 48

Posterior precuneus L 465 0.0109 3.57 −12 −80 44

VTA seed

MPH > PCB

Supplementary motor cortex/Superior frontal gyrus R 394 0.00469 3.83 16 −4 62

Postcentral gyrus R 265 0.0488 4.75 8 −46 62

All Z-values are corrected for multiple comparisons at the cluster-level (Z > 2.3; p < 0.05). NAcc, nucleus accumbens; VTA, ventral tegmental area; L, left; R, right.
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amygdala connectivity, providing some further, albeit indirect,
evidence for MPH-associated normalization.

The VTA, which is the source of the mesolimbic fronto-
striatal dopamine pathway, showed increased connectivity in
sensorimotor areas in DBD-MPH vs. DBD-PCB. However, no
differences were found between DBD-PCB and HC groups,
suggesting a pharmacological effect within the study population.

Our findings indicate potential mechanisms underlying the
previously demonstrated positive effect of MPH on DBD
symptoms (6–10). For example, one may speculate that the
previous reported positive effect on DBD symptoms is due
to a direct normalizing effect on reward sensitivity, decision
making, and empathy, all found to be disturbed in DBD (3).
Although highly speculative, MPH may also have an indirect
effect on clinically relevant behavior by normalizing (visual)
attention. Since we cannot relate the hyperconnectivity of
the NAcc with the occipital lobe to increased or decreased
attention, there are two possible explanations for the relation
between attentional problems and DBD symptoms. Visual
attention is important in focusing on relevant information
while ignoring irrelevant information (55). A hyperfocus on
information relevant for obtaining a goal leads to rigid behavior
due to difficulties in adjusting behaviors (56). Alternatively,
lowered attention may result in problems in self-regulation
in situation with distracting information (49). Our results
showed a significant decrease in limbic–prefrontal connectivity,
suggesting that MPH may modulate top-down control of
motivation and affect (14). Alternatively, the normalizing effects
of MPH might be due to increased capacities to switch attention
to relevant stimuli (57). Whether MPH indeed normalizes
attention in DBD should be studied in studies measuring
visual attention in DBD during a MPH challenge and/or
after a MPH treatment. Overall, normalizing attention might
increase the susceptibility of DBD patients for positive parenting
or psychotherapy.

Analyses to explore the possible confounding effect of
comorbid ADHD indicated that the observed hyperconnectivity
of the NAcc with the PCC and precuneus in DBD-PCB vs.
HC was partially overlapping with hyperconnectivity related
to ADHD symptoms in the DBD-PCB group. As such, the
increased NAcc–DMN connectivity in DBD may also reflect
ADHD pathology. However, the normalizing effect of MPH on
NAcc–DMN connectivity was independent of the number of
ADHD symptoms.

This study has several strengths and limitations. The first
strength is that we included a clinical sample representing
common but severe patients and a sample of HCs matched
on age, IQ, and SES. Second, we had a double-blinded,
placebo-controlled design. Third, we had a hypothesis-driven
approach to analyze the data and explored the potential
effects of ADHD. Fourth, patients with DBD in the MPH
condition received a clinical dosage MPH, based on their
body weight.

There are also some limitations. Due to the use of a between-
subject design, although we used pre-stratification on potential
confounders (e.g., CU traits) and did post-hoc correction
for medication and substance use, pre-existing connectivity

FIGURE 4 | Overlapping regions between ADHD regression and DBD group

comparisons. ADHD regression analyses were performed in DBD subjects

only. (A) In blue, brain areas of NAcc connectivity significantly different between

DBD-PCB and HC groups; in red, NAcc connectivity significantly related to

ADHD symptoms; in green, overlap between the two. (B) Average connectivity

strength in PCC and precuneus plotted against ADHD symptom scores (to

avoid double-dipping, we used the cluster-averages from the DBD-PCB vs.

HC comparison). ADHD, Attention deficit/hyperactivity disorder; PCC,

Posterior Cingulate Cortex; NAcc, Nucleus Accumbens; HC, Healthy control;

PCB, Placebo; MPH, Methylphenidate. x and z coordinates are in MNI space.

differences between the DBD groups cannot be excluded.
Future research should try to use a double-blind crossover
design, although this approach is even more challenging due
to the characteristics of patients with DBD (23). For ethical
reasons, the HCs did not receive a (placebo) intervention so
we cannot fully exclude that the differences between DBD-PCB
and HCs are due to a placebo effect. Since our final DBD
groups were relatively small, the results should be replicated
in larger samples. Larger samples are also needed to clarify
the potential effect of cannabis use on resting-state connectivity
(see Supplementary Table 1). While our seed-based analyses
were hypothesis driven and designed to study the influence
of MPH on resting-state connectivity in patients with DBD,
the aberrances seen in DBD-PCB are difficult to compare with
previous resting-state research in patients with DBD. Since there
is heterogeneity in instructions (eyes open or closed during
scanning), analysis method and patient selection (e.g., excluding
comorbid ADHD, community, clinical, or incarcerated samples)
replication of our DBD-PCB findings are needed. To increase
the usefulness of resting state in antisocial populations, future
researchers should use standardized methods. We suggest future
researchers to instruct their participants to keep their eyes open
with fixation on a cross since this induces greater reliability in,
e.g., default mode and attentional networks (58), to use a seed-
based approach focusing connections in networks involved in
reward and emotion processing, and to use standard correction
for ADHD symptoms.

In conclusion, we replicated previous findings of
hyperconnectivity of limbic areas and networks involved in
reward and emotion processing and in attention in patients with
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DBD and showed that a single dose of MPH normalizes this
hyperconnectivity in DBD patients.
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