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Human non-CpG methylation patterns display both tissue-specific and 
inter-individual differences suggestive of underlying function
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ABSTRACT
DNA methylation (DNAm) in mammals is mostly examined within the context of CpG dinucleo-
tides. Non-CpG DNAm is also widespread across the human genome, but the functional relevance, 
tissue-specific disposition, and inter-individual variability has not been widely studied. Our aim 
was to examine non-CpG DNAm in the wider methylome across multiple tissues from the same 
individuals to better understand non-CpG DNAm distribution within different tissues and indivi-
duals and in relation to known genomic regulatory features.

DNA methylation in umbilical cord and cord blood at birth, and peripheral venous blood at age 
12–13 y from 20 individuals from the Southampton Women’s Survey cohort was assessed by 
Agilent SureSelect methyl-seq. Hierarchical cluster analysis (HCA) was performed on CpG and non- 
CpG sites and stratified by specific cytosine environment. Analysis of tissue and inter-individual 
variation was then conducted in a second dataset of 12 samples: eight muscle tissues, and four 
aliquots of cord blood pooled from two individuals.

HCA using methylated non-CpG sites showed different clustering patterns specific to the three 
base-pair triplicate (CNN) sequence. Analysis of CAC sites with non-zero methylation showed that 
samples clustered first by tissue type, then by individual (as observed for CpG methylation), while 
analysis using non-zero methylation at CAT sites showed samples grouped predominantly by 
individual. These clustering patterns were validated in an independent dataset using cord blood 
and muscle tissue.

This research suggests that CAC methylation can have tissue-specific patterns, and that 
individual effects, either genetic or unmeasured environmental factors, can influence CAT 
methylation.
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Introduction

Epigenetics, the study of changes in gene expression 
that occur without alterations in the nucleotide 
sequence, plays a fundamental role in regulating 
the accessibility of DNA to the transcriptional 
machinery and the regulation of tissue-specific 
gene expression, as well as genomic imprinting 
and X chromosome inactivation in early develop-
ment [1]. DNA methylation (DNAm) is a widely 
studied epigenetic modification and is normally 
examined in the context of a CG dinucleotide 
(CpG), where the cytosine base can be modified at 
the fifth carbon position by the addition of a methyl 
(CH3) group. DNAm in the CpG context has 
a well-established role in genomic regulation and 

control of gene expression, with evidence that 
altered CpG methylation may link early-life envir-
onmental exposures with later non-communicable 
diseases, such as cardiovascular disease or obesity 
[2,3]. Animal models have shown how different 
environmental factors, such as diet, exercise, and 
stress, can affect DNA methylation and gene 
expression [4–8].

DNA methylation outside the CpG context has 
been far less extensively studied, yet may be far 
more prevalent within the methylome; there are 
approximately 28 million CpG dinucleotides in the 
human genome but in excess of 556 million cyto-
sines in a non-CpG context (USCS, hg19). For 
example, in human and mouse central nervous 
system neurons, ~2-6% of non-CpG sites are 
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methylated, with a mode of ~20-25% methylation 
across those sites, whereas methylation levels at 
methylated CpG sites are typically ~60-90% 
[9,10]. However, CpG dinucleotides are relatively 
underrepresented in the genome [11], leading to 
far greater numbers of non-CpG sites, with non- 
CpG methylation representing up to half of all the 
methylation present; a study by Woodcock et al. 
suggests that, in DNA from human spleen, up to 
54.5% of all methylation present are in a non-CpG 
context [12]. Levels of non-CpG methylation may 
depend highly on tissue type, with higher levels of 
specific non-CpG methylation reported in neu-
rones and human embryonic stem cells, but pre-
sent at much lower levels in other tissue types 
[9,10,13–15]. Studies in plants have found that 
non-CpG methylation predominantly occurs at 
base-pair triplicates [16,17], while studies in verte-
brates examining non-CpG methylation have 
identified both symmetric CHG (H = A, C, or T) 
[18] and asymmetric CHH methylation patterns 
[14,19], at conserved positions in the genome 
[20,21], with the sequence flanking the cytosine 
position potentially modulating DNA methyltrans-
ferase 3A (DNMT3A)/DNMT3B binding, in con-
junction with DNMT3L [22].

The role of non-CpG DNAm within the gen-
ome is unclear, and DNAm in different contexts 
may perform specific or overlapping functions. 
Non-CpG methylation has been linked to disease 
status such as in type 2 diabetes where increases in 
non-CpG methylation within the promoter of per-
oxisome proliferator-activated receptor-gamma 
coactivator (PGC-1α) were associated with 
impaired glucose tolerance. Moreover, PGC-1α 
non-CpG methylation was increased by free fatty 
acids, suggesting potential environmental modula-
tion of the methylation status of these sites [23]. 
Non-CpG methylation has also been implicated in 
Alzheimer’s disease (AD), where non-CpG methy-
lation patterns within the promoter of Presenilin1 
in human brain tissue were inversely correlated 
with expression in AD samples [24], suggesting 
active demethylation of non-CpG methylation, 
epigenetically regulating gene expression. Active 
demethylation of non-CpG methylation has been 
reported in other contexts [25] but remains under-
studied [26].

Differences in levels of non-CpG DNAm 
between human samples could be the result of 
stochastic change in the epigenome, but there are 
two main alternative explanations as to why non- 
CpG DNAm levels may differ in human samples. 
(1) Differences may exist between individuals: 
resulting from either environmental factors during 
development or an individual’s genetic sequence; 
(2) non-CpG DNAm patterns may differ by tissue 
type due to developmental programming during 
cell differentiation. If differences in non-CpG 
DNAm are not just purely due to random pro-
cesses, then similarities in the patterns of non-CpG 
DNAm within tissue types or within individuals 
may be expected.

To investigate whether individual or tissue- 
specific factors may influence non-CpG methy-
lation, here, we have examined both CpG and 
non-CpG methylation in placental cord and cord 
blood at birth, as well as peripheral venous 
blood collected at 12–13 y in a group of indivi-
duals (n = 20) from the Southampton Women’s 
Survey (SWS) cohort. Methylation data were 
captured using the Agilent SureSelectXT 
Human Methyl-Seq (SureSelect platform). 
Hierarchical clustering analysis (HCA) was 
applied to the CpG and non-CpG data to 
observe the clustering patterns. We then vali-
dated our findings in an independent dataset of 
12 samples with two tissue types: cord blood and 
muscle.

Methods

Discovery data

In the discovery dataset, a total of 60 samples from 
the SWS cohort, a UK prospective cohort study in 
which women were recruited before the concep-
tion of the child [27], were interrogated by Agilent 
SureSelectXT Human Methyl-Seq capture and 
sequencing method (SureSelect). These 60 samples 
consisted of 20 individuals each analysed across 
three tissue types: cord blood, umbilical cord, 
and 12–13 y peripheral blood. Cord blood consists 
of B cells, granulocytes, monocytes, natural killer 
cells, nucleated red blood cells, and CD4 and CD8 
T cells, and peripheral venous blood contains 
B cells, neutrophils, monocytes, natural killer 
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cells, and CD4 and CD8 T cells. Individuals were 
selected on the basis of having DNA from all three 
tissues available in sufficient quantities (1 µg) and 
were split equally by sex (10 males/10 females), 
and five individuals from each quarter of 
the percent fat distribution from DXA measure-
ments taken at age 8–9 y.

Validation data

For the validation dataset, 12 samples were inter-
rogated by Agilent SureSelect in total across five 
individuals. Muscle tissue samples from four males 
aged between 73 and 79 y from the Hertfordshire 
Sarcopenia Study (HSSe), a UK based cohort study 
[28], were assayed in duplicate (1A/B, 2A/B, 3A/B, 
4A/B), and one cord blood sample (pooled from 
two individuals, both male) from the SWS was 
assayed as two duplicate pairs (5A/B and 5 C/D). 
Agreement in methylation levels between dupli-
cates was assessed using a subset of 671,751 non- 
zero methylated non-CpG sites showing, on aver-
age, 93.4% of sites agreeing to within 10% methy-
lation; reproducibility statistics and sample DNA 
quantities can be seen in Table S1.

DNA extraction

DNA from muscle biopsy samples was stored and 
extracted as described previously [29]. For umbi-
lical cord, a 5–10 cm segment was cut from the 
mid portion of each cord, immediately following 
delivery, flushed with saline to remove foetal 
blood, flash-frozen in liquid nitrogen, and stored 
at −80°C until required for DNA isolation. 
Peripheral blood was stored at −80°C until further 
processing. Genomic DNA from peripheral blood 
was extracted using QIAamp DNA Mini Kit 
(Qiagen, UK), following the manufacturers’ 
recommendations. Genomic DNA was prepared 
from umbilical cord, umbilical cord blood, and 
muscle tissue by a standard high salt method [30].

Agilent sureselect methyl-seq data

Methyl-seq data were generated by the Centre for 
Genomic Research at the University of Liverpool 
using the Agilent SureSelect platform [31]. Both the 
discovery data and the validation data were cleaned, 

processed, and analysed using the same procedure 
detailed below. The data arrived as FASTQ files, 
trimming of adapters was performed using 
Cutadapt v1.2.1 with the option -O 3, so the 3' 
end of any reads which matched the adapter 
sequence for three base pairs or more were trimmed 
[32], and a minimum window quality score 20, 
using Sickle v1.2 [33]. Reads <10 bp were removed. 
The unmasked human genome was downloaded 
from UCSC, and the genome hash table was built 
using Extended Randomized Numerical Aligner 
(ERNE) Create [34]. The alignment against the 
genome was performed using ERNE-BS5 2 [35]. 
Unprocessed data contained paired-end reads and 
singleton reads. Singleton reads result from one 
read of a pair failing the Sickle quality control. 
The singlet files contained sequences whose pair 
had been removed due to poor sequence quality 
or adapter contamination. SureSelect data in the 
discovery dataset and the validation dataset pro-
duced similar summary statistics. Paired reads 
aligned uniquely to the genome at a greater rate 
(88.8% and 85.0%) than singleton reads (66.1% and 
59.3%), and singleton reads were negligible in num-
ber (0.76 and 1.37 million reads) compared with 
paired-end reads (85.7 and 99.4 million reads) for 
discovery and validation datasets, respectively. As 
a result of this, singleton reads were not included in 
any analysis. For each sample, methylation calls 
(calculated by the number of methylated reads/ 
total number of reads at each cytosine) were made 
using ERNE-METH 2 [35]. This provided the 
methylation level for each cytosine for each sample. 
Options ‘––annotations-bismark’ and ‘––annota-
tions-erne’ were used during the methylation call-
ing process to provide detailed cytosine context. 
Previous studies have demonstrated that reprodu-
cibility improvements are minimal beyond 30× 
read-depth [36]; therefore, a minimum read-depth 
of 30× was used for all downstream analyses. 
A flowchart summarizing the steps from 
SureSelect library preparation to statistical analysis 
is shown in Supplementary Figure S1.

Statistical analysis

Data manipulation and summary statistics were 
created using Stata (version 15.0 and 16.0) and 
unix bash commands, and hierarchical cluster 
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analysis was performed in R (version 3.5.1 and 
3.6.1) using the ‘hclust’ command with complete 
linkage method and Euclidean distance as the 
metric to measure dissimilarity. Other linkage 
methods were also tested, with similar results 
(‘average linkage method’ and ‘weighted pair 
group method with arithmetic mean’). For hier-
archical cluster analysis on non-CpG methylation, 
non-CpG sites were restricted to 671,751 sites 
where methylation was >0 for all 60 samples, i.e., 
all 20 individuals across all three tissue types had 
non-zero methylation values at these sites; these 
671,751 non-CpG sites are frequently referred to 
as ‘non-zero’ methylation sites.

Results

To understand tissue and individual differences in 
non-CpG methylation, DNA samples from 20 
individuals in three tissue types (umbilical cord, 
cord blood, and peripheral blood) were interro-
gated for non-CpG (and CpG) methylation using 
Agilent SureSelect. Table 1 shows the number of 
sites for the CpG and non-CpG sites in the dis-
covery dataset with over 30-fold read-depth, split 
by tissue type, and those sites covered in all 60 
samples. In the discovery dataset, ~2.52 million 
CpG sites (>30× read-depth) were captured in at 
least one of the 60 samples, and similarly 
~2.58 million in the validation dataset. When con-
sidering the number of CpG sites with over 30 
reads across all 60 samples in the discovery data-
set, the number reduced to 1,222,537 CpG sites. 
Over 17.6 million non-CpG sites (>30× read- 
depth) were captured in at least one of the 60 
samples in the discovery dataset (and 
~17.7 million in the validation dataset). The 

number of non-CpG sites with non-zero methyla-
tion in all of the 60 samples was 671,751, with 
a median methylation between 3.4% and 8.0% 
(median and 5th–95th percentile of methylation 
for each sample are shown in Table S2a). Of the 
671,751 non-CpG sites that were non-zero methy-
lated in the discovery dataset, 667,922 (99.4%) 
were covered with over 30 reads across all 12 
samples in the validation dataset, and 586,435 of 
those were also non-zero methylated (Table S3).

Median methylation levels for the 671,751 non- 
CpG sites (identified in discovery dataset) were 
between 6.3% and 7.2% for samples in the valida-
tion data (Table S2(b) and Figure S2). The distri-
bution of non-CpG and CpG methylation in 
relation to genomic features was examined in the 
validation dataset (Figure S3), finding a higher 
percentage of non-CpG sites vs. CpG sites located 
within introns (37.7% vs. 28.9%) and a lower per-
centage in promoters (30.1% vs. 38.4%). These 
differences were slightly larger when comparing 
CpG sites specifically to CAC or CAT sites that 
were non-zero methylated (Figure S3). Non-zero 
methylated CAC and CAT sites showed very simi-
lar distributions across genomic features (Figure 
S3), but median methylation levels for CAC sites 
were consistently higher than at CAT sites (Table 
S4). Promoter regions were defined as 2 kbp 
upstream and 500 bp downstream of transcrip-
tional start sites.

Discovery data: hierarchical cluster analysis of 
CpG and non-CpG methylation

HCA was performed on DNA methylation pat-
terns in umbilical cord, cord blood, and peripheral 
blood samples to investigate tissue-specific 

Table 1. Summary of CpG and Non-CpG sites with over 30 reads by tissue type in discovery dataset. Summary tables with number of 
CpG and Non-CpG sites with over 30 reads by tissue type: a) in at least one individual; b) in all individuals; and c) having non-zero 
methylation in all individuals.

a) Number of sites with over 30 
reads in at least one individual

Cytosine Context 12–13 y peripheral blood Cord blood Umbilical cord All 60 samples
CpG 2,448,736 2,397,488 2,418,723 2,518,311

Non-CpG 17,292,430 17,038,713 17,218,661 17,603,383

b) Number of sites with over 30 
reads in all 20 individuals

Cytosine Context 
CpG

12–13 y peripheral blood 
1,334,219

Cord blood 
1,433,637

Umbilical cord 
1,397,930

All 60 samples 
1,222,537

Non-CpG 10,843,753 11,321,097 10,940,859 9,779,206

c) Number of sites with over 30 
reads and non-zero methylation 
values in all 20 individuals

Cytosine Context 12–13 y peripheral blood Cord blood Umbilical cord All 60 samples
CpG 

Non-CpG
1,026,360 
1,657,153

1,098,718 
1,923,066

1,075,501 
2,633,428

862,472 
671,751
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methylation patterns, and the relationship between 
inter- and intra-individual methylation. CpG 
methylation analysis was carried out on 1,222,537 
sites, for which a minimum read-depth of 30-fold 
across all 60 samples was available (Figure 1). 
DNAm at CpG sites was found to separate first 
by tissue type, with cord blood and peripheral 
blood samples from the same individual clustering 
together, disparate from a cluster of umbilical cord 
samples.

To determine whether non-CpG methylated 
sites would cluster samples similarly to CpG sites, 
hierarchical cluster analysis was applied to non- 
CpG DNAm. Data were available for ~9.8 million 
non-CpG sites for which a minimum read-depth 
of 30-fold was met across all 60 samples. This data 
contained a large proportion of unmethylated 
sites, so the dataset was limited to ‘commonly 
methylated’ non-CpG sites that had greater than 
30 reads and non-zero methylation levels across all 
three tissue types in the 20 individuals in the 
study, identifying 671,751 non-zero methylated 
non-CpG sites across all 60 samples for use in 
further analysis. Hierarchical clustering revealed 
differences in the way that samples were clustered: 
of the 60 samples, 10 samples clustered by tissue 
type – umbilical cord samples from 10 different 
individuals clustering together; 21 samples 
grouped by individual, with all 3 tissue samples 

(cord blood, umbilical cord, and peripheral blood) 
clustered together for 7 individuals; and 26 sam-
ples grouped into pairs of tissue, with cord blood 
and peripheral blood clustered together for 13 
individuals – leaving 3 outlying samples 
(Figure S4).

Sequence context of non-CpG methylated sites 
influences inter-tissue and inter-individual 
hierarchal clustering

Analysing all non-zero non-CpG sites together 
combines cytosines from a range of different 
underlying sequence contexts, which may obscure 
specific patterns in their DNA methylation pro-
files, and it has been previously suggested that the 
cytosine sequence context (CHG and CHH, in the 
5' to 3' direction, where H = A, C, or T) may have 
an influence on methylation patterns in mammals 
[37]. Non-CpG methylation was, therefore, sepa-
rated into 12 different cytosine contexts and ana-
lysed separately: CTG, CAG, CCG, CTT, CAT, 
CCT, CTA, CAA, CCA, CTC, CAC, and CCC 
(Table S3). Hierarchical cluster analysis revealed 
clear differences in clustering patterns depending 
on the adjacent DNA sequence of the non-CpG 
sites. Dendrograms for non-zero methylated CAC 
(n = 141,674), CTC (n = 27,559), and CAT 
(n = 68,866) sites are shown in Figure 2(a,b,c). 

Figure 1. Hierarchical cluster analysis on CpG sites in discovery dataset. Analysis carried out on 1,222,537 CpG sites with >30× read- 
depth in each of the 60 samples. Cluster dendrograms shows separation of umbilical cord tissue (green), and remaining samples are 
grouped by pairs (cyan) of individuals’ cord blood (CB) and 12–13 y peripheral blood (peripheral) samples.
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For the other nine non-CpG cytosine specific con-
texts, samples still showed some clustering by tis-
sue or individual but displayed less distinct 
clustering patterns and are shown in Figure 
S5(a-i).

Using DNAm values from cytosines in the CAC 
or CTC context, samples clustered by tissue type 
with DNA samples from cord blood and periph-
eral blood clustering together in each individual, 
but separately from umbilical cord tissue (Figure 2 
(a,b)). Samples were then paired by individuals 
within the cluster of peripheral and cord blood, 
with cytosines in the CAC context pairing all 20 
individuals, and 19 of 20 individuals pairing using 
CTC sites. In cluster analysis using DNAm occur-
ring at CAT sites, samples grouped predominately 
by individual, with DNA samples from cord tissue, 
cord blood, and peripheral blood forming triads by 
individuals (Figure 2c). Non-zero methylated CAT 
sites showed a different pattern of clustering 
(separation by individuals) compared with using 
non-zero methylation data exclusively from CAC 
or CTC sites (tissue separation).

Given these observations that clustering pat-
terns are affected by different cytosine contexts of 
non-CpG DNAm, we next examined different 
cytosine contexts for CpG methylation to deter-
mine whether clustering of samples varied between 
CGA, CGC, CGG, and CGT methylation. 
Differences were seen between the four analyses, 
whereby CGT and CGG methylation sites were 
able to separate out first by umbilical cord tissue, 
and then successfully cluster all remaining periph-
eral and cord blood samples by pairing indivi-
duals. CGC and CGA sites were similar to CGT 
and CGG sites; but within the 40 samples of per-
ipheral and cord blood, not all samples were clus-
tered by individuals (Figure S6(a-d)).

Different cytosine contexts in non-CpG 
methylation cluster analysis – validation data

Having seen that using non-zero non-CpG methy-
lation sites could generate different clustering pat-
terns depending on the genomic sequence adjacent 
to the cytosines, we wanted to examine whether 
this phenomenon could be validated in an inde-
pendent dataset. In order to test whether this 
pattern would occur not only in a different set of 

individuals but also in a tissue type not analysed in 
the discovery data, HCA was conducted in 
a dataset of 12 samples consisting of four indivi-
duals in duplicate using muscle tissue, and cord 
blood data from a pooled DNA sample carried out 
in two duplicate pairs. Dendrograms were created 
using the subset of 671,751 non-CpG sites that 
were non-zero methylated in the discovery dataset, 
provided these sites had over 30 reads in the 
validation dataset. Figure 3 shows dendrograms 
for three different cytosine contexts: CAC, CTC, 
and CAT. This shows that methylation at these 
CAC sites clustered samples by tissue type first, 
then individuals within muscle tissue (as with the 
discovery dataset), whereas methylation at these 
CAT sites clustered samples by individuals, with 
no initial separation of muscle from cord blood 
samples.

Discussion

Little is known to date on the functional signifi-
cance of non-CpG methylation. In this study, we 
examined non-CpG DNAm across multiple tissues 
from the same individuals to better understand 
differences in tissue specificity and inter- 
individual variability of non-CpG methylation. 
We found that hierarchical cluster analysis, using 
DNAm data from non-CpG sites in cord blood, 
peripheral blood, and umbilical cord, clustered 
samples by individual and/or separated certain 
tissue types. If measured non-CpG DNAm were 
purely the result of randomness in the epigenome, 
the expected result from our hierarchical cluster-
ing would be samples clustering at random or not 
at all. This demonstrates that non-CpG methyla-
tion is not just occurring randomly in the genome 
but that non-CpG methylation patterns can differ 
by tissue type and that these differences may in 
part be driven by an individual’s genomic or envir-
onmental exposures.

In addition to this, non-CpG methylation in 
certain genomic contexts (e.g., CAC) separated 
samples by tissue type, grouping samples from 
different individuals into an umbilical cord clus-
ter, and then grouping cord blood and peripheral 
blood together from each individual. A similar 
pattern was observed when analysing CpG sites. 
However, using non-zero DNAm at CAT sites, 
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predominately all three samples from an indivi-
dual clustered together (17 of 20 individuals clus-
tered in their triplicates) rather than separating 
by tissue type, suggesting that some non-CpG 
DNAm sites are more tissue-specific and others 

more susceptible to individual effects. Using the 
subset of methylated non-CpG sites identified 
from the discovery analysis phase, the concept 
of cytosine sequence context driving tissue- or 
individual-based clustering (for CAC and CAT, 

Figure 2. (a-c): Three dendrograms of non-CpG methylation sites in discovery dataset. Hierarchical cluster analysis was carried out 
using methylation sites with >30× read-depth across all 60 samples with at least one methylated read (non-zero methylated sites). 
Colour code: all three tissues from an individual clustered together in triplicates (magenta), pairs of peripheral blood and cord blood 
samples grouped by individual (cyan), umbilical cord samples not clustering by individual (green). UC = umbilical cord sample, 
CB = cord blood sample, peripheral = 12–13 y peripheral blood. Restricted to three separate cytosine sequence contexts: (a) CAC 
sites (n = 141,674), (b) CTC sites (n = 27,559), and (c) CAT sites (n = 68,866).

EPIGENETICS 659



respectively) was validated in an independent 
dataset using cord blood and muscle tissue – 
a tissue type that had not been used in the dis-
covery data. This suggests that the subset of non- 
zero methylated non-CpG DNAm sites identified 
here may have relevance across several tissue 
types and a broad spectrum of people.

The distribution of non-CpG and CpG sites 
differed in relation to genomic features, especially 
within intronic and promoter regions. It is also 
worth noting that even though non-zero methy-
lated CAC and CAT sites clustered samples differ-
ently (by tissue or by individual, respectively), 
these sites show very similar distributions across 
genomic features. This suggests that the differ-
ences in tissue/individual clustering patterns 
using methylated CAC and CAT sites may be 
due to varying levels of methylation across these 
sites rather than their distribution in relation to 
genomic features. Where samples cluster sepa-
rately by tissue type using non-zero methylated 
CAC sites, cord and peripheral blood were found 
to cluster together, indicating a similar 

methylation profile within these tissue types. This 
is suggestive of lineage-specific non-CpG methyla-
tion patterns that have potentially been main-
tained from a common precursor cell type.

Existing literature on non-CpG methylation is 
very limited, focusing mainly on stem cells and 
brain tissue. In addition, studies on non-CpG 
methylation are mostly limited to two base-pair 
sequence context in the 5' to 3' direction (CpA, 
CpC, or CpT) [38–40]. Here, we present evidence 
that a three base-pair cytosine sequence context 
can either display tissue-specific methylation 
(CAC) or individual-specific methylation patterns 
(CAT) or show no clear clustering by tissue or 
individual (CAA and CAG). This suggests that 
restricting analysis of non-CpG methylation data 
to a two base-pair context may be grouping 
together disparate methylation patterns (e.g., 
CpA = CAT, CAC, CAA and CAG) and, therefore, 
concealing important differences connected to the 
third base in the triplicate.

CpG sites are symmetrical, whereby there is 
a cytosine and guanine on the complementary 

Figure 3. (a-c): Dendrogram of non-CpG methylation in validation dataset. Muscle tissue samples (yellow) were assayed in four 
individuals in duplicate (1A/B, 2A/B, 3A/B, 4A/B), and one cord blood sample (red) from the SWS was assayed in quadruplicate (5A/B/ 
C/D) (pooled from two individuals). Hierarchical cluster analysis was carried out on samples from validation dataset using non-CpG 
sites (>30× read-depth) overlapping with 671,751 non-zero non-CpG sites from discovery dataset, restricted to (a) 140,188 CAC sites, 
(b) 68,468 CAT sites, and (c) 27,469 CTC sites.
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strand in the 3' to 5' direction and, if methylated, 
CpG methylation generally occurs on both strands 
(reciprocal methylation). As a result, CpG methy-
lation can be maintained during cell replication by 
DNA methyltransferase 1 (DNMT1) [41]. 
However, it has been shown that some CpG sites 
are hemi-methylated and that CpG hemi- 
methylation can be inherited over several cell divi-
sions, suggesting that, although most hemi- 
methylated CpG sites become fully methylated 
during cell divisions, hemi-methylation in some 
CpG sites may be a stable epigenetic state [42]. 
CHH sites, such as CAC, are not symmetrical and 
so any methylation occurring at CHH sites is also 
hemi-methylated. As samples in our study main-
tained a tissue/individual specific signature using 
only subgroups of CHH methylation, this suggests 
that there may exist some form of active mainte-
nance of methylation for non-symmetrical non- 
CpG sites too.

In the discovery data, samples 3 and 4 from 
umbilical cord clustered separately from all other 
samples when using non-CpG data. These samples 
displayed noticeably higher non-CpG methylation 
values than any other samples, but the reason for 
such deviation is not known. Interestingly, these 
individuals did not cluster separately when using 
CpG data or when using non-CpG data from cord 
blood or peripheral blood; it is only non-CpG sites 
from umbilical cord samples for these individuals 
that differed in methylation. Umbilical cord is 
a heterogeneous mixture of tissues types [43], so 
it is possible that more of a particular tissue type 
that contains higher levels of non-CpG methyla-
tion was present in the aliquot of umbilical cord 
tissue used for these two individuals. Another 
explanation could be potential unknown environ-
mental factors, but this would imply that those 
factors only affected non-CpG DNAm specifically 
in umbilical cord tissue samples and not any other 
measured methylation.

One of the strengths of this study is the 
increased coverage of the methylome provided by 
Agilent SureSelect data compared with more 
widely used methods, such as the Infinium 850 K 
EPIC array, which only covers ~850,000 methyla-
tion sites and is focused on CpG sites. Our 
SureSelect Methyl-seq dataset contains methyla-
tion data on ~2.52 million CpG sites (>30× read- 

depth) or 1,222,537 CpG sites when selecting CpG 
sites with over 30 reads across all 60 samples in the 
discovery dataset; coverage of non-CpG sites was 
~17.6 million (>30× read-depth) or 671,751 sites 
when selecting non-zero percent methylated sites 
with over 30 reads across all 60 samples in the 
discovery dataset.

A further strength of this study is the multiple 
different tissue types for each individual, thus 
allowing for comparisons across tissue types and 
individuals. Having access to two independent 
cohorts with SureSelect data on CpG and non- 
CpG data was also advantageous and made it 
possible for us to validate our findings from the 
discovery data. One more novel aspect of this 
study is the tissue types used, which are not com-
monly examined for their non-CpG methylation 
status: cord blood, umbilical cord, muscle, and 
peripheral blood samples – tissue samples that 
are generally quite accessible to researchers.

The examination of CGA, CGC, CGG, and 
CGT sites suggests that, in contrast to observations 
of cytosine contexts of non-CpG sites, the cytosine 
context of CpG sites may have less of an effect on 
the methylation values and that the clear differ-
ences between tissue- and individual-driven clus-
tering seen in cytosine sequence contexts may be 
unique to non-CpG methylation.

One of the limitations of this study is the 
sequence-based nature of the SureSelect assay, 
meaning that in a separate SureSelect assay, not 
all the sites identified in this study will be guaran-
teed to meet the minimum read-depth cut-off of 
>30-fold that we used. This would make it difficult 
for other researchers to replicate our observations 
using exactly the same non-CpG sites as us. 
However, we saw 99.4% of non-zero methylated 
non-CpG sites in our discovery dataset in our 
validation dataset (with over 30-reads). Even if 
the subset of non-CpG sites identified by other 
researchers does not overlap exactly with those 
used in this study, one option could be to use 
a subset of the non-CpG sites identified here. In 
the analysis here, we have presented data in rela-
tion to non-CpG methylation in the context of 
trinucleotides (CHG and CHH sites) as non-CpG 
methylation in this context has been the most 
widely reported [14,19–21]; there is some evidence 
that suggests additional nucleotides outside of 
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CHG and CHH sites may also play a role in 
determining methylation [14,22], but this was out-
side the scope of our study.

In terms of measurement error on SureSelect 
platform, Teh et al. [36] have previously shown 
that using a 30× read-depth coverage and 1 µg of 
DNA, 71% of probes agreed to within an absolute 
difference of 5% methylation with the replicate 
sample, and this increased to 91% agreeing within 
10% methylation. We see a very similar level of 
agreement at methylated non-CpG sites (valida-
tion data shown in Table S1) with an overall aver-
age of 93.4% of data agreeing to within 10% 
methylation. Median methylation levels for the 
671,751 non-CpG sites (identified in discovery 
dataset) are between 6.3% and 7.2% in the valida-
tion data, and measurement error on the array is 
not negligible compared with this. However, 
despite the impact of possible measurement error 
from the array and relatively low levels of methy-
lation across non-CpG DNAm sites compared 
with CpG sites, we still saw our data clustering in 
meaningful ways when restricted to only non-zero 
methylated non-CpG sites.

The process outlined in this paper identified 
a subset of non-CpG sites that are commonly 
methylated across 20 individuals and in each of 
their three tissue types. The results were validated 
in an independent dataset, including the use of 
previously unused tissue types; this suggests that 
there may exist a subset of non-CpG sites that are 
commonly methylated within the population and 
also across multiple tissue types. Therefore, similar 
to our approach of using previously untested tissue 
type in our validation data, other researchers may 
be able to examine these same non-CpG sites 
without necessarily having similar cohort or simi-
lar tissue types to those seen in this study.

Although the functionality of non-CpG methy-
lation has not been comprehensively explained in 
mammals, it is clear that non-CpG methylation 
profiles can be used to differentiate between tissue 
types and between individuals. In addition, certain 
subsets of non-CpG methylation sites are better 
able to differentiate between tissue types, while 
others are able to more easily differentiate between 
individuals. More research is needed to gain 
insight as to why data from some non-CpG con-
texts cluster by individuals and others principally 

by tissue type and also what functional significance 
these, or any other, non-CpG sites may have in the 
development of health and disease.
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