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Abstract: Lead-free environmentally friendly piezoelectrical materials with enhanced piezoelectric
properties are of great significance for high-resolution ultrasound imaging applications. In this paper,
Na0.5Bi4.5Ti3.86Mn0.06Nb0.08O15+y (NBT-Nb-Mn) bismuth-layer-structured ceramics were prepared
by solid-phase synthesis. The crystallographic structure, micromorphology, and piezoelectrical
and electromechanical properties of NBT-Nb-Mn ceramics were examined, showing their enhanced
piezoelectricity (d33 = 33 pC/N) and relatively high electromechanical coupling coefficient (kt = 0.4).
The purpose of this article is to describe the development of single element ultrasonic transducers
based on these piezoelectric ceramics. The as-prepared high-frequency tightly focused transducer
(ƒ-number = 1.13) had an electromechanical coupling coefficient of 0.48. The center frequency was
determined to be 37.4 MHz and the −6 dB bandwidth to be 47.2%. According to the B-mode
imaging experiment of 25 µm tungsten wires, lateral resolution of the transducer was calculated
as 56 µm. Additionally, the experimental results were highly correlated to the results simulated by
COMSOL software. By scanning a coin, the imaging effect of the transducer was further evaluated,
demonstrating the application advantages of the prepared transducer in the field of high-sensitivity
ultrasound imaging.

Keywords: environmental friendliness; ultrasound transducers; ultrasound imaging; high-resolution
imaging

1. Introduction

Ultrasound is becoming an increasingly important study area in acoustics due to
its promising future. High-frequency ultrasound has a wide range of applications in
biomedical imaging, non-destructive testing, and material micromechanical testing [1,2].
Recent years have witnessed a surge in scholarly interest in high-frequency ultrasound
imaging technology with significant therapeutic potential. Ultrasound imaging has become
one of the principal diagnostic techniques in modern clinical medicine because of its
safety, intuition, flexibility, economy, and repeatability [3,4]. Compared to conventional
medical ultrasound (2–15 MHz), high-frequency ultrasound sacrifices penetration depth for
increased spatial resolution [5]. As a result, the significance of high-frequency ultrasound
in clinical diagnostics and biomedical tissue research is indisputable [6].
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As the primary component of high-frequency ultrasound technology, ultrasound trans-
ducers are essential for the overall performance of ultrasound systems. The performance of
an ultrasonic transducer is limited by its piezoelectric material. Depending on the appli-
cation scenario, it is significant to select the suitable piezoelectric material and design the
piezoelectric layer. Piezoelectric ceramics are indispensable in the industrial production of
ultrasonic transducers because of their low dielectric loss, high electromechanical conver-
sion capability, and excellent mechanical properties [7]. Pb(Zr, Ti)O3 (PZT) is the preferred
piezoelectric ceramic for the production of high-performance transducers because of its
low manufacturing cost and high performance [8,9].

Nonetheless, the volatilization of lead oxide in PZT has resulted in tremendous en-
vironmental pollution during its manufacture and disposal. Therefore, environmentally
friendly lead-free piezoelectric ceramics may be an attractive alternative. In recent years,
researchers have demonstrated an increased interest in developing and applying lead-free
piezoelectric ceramics [10–13]. Na0.5Bi4.5Ti4O15-based (NBT) piezoelectric ceramic materi-
als have developed into a research focus because of their high Curie temperatures and good
dielectric properties for harsh environment applications [14–17]. Nevertheless, pure NBT
piezoelectric ceramics exhibit low piezoelectric and ferroelectric performance, which are
incompatible with the requirements of general piezoelectric devices. It has previously been
demonstrated that dopant-induced modifications can enhance the electrical properties of
bismuth-layered ceramics. Numerous experimental studies have established that adding
Mn, La, Co, Ba, Ce, or other rare earth elements significantly improve the performance
of NBT ceramics [18–24]. In this paper, Nb2O5 and MnO2 are doped into NBT ceramics
to promote the sintering process and improve their piezoelectric properties. In summary,
improving material electrical properties is critical for developing ultrasonic transducers.

The past twenty years have seen increasing advances in highly functional sensors
based on leadless ceramics. S.T.F. Lee et al. have developed 40 MHz lead-free transducers
with insertion loss of −26 dB and a −6 dB bandwidth of 76.4% [25]. Can Wang et al. have
prepared 1.615 MHz transducers with a −6 dB bandwidth of 56.25% based on Ca and Hf
doped barium titanate ceramics [26]. Yi Quan et al. fabricated tightly focused KNN-based
transducers, having a center frequency over 80 MHz and a −6 dB bandwidth of 52% [27].
Ultrasound imaging requires a higher resolution to improve the image quality [28–31]. It
is widely believed that the center frequency and bandwidth of ultrasound transducers
are critical parameters that affect the image quality [32]. Generally, increasing the center
frequency results in optimizing spatial resolution while decreasing scanning depth [33].
Furthermore, the ƒ-number is a significant factor in influencing lateral resolution, which also
needs to be considered in transducer design [34]. Numerous studies have begun to examine
the performance of high-resolution ultrasound imaging in ophthalmology, dermatology,
cardiology, and medical experiments involving small animals [35–39]. Fei et al. obtained a
series of bio-microscopy images of zebrafish eyes using lithium niobate (LiNbO3) single-
element ultrasonic transducers [40]. Zhang et al. have developed a transducer based on
sodium bismuth titanate material to successfully capture images of skin on the back of a
hand [41]. Zhang et al. reported a high-frequency miniature ultrasound transducer for
intravascular imaging and performed imaging tests on porcine coronary arteries [42].

In this work, Na0.5Bi4.5Ti3.86Mn0.06Nb0.08O15+y ceramics with high piezoelectric prop-
erties were fabricated by solid-phase synthesis. On this basis, tightly focused ultrasound
transducers with a center frequency of 40 MHz were designed and manufactured. The
electrical, acoustic, and imaging characteristics of the transducer were analyzed. The results
of the relative experiment coincide well with the results simulated by PiezoCAD and COM-
SOL software. The study demonstrates that the transducers have potential applications in
high-precision microscopic imaging. Research results have demonstrated that NBT-based
lead-free piezoelectric ceramics are appealing materials for imaging applications involving
high-frequency ultrasound.
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2. Fabrication and Characterization of Piezoelectric Ceramics
2.1. Fabrication

NBT-Nb-Mn ceramics were obtained by using the solid-phase synthesis method. The
raw materials used in this experiment were analytically pure Na2CO3 (99.9%), Bi2O3
(99.9%), TiO2 (99.9%), MnO2 (99.0%), and Nb2O5 (99.9%), which were weighed in accor-
dance with their stoichiometric proportion compositions. The combined powders were
ground for twelve hours in a ball grinder using zirconia balls and 60% ethanol. After ball
milling and drying, the mixture was calcined at 800 ◦C for three hours to obtain the phase
Na0.5Bi4.5Ti4O15. The ball-milling, drying, and grinding processes were repeated once to
facilitate granulation. The powder was then pressed at 6–10 MPa with 9 wt% polyvinyl
alcohol (PVA) binder. During the second sintering process, the thin cylinders were placed
in a sealed crucible containing alumina and heated to 980 ◦C to minimize the volatilization
of bismuth oxide, and then maintained for 3 h. The samples were approximately 11 mm in
diameter and 1 mm in thickness. Both sides of the ceramic samples were painted with Ag
electrodes. The NBT ceramics were polarized in silicone oil at 180 ◦C for thirty minutes
under a direct current field of 9–10 kV/mm.

2.2. Characterization

The dielectric, electromechanical, and piezoelectric properties of the NBT-Nb-Mn
ceramic samples are detailed in Table 1. Utilizing a quasi-static piezoelectric constant meter
(ZJ-3D, Institute of Acoustics, Beijing, China), the piezoelectric coefficients d33 of the ceramic
samples were measured. The dielectric constants were determined at room temperature
using an LCR digital bridge meter (TH2830, Tonghui, Changzhou, China). The X-ray
diffraction (XRD) pattern of the NBT ceramics was obtained by an X-ray diffractometer
(Bruker D8 Advanced, Bruker, Germany). The crystalline structure of the ceramics was
illustrated by a scanning electron microscope (SEM) (JEOL 6400, JEOL Ltd., Tokyo, Japan).
The dielectric properties of the ceramics were measured at 1 MHz by an impedance analyzer
(4192 A Hewlett Packard, HP Agilent, Santa Clara, CA). The impedance spectrum of the
NBT ceramics was analyzed based on an impedance meter (WK6500B 1J65120B, Wayne
Kerr Electronics, London, United Kingdom). The electromechanical coupling coefficient
(kt) can be calculated from the resonant and antiresonant frequency ( fr and fa) as follows:

kt =

√
π

2
· fr

fa
tan
(

π

2
· fa − fr

fa

)
(1)

Table 1. Dielectric, electromechanical, and piezoelectric properties of piezoelectric materials.

Property NBT-Nb-Mn

Curie temperature Tc 660 ◦C
Relative permittivity ε33

T 159
Dielectric loss tangent tan δ 0.95%

Thickness electromechanical coupling kt 0.4
Piezoelectric coefficient d33 33 pC/N

As shown in Figure 1, the XRD pattern of the NBT-Nb-Mn powders matched the
standard PDF card (PDF#74–1316) [43]. It can be seen that the doping of Nb and Mn did
not change the phase structure of NBT ceramics. The SEM image exhibits flat plate-like
grains from the surface of the ceramics, which is the typical morphology feature of bismuth-
layered ceramics [21–23]. It appears from Figure 2 that the dielectric performance of the
ceramics are reasonable under the test frequency of 1 MHz, and the Curie temperature
reaches 660 ◦C and the dielectric loss tangent tan δ is 0.95% at room temperature, which
meets the requirement of piezoelectric devices.
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Figure 2. Dielectric constant K (black curve) and dielectric loss D (blue curve) of NBT-Nb-Mn ceramics
sintered at 980 ◦C measured at 1 MHz.

3. Design, Fabrication, and Characterization of Single-Element
Ultrasound Transducers
3.1. Design and Simulation

On the basis of NBT-Nb-Mn piezoelectric ceramics, tightly focused transducers have
been developed. The simulation software PiezoCAD (Sonic Concepts, Woodinville, WA,
USA) based on the Krimholtz, Leedom, and Matthaei (KLM) model was used to design the
ultrasound transducers. The critical material parameters used in the PiezoCAD software
are summarized in Table 2. E-solder 3022 was selected as the backing, which has an acoustic
impedance of 5.92 MRayls. Figure 3a,b illustrate the impedance and pulse-echo simulation
results, respectively. The piezoelectric element has a size of 2 × 2 mm2 and a thickness
of 48 µm. According to the simulation results, the designed transducer displays a center
frequency of 40.1 MHz and a -6dB bandwidth of 20.1%.
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Table 2. Parameters of piezoelectric materials used for PiezoCAD simulation modeling.

Property NBT-Nb-Mn

Longitudinal velocity υ 3910 m/s
Density ρ 6430 kg/m3

Acoustic impedance Z 25.1 MRayl
Clamped relative dielectric constant εr 97.37

Dielectric loss tangent tan δ 0.95%

Thickness electromechanical coupling kt 0.4
Piezoelectric coefficient d33 33 pC/N
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Figure 3. Modeling results of NBT-Nb-Mn single element transducer from KLM model-based
simulation software PiezoCAD: (a) impedance simulation results; (b) pulse-echo simulation results.

The finite element method (FEM) was used to calculate the distribution of absolute
acoustics pressure produced by the transducer using COMSOL software. The piezoelectric
ultrasonic transducer model was established in a two-dimensional axisymmetric coordinate
system. The simulation parameters for the piezoelectric material were applied from the
bismuth-layered material Bi4Ti3O12 [44]. The press-focused piezoelectric layer is approxi-
mated by a spherical shell with a radius of 3 mm, a solid angle of 0.74 sr, and a thickness
of 48 µm. The constitutive relation of the piezoelectric layer is in stress–charge form, with
1 volt on the upper surface and grounded on the lower surface. The spherical shell was
fixed in the center by epoxy, with a protective film on the upper surface and a backing
layer on the lower surface. Epoxy and backing are both linear elastic materials with the
boundary condition of a fixed constraint. The input parameters and model parameters for
FEM simulation are listed in Tables 3 and 4, respectively. The three-dimensional simulation
model of the transducer and its cross-sectional schematic are shown in Figure 4a,b. The
transducer was operated at 40 MHz and immersed in a hemispherical water area. The
acoustic velocity in water was set at 1500 m/s and the default temperature of the model
was 293.15 K. The physics used in this simulation include solid mechanics, the pressure
acoustics frequency domain, and electrostatics, as well as multiphysics including the piezo-
electric effect and the acoustic-structure boundary. The acoustic pressure distribution in the
water area was calculated by FEM, and the lateral normalized acoustic pressure amplitude
curve was drawn to calculate the theoretical lateral resolution of the transducer. Figure 4c
illustrates the cross-section of the acoustics field distribution in the water area obtained by
FEM. In the simulation, the focal length of the transducer was 3.14 mm. The sound pressure
field of the yz-plane section (x = 0) and the xy-plane section (z = 144 µm) are depicted in
Figure 4d,e, respectively. The normalized acoustic pressure amplitude curve along the
lateral direction is shown in Figure 4f, and the −6dB lateral beamwidth reaches 60 µm.
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Table 3. Parameters of materials used for finite element analysis.

Property Unit Esolder-3022 Epoxy Parylene C

Pressure-wave speed cp m/s 1850 2650 2200
Acoustic impedance Z MRayl 5.92 3.05 2.6

Density ρ kg/m3 3200 1150 1180

Table 4. The finite element model parameters of the transducer.

Parameters Description

Piezoelectric layer shape Spherical shell
Piezoelectric layer thickness 48 µm

Backing thickness 500 µm
Epoxy thickness 552 µm

Parylene C thickness 4 µm
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Figure 4. Modeling results of NBT-Nb-Mn single element transducer from FEM simulation software
COMSOL: (a) schematic diagram of the three-dimensional structure of the transducer model; (b) cross-
sectional schematic diagram of the three-dimensional structure of the transducer model; (c) cross-
section of the acoustics field distribution in the water area; (d) magnitude map of the absolute
acoustics pressure distribution in the yz-plane (x = 0); (e) magnitude map of the absolute acoustics
pressure distribution in the xy-plane (z = 144 µm); (f) profile of normalized acoustics pressure
amplitude along the lateral directions with -6 dB beam width indicated by blue line.

3.2. Fabrication

Figure 5a shows the structural diagrams of the high-frequency transducers. Initially,
paraffin waxes with a melting point of 60 ◦C were used as the adhesive between ceramics
and flat glasses. The surface flatness error of flat glasses (5 × 5 cm2) was limited to
2 µm for controlling the thickness of ceramics precisely. The NBT ceramics were then
manually ground to 48 µm using different meshes of sandpaper in order (400 meshes,
800 meshes, 1200 meshes, 2000 meshes). In this step, it was necessary to repeatedly measure
the thickness of ceramic plates with a precision thickness gauge (ND 287, Heidenhain,
Berlin, Germany) for preventing excessive grinding. Following this grinding process, 5 µm
alumina powder and water were added for polishing. Using a magnetron sputtering
system Desk V (Denton Vacuum, Moorestown, NJ, USA), both sides of the ceramics were
plated with 300 nm thick Au electrodes. An E-solder 3022 (1.5 mm) layer was put on the
backing side for absorbing ultrasound wave and vibration suppression in this study. With
the backing layer dried and cured, the sample was cut into 2 × 2 mm2 square elements
using a dicing saw (DAD 323, Disco, Tokyo, Japan). The backing layer was then attached to
a copper wire. Afterwards, a brass housing was used to shell the piezoelectric element and
was poured into the interior with epoxy. For creating an electrical path, the transducer’s
front surface was sputtered with a Au electrode, and the transducer’s bottom was attached
to SMA. For the purpose of improving the imaging performance, the transducer was
press-focused in an oven at 65 ◦C using specially designed fixtures with high polished
chrome/steel balls (diameter: 6 mm). Using a parylene deposition system (PDS 2010
Labcoator, Specialty Coating Systems, Indianapolis, IN, USA), parylene C was coated as a
protective film on the transducer. The end product image of the ultrasound transducer is
presented in Figure 5b.

3.3. Characterization

Figure 6a illustrates the impedance characteristics of the prepared ultrasonic trans-
ducer as a function of frequency. Impedance data were collected using an impedance
analyzer (WK6500B, 1J65120B, Wayne Kerr Electronics, London, UK). Resonance frequency
fr and antiresonance frequency fa were found at 41.9 and 46.7 MHz, respectively. The
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impedance at the center frequency was determined to be 54.9 Ω, which was consistent
with the simulation results. The transmission efficiency of ultrasound can be improved
through proper electrical matching, ensuring the excellent performance of ultrasonic trans-
ducers. The effective electromechanical coupling coefficient of the ultrasonic transducer
was calculated to be 0.48 based on Equation (1).
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Figure 6. (a) Electrical impedance and phase of the NBT-Nb-Mn ultrasonic transducer; (b) pulse-echo
response and normalized spectrum of the NBT-Nb-Mn ultrasonic transducers.

The transducer was fixed on the adjustable clamp and immersed in deionized water. It
was excited by a pulser-receiver (5073PR, Olympus, Allentown, PA, USA) to emit ultrasonic
signals to a quartz plate. An oscilloscope (DSOX3024A, Keysight, Santa Rosa, CA, USA)
displayed the received echo signal. Parameter settings include pulse repetition frequency of
1 kHz, the damping factor of 50 Ω, and a sampling rate of 4 GSa/s. As shown in Figure 6b,
the pulse-echo test data were converted into a spectral profile by fast Fourier transform
(FFT). The center frequency ( fc) and −6 dB bandwidth (BW) were calculated using the
following formulas:

fc =
flower + fupper

2
(2)

BW =
fupper − flower

fc
·100% (3)
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where flower and fupper are the corresponding frequency values at −6 dB. After experimental
measurement and calculation, the measured centre frequency and −6 dB bandwidth were
37.4 MHz and 47.2%, respectively. The focal distance of the transducer was determined at
3.2 mm, and the ƒ-number was calculated as 1.13. The impedance and center frequency of
the transducer are consistent with the results of the PiezoCAD simulation. The increase
of −6 dB bandwidth can be attributed to spherical pressure focusing with an ƒ-number of
1.06 on the transducer. The unamplified peak-to-peak output voltage (Vp-p) was 0.67 Vp-p,
which satisfies the imaging requirements.

Insertion loss is a crucial parameter to evaluate the performance of ultrasonic transduc-
ers. Insertion loss data of the transducer were collected by a signal generator (SMB 100A,
Rohde & Schwarz, Munich, Germany) and a digital storage oscilloscope (DSOX3024A,
Keysight, Santa Rosa, CA, USA). Insertion loss (IL) was calculated by the formula below:

IL = 20 log
Vecho

Vemitted
+ 1.9 dB + 2.2 × 10−4 × f 2 × 2d (4)

Here, 1.9 dB and 2.2 × 10−4 (dB/cm·MHz2) represent the loss of ultrasonic reflection
by quartz and the attenuation coefficient of ultrasonic propagation in water, respectively. f
is the excitation frequency in the insertion loss test and d is the focal length of the transducer.
On the basis of measurement results, the Vecho of the ultrasonic transducer at 37.4 MHz was
27.1 mV and the Vemitted was 2.81 V. The insertion loss was calculated as −36.3 dB.

Finally, the transducer was subjected to an imaging test. There are two essential
types of spatial resolution in ultrasound imaging for focused ultrasound transducers: axial
resolution (Raxial) and lateral resolution (Rlateral), which can be described in terms of the
following formulas:

Raxial =
λ

2BW
(5)

Rlateral = λ ·
(

L
D

)
= λ × fnumber (6)

where λ is the wavelength of the ultrasonic wave, BW and L are the bandwidth and focal
length of the transducer, D is the diameter/diagonal length of the piezoelectric element,
and the ratio of L to D is defined as the ƒ-number. Theoretical lateral resolution of the
transducer was 43 µm. On the basis of the UBM (ultrasound bio-microscopy) system, the
actual spatial resolution of the transducer was assessed by B-mode imaging 25 µm tungsten
wires. Four tungsten wires were wound on a wire phantom, spaced about 1.5 mm apart
axially and transversally. The focus of the transducer was aligned to the tungsten wire near
the center with a distance of 3.2 mm. The UBM system consists of three components: a
pulser-receiver, a motor controller, and an automated fixture. The pulser-receiver (DPR-500,
JSR ultrasonics, New York, NY, USA) was used to generate electrical impulses that are
applied to a transducer causing the transducer to emit an ultrasound pulse. The transducer
was fixed on the fixture, and the motor drove the transducer to perform mechanical linear
scanning of the wires through program control at 4 µm steps. As shown in Figure 7, the
raw RF data from the reflected echo signals were then processed by MATLAB to produce
an ultrasound image. It can be found that the image quality was reasonable and three of
the wires were clearly visible. As the transducer was tightly focused, the acoustic energy at
the focus reached its maximum, which makes the middle wire at focus the clearest. Figure 8
provides a comparison plot between the simulated (from Figure 4f) and experimental data
of the lateral line spread function. Experiment results show that the transducer exhibited
−6 dB lateral resolution of 56 µm. The measured results show that the experimental and
simulation results are in good agreement. High-frequency ultrasound transducers offer
significant advantages in resolution over conventional clinical ultrasound.
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3.4. Ultrasound Microscope Imaging

An RMB one yuan coin was scanned to evaluate the imaging effect of the transducer.
The imaging experimental process was performed on the UBM system. The coin was
immersed in deionized water and kept parallel to the transducer. C-mode imaging tests
were conducted with a scanning width and length of 28 mm, corresponding scan steps of
4 and 50 µm, and a minimum sampling rate of 160 MHz. As illustrated in Figure 9, the
imaging results presented a clear image of the RMB coin.

Air bubbles caused a few black spots in the water. The results of this study have
important implications for imaging small biological tissues with a shallow penetration
depth requirement.
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4. Conclusions

Lead-free piezoelectric materials are very critical for the development of environmen-
tally friendly ultrasound transducers. In this work, lead-free bismuth-layered structural
ceramics were modified by Nb and Mn doping. On this basis, focused ultrasound trans-
ducers for high-frequency imaging were designed and prepared.

The ceramic Na0.5Bi4.5Ti3.86Mn0.06Nb0.08O15+y was synthesized using conventional
solid-phase synthesis. XRD results showed that the doping of Nb and Mn did not change
the phase structure of NBT ceramics. SEM images also show that the sample grains conform
to the typical characteristics of bismuth-layered ceramics. Dielectric, piezoelectric, and
electromechanical property test results exhibit the enhancement of material performance.
The d33 of the ceramic sample reached 33 pC/N, and the kt was calculated to be 0.4.

High-frequency ultrasonic transducers were designed and developed on the basis of
this material. Impedance spectra, pulse-echo response, as well as absolute acoustic pressure
distributions of the transducers were simulated using PiezoCAD and COMSOL software,
respectively. The as-prepared, tightly focused transducer has a lateral resolution of 56 µm,
with a center frequency of 37.4 MHz and a −6 dB bandwidth of 47.2%. It is consistent with
the simulation results. Additionally, ultrasound imaging of RMB coins demonstrated the
excellent imaging effect of the transducer. The experimental results provide an alternative
to lead-free piezoelectric ultrasonic transducers and reveal the application potential of NBT
materials in high-frequency ultrasonic imaging.
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