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Abstract: Several neurodegenerative disorders involve impaired neurotransmission, and gluta-
matergic neurotransmission sets a prototypical example. Glutamate is a predominant excitatory
neurotransmitter where the astrocytes play a pivotal role in maintaining the extracellular levels
through release and uptake mechanisms. Astrocytes modulate calcium-mediated excitability and
release several neurotransmitters and neuromodulators, including glutamate, and significantly mod-
ulate neurotransmission. Accumulating evidence supports the concept of excitotoxicity caused by
astrocytic glutamatergic release in pathological conditions. Thus, the current review highlights differ-
ent vesicular and non-vesicular mechanisms of astrocytic glutamate release and their implication in
neurodegenerative diseases. As in presynaptic neurons, the vesicular release of astrocytic glutamate
is also primarily meditated by calcium-mediated exocytosis. V-ATPase is crucial in the acidification
and maintenance of the gradient that facilitates the vesicular storage of glutamate. Along with these,
several other components, such as cystine/glutamate antiporter, hemichannels, BEST-1, TREK-1,
purinergic receptors and so forth, also contribute to glutamate release under physiological and
pathological conditions. Events of hampered glutamate uptake could promote inflamed astrocytes
to trigger repetitive release of glutamate. This could be favorable towards the development and
worsening of neurodegenerative diseases. Therefore, across neurodegenerative diseases, we review
the relations between defective glutamatergic signaling and astrocytic vesicular and non-vesicular
events in glutamate homeostasis. The optimum regulation of astrocytic glutamatergic transmission
could pave the way for the management of these diseases and add to their therapeutic value.

Keywords: astrocyte; glutamate; neurodegenerative diseases; V-ATPases; calcium; exocytosis;
cystine/glutamate antiporter; Bestrophin-1; hemichannels

1. Introduction

Astrocytes are the specialized glial cells that represent the majority of non-neuronal
cells present in large numbers in the central nervous system (CNS). They serve as a major
source of energy for neurons and control neuronal excitability by maintaining ion and
neurotransmitter homeostasis [1]. They provide structural support to axonal bundles
in neuronal cells along with the required metabolic support [2]. Further, astrocytes are
directly involved in neuronal signaling at the tripartite synapse [3]. They are endowed
with the machinery of various receptors involved in neurotransmission, along with trans-
porters that facilitate responses to the neuronal signals. Studies indicate that astrocytes
react to hormones, neurotransmitters and other stimuli, and possibly contribute, but not
always, to the elevation in cytosolic calcium (Ca2+) levels, with the subsequent release
of gliotransmitters [4]. Gliotransmitters involve the classical neurotransmitters such as
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glutamate and γ aminobutyric acid (GABA), Adenosine triphosphate (ATP), neurosteroids
and inflammatory mediators, which are capable of modulating synaptic transmission
and plasticity. The optimum release of gliotransmitters under physiological conditions
regulate synaptic transmission, cerebral blood flow, neuronal network synchrony and
mediate immunoinflammatory responses in the brain [5]. Glutamate is the most prominent
excitatory amino acid neurotransmitter in the CNS and mediates rapid excitatory trans-
mission by activating both ionotropic receptors such as NMDA (N-methyl-D-aspartate),
AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) and Kainate receptors;
and metabotropic glutamate receptors (mGluRs). Astrocytes play a pivotal role in main-
taining the extracellular glutamate levels [6]. It is present in micromolar concentrations
at the synaptic cleft, which is maintained by the astrocytes and neuronal reuptake mecha-
nisms [7]. The glutamatergic synapse is ensheathed by astrocytes expressing high levels
of glutamate reuptake transporters, excitatory amino acid transporter-1 (EAAT-1), and
EAAT-2. Glutamate–aspartate transporter (GLAST) and Glutamine transporter-1 (GLT-1)
are homologous rodent terms used for EAAT1 and EAAT2 respectively [8]. About 90% of
glutamate present in the synaptic cleft is withdrawn by the astrocytes through the highly
efficient EAAT-1 transporters which prevent glutamate accumulation and excitotoxicity
as shown in Figure 1 [9,10]. This is one of the major reasons for the maintenance of low
synaptic concentrations of glutamate in the submicromolar to nanomolar range [11]. How-
ever, Herman et al. reported no significant differences in the concentration gradients of
glutamate in synaptic and extrasynaptic regions [12]. Glutamate excitotoxicity occurs due
to elevated synaptic glutamate concentration attributed to factors such as excessive gluta-
mate release from neurons and glial cells, impaired clearance, enhanced glutamate receptor
sensitivity, compromised postsynaptic neurons, excessive Ca2+ concentrations, and so forth,
which ultimately lead to cell death [13–15]. Such glutamate-mediated toxicity has been
linked to several neurological disorders such as Alzheimer’s disease (AD), Parkinson’s
disease (PD), Amyotrophic lateral sclerosis (ALS), and epilepsy [5–8].

In the pathogenesis of AD, the Aβ 1–42 induces glutamate toxicity due to altered
glutamate reuptake from the synaptic cleft as a result of reduced astrocytic GLT-1 [16].
In a transgenic rodent model of PD, a mutant α-synuclein caused the aggregation of α
synuclein in the astrocytes and along with severe astrogliosis, thereby down-regulating
glutamate transporters which resulted in microglia activation and cytokine overproduc-
tion [17]. Similarly, in the condition of ALS, GLT-1 was downregulated and its levels were
influenced by components like tumor necrosis factor α (TNF-α), nuclear factor kappa B
(NFκB) signaling, upregulation of astrocyte elevated gene–1 (AEG-1) andthe knocking
out of membralin, an important component of endoplasmic reticulum (ER) [18,19]. With
the astrocytic dysfunction and defective reuptake transporters significantly contributing
to excitotoxicity in neurons in neurodegenerative disorders, the implications of vesicular
and non-vesicular release mechanisms of glutamate found in astrocytes remain poorly
understood. Therefore, the current review corroborates the importance of glutamate release
and uptake mechanisms of astrocytes, focusing on neurodegeneration.
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Figure 1. Glutamate homeostasis at the tripartite glutaminergic synapse. Glutamate is released from
the synaptic vesicles into the synaptic cleft through Ca2+ mediated exocytosis. Upon binding to the
postsynaptic receptors, their activation leads to Ca2+ elevations and subsequent synaptic plastic-
ity. Neighboring astrocytes mediate glutamate uptake and convert certain amounts to glutamine
followed by its transport to the presynaptic neurons, while some of the glutamate is released into
the extracellular regions through various pathways. This regulates the glutamate homeostasis at
the tripartite glutamatergic synapse. SNAT: sodium-coupled neutral amino acid transporter; Sxc
antiporter: cystine/glutamate antiporter system xc; VGLUT: vesicular glutamate transporter; VRAC:
volume regulated anion channels; TREK: TWIK related potassium channel; BEST: bestrophin; ROS:
reactive oxygen species; GSH: glutathione.

2. Major Participants in Astrocytic Glutamatergic Transmission and Their Association
in Neurodegenerative Disorders
2.1. Calcium Mediated Exocytosis

Astrocytes are essential in modulating neuronal activity and synaptic neurotransmis-
sion [20]. Nerve terminals are encased with astrocytes and are strategically located to
communicate effectively with synapses [20]. The astrocytic responses towards synaptic
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stimulation have been well established [21]. They mediate Ca2+ dependent glutamate re-
lease and regulate synaptic neurotransmission [22]. As the intracellular Ca2+ level required
for astrocytic glutamate release is within physiological limits, this release can be exploited
as a signaling mechanism to alter synaptic neurotransmission and plasticity within the
CNS [23]. Primarily, the generation of intercellular Ca2+ waves (ICW) involves the release
of Ca2+ from the ER via G protein coupled receptor (GPCR) activation [24]. Studies on glia
revealed the presence of mGluRs which, upon activation by physiological ligands, resulted
in the synthesis of inositol 1,4,5-triphosphate (IP3) and subsequent Ca2+ release [25]. This
release of Ca2+ promoted the onset and maintenance of ICW of the glial cell, which pro-
vided long-range signaling [26]. These waves depict the rise in Ca2+ levels in the cytoplasm,
which communicates with other cells and has a wave-like appearance that radiates from its
originating source. The ICW is initiated by the release of ATP that follows after hemichannel
opening [27]. Interestingly, it was demonstrated that glutamate concentration was directly
proportional to the frequency oscillations of Ca2+ waves [28]. This Ca2+ is released by the
hippocampal astrocytic cells from intracellular storage both naturally and in response to
the activation of Gq-linked GPCR by binding IP3 to its receptor (IP3R). The released Ca2+

in astrocytes is essential and sufficient for the secretion of gliotransmitters, such as ATP
and glutamate, and further affects the neuronal activity. IP3R type 2 (IP3R2) appears to be
the major IP3R expressed by astrocytes [29]. IP3R-mediated Ca2+ signaling is speculated to
cause the activity-dependent and selective release of chemical transmitters. In astrocytes,
IP3R2 was once the only known Ca2+ channel; however, Ca2+ imaging techniques have
recently determined new Ca2+ sources including mitochondria [30]. Rakers et al. reported
that the release of IP3R2-dependent Ca2+ from internal reserves causes a rise in astroglial
Ca2+ during neurological disorders including stroke [31]. Astrocytes emit several signaling
chemicals such as glutamate, D-serine and ATP. Activities of these molecules, such as mod-
ulating synaptic transmission and influencing particular behavior, are vigorously studied,
but the identity of their cellular compartments remains unknown [32]. The pharmacological
inhibition of vesicular glutamate transporters (VGLUTs) significantly decreased exocytotic
glutamate release from astrocytes which is a Ca2+ dependent phenomenon, indicating
that these transporters may be instrumental in the astrocytic glutamate release in CNS.
VGLUTs transfer cytoplasmic glutamate into exocytotic vesicles, which are propelled by
a proton gradient created by vacuolar ATPases (V-ATPases) [33]. VGLUT1 and 2 are also
seen, along with synaptic-like vesicles [34]. Montana et al. demonstrated that VGLUTs
1 and 2 are present in rat astrocytes and show high immunoreactivity, justifying their
role in the glutamate release via exocytosis [35]. Conversely, the VGLUT mRNAs were
absent in astrocytic transcriptome [36]. This supported the notion made by Li et al. that
VGLUTs were absent in the astrocytes [37]. The cytosol of astrocytes have high glutamate
concentrations ranging from 0.1–5 mM, but extracellular glutamate levels lie within the sub-
micromolar range [38]. In astrocytes, glutamate is packed into synaptic-like vesicles and is
released in a Ca2+ dependent mechanism, demonstrating the contribution of astrocytes in
glutamatergic transmission.

Astrocytes exert controlled glutamate exocytosis via a protein complex called the
soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (SNAP) receptor
(SNARE) complex, which regulates vesicle fusion [39]. Synaptobrevin 2, Syntaxin 1,
and synaptosome-associated protein of 23 kDa are all part of the core SNARE complex
(SNAP-23), while Synaptotagmin 4 is a Ca2+ sensor. SNARE proteins are found on both
the vesicular membranes and the presynaptic plasma membranes that cause membrane
fusion [40]. In the neurons, the vesicle-associated membrane protein 2 (VAMP2) binds to
Syntaxin and synaptosomal-associated protein 25 (SNAP25) on the cell membrane to form
the SNARE complex. Synaptotagmin 1, a Ca2+ sensor expressed by neurons, detects the
Ca2+ rise caused by Ca2+ entry via voltage-gated Ca2+ channels and triggers the fusion
of vesicles to the cell membrane, releasing glutamate. VAMP2/VAMP3, Syntaxin and
SNAP25/SNAP23 are all expressed by astrocytes with similar functions [41]. However,
Bezzi et al. suggested that, instead of VAMPs, astrocytes express cellubrevin—a SNARE
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complex of astrocytic vesicles [34]. Further, research revealed that astrocytes produce
Synaptotagmins 4, 7, and 11, which cause the release of glutamate from vesicles in re-
sponse to a rise in intracellular Ca2+ levels in similar fashion to neurons. Intracellular
Ca2+ levels need to rise in the range of 250 to 350nM to stimulate astrocytic glutamate
release [41–43]. With an increase in Ca2+ levels, the vesicles fuse with SNARE proteins
and undergo Ca2+-mediated exocytosis to release glutamate [44,45] as shown in Figure 2.
Increasing Ca2+ concentrations by overstimulation of glutamate receptors could lead to
excitotoxicity and neuronal death [46]. Therefore, impairment in Ca2+ signaling could lead
to the progression or worsening of neurodegenerative diseases such as AD and PD.

Cellubrevin

Glutamate 

filled vesicles

VGLUT 1/2

Ca2+ mediated 

exocytosis

Glutamate

EAAT 1/2

Increase 

in Ca2+

V-ATPase

Figure 2. Release of glutamate from astrocytes via Ca2+ mediated exocytosis. Astrocytic EAAT
promotes the uptake of glutamate from the synaptic cleft which is filled into the vesicles by VGLUT in
the presence of V-ATPase. The rise in intracellular Ca2+ causes the vesicles to fuse with the membrane
with the help of an astrocytic vesicular SNARE protein cellubrevin and promotes Ca2+ mediated
exocytosis of glutamate.

AD is associated with progressive neurodegeneration and marks its presence primarily
through cognitive deficits in patients. Its hallmarks, namely neurofibrillary tangles (NFTs)
and the occurrence of amyloid-beta (Aβ) plaques, have been blamed for the progression
and worsening of AD [47]. Mostly, it is believed that AD pathology occurs through the
amyloid cascade hypothesis originating via the amyloid precursor protein (APP). The
action of enzymes namely β secretases and γ secretases produce insoluble Aβ that confers
neurotoxicity [48]. Epigenetic modification, proteolysis abnormalities, oxidative stress,
neuroinflammation, hampered mitochondrial function, and faulty autophagy are some of
the variables that contribute to accelerated aging and neurodegenerative disorders [49–52].
However, in recent years, the pathology of AD has expanded in multiple dimensions
including the pathogenic role of dysfunctional glial cells and the excessive release of
neurotransmitters such as glutamate [53].
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Neurotoxicity occurs due to an over-accumulation of extracellular glutamate during
Aβ aggregation [54,55]. The effect of Aβ 1–42 on a α7 subunit containing nicotinic re-
ceptors (7nAChR) could also increase internal Ca2+ currents and subsequent glutamate
uptake/release causing glutamate excitotoxicity as shown in Figure 3 [56]. Similarly, Aβ

1–42 has picomolar affinity for the 7nAChR, which is known to enhance glutamate release
when activated [57,58]. Lower levels of endogenous Aβ 1–42 are necessary for normal
brain function, while at a higher concentration the resultant accumulation and aggregation
results in neurotoxicity [59] Through the (7nAChR), Aβ 1–42 can cause glutamate release
in the hippocampal nucleus, which is cleared from the extracellular space quickly (msec)
by high-affinity EAATs [60,61]. Nicotine-induced glutamate release via the 7nAChR is
supported by the hypothesis that Aβ 1–42 binding near the nicotinic site on the 7nAChR
can elicit glutamate release [58]. Furthermore, increased Aβ 1–42 synthesis proportionately
increases glutamate release in the Cornu Ammonis (CA) 1 area of the amyloid precursor
protein/Presenilin 1 (APP/PS1) mouse model [62]. Lower density of 7nAChRs in the CA3
region could explain why an elevated Aβ 1–42 concentration is required to elicit greater
glutamate release in the hippocampal region. Aβ 1–42 protein deposition has been reported
to occur initially in the CA1 and DG, followed by the CA3 in patients with AD [63]. Hascup
and colleagues discovered that enhanced Aβ 1–42 evoked glutamate release in the CA1
and DG at lower doses [64]. The presence of Aβ causes the activation of 7nAChRs present
in the astrocytes of the hippocampal regions [65]. Similarly, 7nAChR over expression was
observed in the rat astrocytes in the presence of AD pathogenesis [66]. It is evident that
7nAChRs elevate the intracellular Ca2+ levels by stimulating Ca2+ release from intracellular
reserves of astrocytes [67].

Glutaminase

Ca2+ levels

Glutamate

Hemichannels

Aβ oligomers

Ac�vated

astrocyte

α7 nico�nic 

receptor

Figure 3. Glutamate excitotoxicity via overstimulation of α 7 nicotinic receptors in the presence of
AD pathologies. The presence of Aβ oligomers causes activation and over-stimulation of α 7nAChRs,
which increase levels of glutaminase and glutamine in the astrocytes. This causes a rise in Ca2+ levels,
ultimately stimulating hemichannels to release more glutamate causing glutamate excitotoxicity.
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Similarly, the actions of Aβ 25–35 on the astrocytic purinergic receptors promote
Ca2+ level elevation [68]. Chronic calciumopathy, observed in AD, affects neuronal Ca2+

homeostasis and Ca2+ signaling [69]. In AD, the senile plaques promote Ca2+ hyperac-
tivity in astrocytes that trigger excessive glutamate release. The released Ca2+ from the
endoplasmic reticulum is essential for astrogliotic response. Therefore this higher Ca2+

signaling, as seen in the entorhinal region and prefrontal cortices of rodent AD models,
suggests the abnormalities associated with these pathologies [70]. Additionally, enhanced
astroglial Ca2+ signaling followed by glutamate excitotoxicity has been seen in mice with
the APP/PS1 gene [71,72]. Recently, Pham et al. found that astrocytic Aβ exposure resulted
in both Ca2+ dependent and independent glutamate release, which caused excitotoxicity.
Interestingly, a notable amount of glutamate was released before the Ca2+ elevation during
Aβ administration, followed by a surge in glutamate with a subsequent rise in Ca2+ [68].

PD is another neurodegenerative disease with impairment in neurons present in the
dopaminergic system [73]. The region of substantia nigra pars compacta (SN) residing
within the midbrain is highly affected. Pathological hallmarks such as Lewy bodies and α

synuclein deposition are considered to play a role in the progression of PD [74]. Patients di-
agnosed with PD mainly show tremors, muscle rigidity, motor deficits, gait instability, and
memory deficits [75]. Recently, autonomic dysfunction has been attributed to PD pathol-
ogy [76]. Impaired homeostasis of neurotransmitters such as glutamate also plays a pivotal
role in the pathogenesis of PD [77]. Inflammatory processes-induced astrocytic glutamate
excitotoxicity has also been linked to PD, which causes changes in glutamate transporters
and receptor expression [78,79]. Moreover, the accumulation of α-synuclein increases the
Ca2+ depolarization-dependent release of presynaptic glutamate as demonstrated using
synaptoneurosomes obtained from the forebrain [80]. The α-synuclein releases glutamate in
a Ca2+ dependent mechanism, which further activates the extrasynaptic NMDA receptors,
and causes neuronal damage [81]. This increase in glutamate activated the AMPA receptors
that further upregulate the glutamate release [82]. Interestingly, α-synuclein mobilizes the
glutamate vesicles from the pool of reserves [83]. mGluR5 overexcitation upon the bind-
ing of α-synuclein also stimulates the release of Ca2+ leading to glutamate excitotoxicity
as shown in Figure 4 [84]. A small protein, DJ-1 encoded by PARK7 gene has also been
associated with PD pathogenesis, and knockout of PARK7 hampered glutamate uptake
via astrocytes. This altered glutamate uptake was associated with the downregulation of
EAATs, which led to neurotoxicity in PD patients [85]. Similarly, Wang et al. showed that
JWA knockout mice in pathologies of PD reduced the glutamate uptake by hampering
EAAT 2 expression [86].

ALS is a neurodegenerative disease that involves the degeneration of motor neurons
in the CNS [87]. Its prominent characteristic features include motor weakness and loss
of motor neurons, gliosis and atrophy of skeletal muscles [88]. Significantly reduced
expression of GLT-1 in the motor cortex and spinal cord has been proposed to be one of the
main factors leading to glutamate excitotoxicity in ALS [19].

Metadata analysis of studies of transgenic ALS cell cultures suggests that extrinsically
boosting the astrocytic GLT-1 level before ALS end-stage may improve the reuptake of
glutamate and could be considered a therapeutic strategy. Excitotoxicity could be perhaps
due to the ability of those ALS astrocytes that render themselves susceptible to even minor
alterations in the neuronal environment. Further, at pre-onset, lowering astrocytic GluR1
levels could help to lessen intracellular Ca2+ [89]. Mutations in valocin containing protein
(VCP) genes are causative for ALS. VCP mutant astrocytes showed reduced glutamate
uptake and induced reactive astrocytes. This could serve as a protective mechanism at first
but becomes toxic over time due to impaired homeostasis. These ALS astrocytes up-regulate
inflammatory signaling and are seen to reduce its supportive actions to neurons [90].
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Figure 4. Glutamate excitotoxicity mediated through overexpression of mGluR5 by PD pathologies.
In the conditions of PD, the α-synuclein activates astrocytic mGluR5 that elevates intracellular Ca2+

levels and stimulates the release of glutamate through the hemichannels.

In a mouse model of ALS, an increased influx of Ca2+ has been shown to be instru-
mental in glutamate exocytosis by affecting vesicle fusion and release mechanisms [91].
Furthermore, SOD1 gene mutations in familial ALS interfere with mitochondrial func-
tion and prevent glutamate reuptake, thus causing glutamate excitotoxicity [27]. Another
interesting target seen in familial ALS is the upregulation of the ATP- binding cassette
transporters (ABC) transporter glycoprotein (P-gp). It is known to be upregulated by
NMDA receptors activated by glutamate that is excessively secreted by astrocytes with
mutant superoxide dismutase 1 (SOD1) [92]. The sporadic and familial mice ALS models
have shown a marked reduction in the GLT-1 [93]. Astrocytes that express mutated SOD1
fail to regulate the expression of glutamate receptor’s GluR2 subunit, and is present in
motor neurons which leads to higher Ca2+ levels and motor death [94].

Parpura et al. via flash photolysis increased internal Ca2+ in astrocytes to monitor
Ca2+ and glutamate levels that elicited slow inward currents. These electrophysiologically
recorded signals showed that small variations in astrocytic Ca2+, from 84 nM to 140 nM,
elicited large glutamatergic currents in adjacent neurons. Therefore, the astrocytic gluta-
mate release pathway is activated at normal levels of internal Ca2+, as glutamate further
elevates Ca2+ in astrocytes to values surpassing 1.8 µM [42]. When cytosolic Ca2+ levels
rise, mitochondria quickly absorb Ca2+ to avoid Ca2+ overload in the cytosol. But this
excessive mitochondrial Ca2+ uptake could lead to mitochondrial Ca2+ overload and result
in events like increase in reactive oxidative species (ROS), glutamate production inhibition
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of ATP synthesis mitochondrial permeability transition pore (mPTP) opening, the release
of cytochrome C, activation of caspases, and apoptosis. The rise in Ca2+ levels is transient
in nature and occurs in the presence of disease pathologies involved in neurodegenerative
diseases such as AD [42,95], PD [96], multiple sclerosis [97] and Huntington’s disease [98].

Therefore, in such pathological conditions, astrocytes respond rapidly with numerous
cellular adaptations, including morphological and functional rearrangements, gene and
protein expression alterations, as well as changes in its secretome, which are collectively
called reactive astrogliosis [99]. The hallmark features of these reactive astrocytes are
cell hypertrophy and up-regulation of Glial fibrillary acidic protein (GFAP) and vimentin
(intermediate filaments). Along with these, they exhibit aberrant Ca2+ signaling in a spatial
and temporal dependent fashion, depending on the pathological condition [100]. Since
these Ca2+-induced events are linked with glutamate exocytosis mediated by Ca2+, their
causal role in these types of neurodegenerative disorders needs to be emphasized.

2.2. Vacuolar ATPases (V-ATPases)

The V-ATPases are proton pumps with multiple subunits composed of a peripheral
component V1 attached to an internal membrane-associated component V0 [101]. The V0
is associated with the translocation of proteins while V1 is responsible for the hydrolysis
of ATP [102]. These pumps operate in conjunction with eight subunits that are present
in V1 and six subunits present in V0 [103]. The regulation of these pumps occurs in
multiple processes such as the reversible dissociation of V1 and V0 subunits, disulfide
bond formation, the altered proton transport to ATP hydrolysis ratio expressed as coupling
efficiency, and modulation in the conductance of counterions [104].

The presence of V-ATPases has been previously identified on the plasma membrane
of astrocytes [105] and presynaptic neurons; along with their vesicular membranes [106].
V-ATPases play a role in maintaining acidic pH and the membrane potential to drive
the filling of the vesicles with neurotransmitters as shown in Figure 5 [107]. They are
also reported to exist in G1 and G2 isoforms where the G2 isoform is instrumental in
maintaining the acidification of synaptic vesicles [108]. The Voa1 and Voa2 components of
V-ATPases were identified on the vesicles in PC12 cell lines [109]. Interestingly, V-ATPases
were recently known to have no direct contribution to the fusion of synaptic vesicles. They
are released as V0, V1, and V1C1 components from the acidified vesicles [110]. The V1
deficient synaptic vesicles bind to the plasma membrane and cause the recruitment of
other components upon contact with luminal pH. This leads to endocytosis of vesicles
that contain the fully assembled V-ATPases [111]. This is followed by the recruitment of
H+ ions into the vesicular lumen, the generation of membrane potential, and the filling of
glutamate [112].

The VGLUTs are responsible for recruiting glutamate molecules into the synaptic
vesicles [113]. Montana et al. have reported the presence of VGLUTs in astrocytes and
their role in astrocytic glutamate transmission [35]. The V-ATPases were localized on the
surface of astrocytes present in the hippocampus, and these pumps were responsible for
the regulation of intracellular pH (pHi) [114]. The primary astrocytic cultures are mainly
dependent on HCO3—independent mechanisms for maintaining the pHi in comparison
to cultured astrocytes [115]. The process of neurotransmitter vesicular refilling mainly
relies on the electrochemical gradient. This gradient is fulfilled by the V-ATPases and also
by chloride ion channels by generating the required chemical gradient and membrane
potential to facilitate this uptake [116]. To a small extent, glutamate uptake is dependent
on the chemical gradient, while optimum membrane potential is extremely necessary for
the vesicular entry of glutamate. Interestingly, since glutamate itself is anionic, it acidifies
the vesicles and activates the V-ATPases, enhancing the vesicular filling of glutamate via
VGLUT [117]. Another important factor for the optimum functioning of the V-ATPases is
the ratio of ADP and ATP in astrocytes. Altered levels of ATP could affect the functioning of
these pumps and prevent the development of the required proton gradient that would affect
glutamate uptake into the vesicles thus affecting the release of glutamate [118]. The mode
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of ATP release could be through a Ca2+ dependent method—where the ATP is transported
to the plasma membrane of astrocytes through secretory vesicles—and a Ca2+ independent
method—where astrocytic hemichannels and purinergic receptors, could release ATP [119].

ATP

EAAT

Cl-

Cl-

H+ ADP

V-ATPase
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VGLUT
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Synap�c cle�
Glutamate

exocytosis

Func�onal 

(assembled)
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Figure 5. Role of V-ATPases in vesicular glutamate filling and its exocytosis. The subunits of
V-ATPases namely V0, V1, and V1C1 assemble to form a functional entity that generates the mem-
brane potential and pH gradient necessary for the uptake of glutamate into the vesicles via VGLUT.
Upon complete acidification of the vesicle, the V1 and V1C1 domains detach from the complex while
the V0 domain facilitates membrane binding of the vesicle followed by glutamate exocytosis.

The blockade of astrocytic V-ATPase with bafilomycin A1, a V-ATPase inhibitor,
showed alterations in the expression of TNF-α [120] and low levels of glutamate release
in astrocytes [35]. Similarly, the administration of N-ethylmaleimide (NEM) reduced the
pHi and incorporation of a more selective inhibitor of V-ATPases, 7-chloro-4-nitroben-2-
oxa-1,3-diazole confirmed the vacuolar nature of these pumps [121]. NEM appears to
activate potassium ion antiport [122] but the exact mechanism by which it reduces pHi is
not known.

The lysosomal degradation is executed by the hydrolytic enzymes, which are activated
in acidic pH. The V-ATPase maintains this acidic pH by pumping protons into the lumen,
by utilizing ATP [32]. Lysosomal exocytotic release occurs much more slowly as compared
to the release of neurotransmitters through vesicles [123]. As the lysosomes contain ATP,
lysosomal impairment prevents ATP-mediated Ca2+ release, ultimately affecting astrocytic
exocytosis governed by Ca2+ stimulation [124]. This provides evidence for the importance
of lysosomal functioning in astrocytes.
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The V-ATPases have been implicated in the pathogenesis of neurodegenerative dis-
eases like AD and PD. As discussed earlier, the reversible translocation of V0 and V1
subunits are essential in the optimal functioning of the V-ATPases. The ATP6V1-A was
found to be downregulated in the conditions of AD that impacted the neurotransmitter
release from synaptic vesicles and prevented phosphorylation and phagosome formation
thus worsening AD pathologies [125]. ATP6AP2 is an important accessory protein that
promotes neuronal growth in the CNS. Recently, splice variants of ATP6AP2 demonstrated
defects in the acidification of lysosomes and progressed towards neuronal death. In in vitro
systems, the ATP6AP2 deficits led to impaired V-ATPase assembly, thus affecting its func-
tion. The loss or mutations in Presenilin1 (PS1) have contributed to the pathologies of
AD [126]. This could be the reason why PS1 deletions showed impaired acidification of
lysosomes and impaired autophagy, thus hampering the clearance of oligomers in AD [127].

In the conditions of PD, lysosomal clearance of aggregates, such as α-synuclein, pro-
teins with misfolded morphology, or debris, is essential which is regulated by V-ATPase
activity [128]. The mutations in the ATP6AP2 were correlated with progression towards
parkinsonism in patients with X-linked parkinsonian syndrome [129]. These studies demon-
strate the importance of V-ATPases and their putative implication in neurodegenerative
diseases, which is still underexplored.

2.3. Cystine/Glutamate Antiporter System xc (Sxc)

Sxc- is another important mechanism of astroglial glutamate release in several regions
of the brain and spinal cord. It is an anionic amino acid antiporter that exports glutamate
for cystine. Cystine is critical for glutathione synthesis and is needed for maintaining the
cellular anti-oxidant pool. On the other hand, the released glutamate can act extrasynapti-
cally and potentially modulate synaptic plasticity [130], as seen in Figure 6. In CNS, Sxc-
has been characterized mainly in astrocytes and other sites such as microglia, immature
neurons, and ependymal cells. Unlike other astrocytic glutamate release mechanisms, the
physiological function of Sxc- is well known as it is an important source of glutathione [131].
It is known that astrocytes are a major supply of glutathione to neurons; Sxc- is one such
principle mechanism through which astrocytes provide cysteine and other glutathione
precursors to neurons [132]. Under oxidative stress or glutathione deficient conditions,
the expression and activity of Sxc- is increased to combat the reactive oxygen species as a
protective mechanism. On the other hand, the elevated glutamate concentrations due to the
increased Sxc- might contribute to neuronal excitotoxicity in certain neurological conditions.

Thus, this transporter functions across the crossroads of oxidative stress and gluta-
mate excitotoxicity and is therefore of significant interest in diseases where both these are
implicated, such as amyotrophic lateral sclerosis (ALS), epilepsy, glioma, schizophrenia,
and so forth [130,133]. However, the complete understanding of the role of the Sxc- trans-
porter in neurological diseases is still lacking, whether its upregulation is beneficial for
overcoming oxidative stress or detrimental due to its potential to lead to excitotoxicity. A
detailed description of important aspects of the transporter, including the pharmacology
and regulation, is available in the previous reviews [77,78]. In the scope of this review, the
involvement of astrocytic Sxc- mediated glutamate release in neurodegenerative disorders
is covered.

Of note, around 50–70% of extracellular glutamate was reduced in PD and epileptic
mice with Sxc- knockout indicating the importance of Sxc- mediated glutamate regulation
in CNS [134,135]. Possibly due to their proximal location in the astrocytes, the glutamate
released by them primarily acts upon the extrasynaptic NMDA receptors in the neurons.
Since the extrasynaptic regions of neurons have high-affinity glutamate receptors such as
NMDA and mGLUR5, the extrasynaptic signaling can play a significant role in neuromod-
ulation under physiological conditions [78,130]. Whereas, under pathological conditions
where the glutamate reuptake transporters are dysfunctional, the non-vesicular glutamate
released by Sxc- adds to the elevated extracellular glutamate levels. The glutamate re-
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leased promotes extrasynaptic NMDAR activation, which preferentially activates cell death
pathways leading to neurodegeneration [15].

Sxc an�porter
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Physiological condi�ons
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Pathological condi�ons

Glutamate (Glu)

NMDAR
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Figure 6. Possible role of Sxc- in neurodegenerative diseases. During physiological conditions, the
cystine imported from Sxc- is rapidly reduced to cysteine, an essential substrate for glutathione
(GSH) synthesis. Mostly cysteine and sometimes GSH are transported from glia to neurons to meet
the neuronal demands of GSH. The non-vesicular glutamate thus released with the exchange of
cystine acts over the extrasynaptic NMDAR and mGluR and modulates the synaptic plasticity. In
certain conditions, such as oxidative stress, the overexpression of glial Sxc- contributes to elevated
glutamate levels followed by extrasynaptic glutamate receptor activation, mediating the neurotoxicity
by favoring related processes such as inhibiting cell survival factors and activating the caspases.

An enormous amount of evidence exists indicating the accumulated glutamate levels
and associated neurotoxicity in ALS patients. ALS is a fatal progressive motor neuron
degenerative disease with a mean survival rate of 3–10 years. The etiology of almost 90–95%
of cases of ALS is not known; these are grouped as sporadic ALS (sALS). The involvement
of impaired homeostasis, glutamate excitotoxicity, oxidative damage, and mitochondrial
dysfunction has been widely studied to be involved in motor neuron death in sALS [136].
In addition, the motor neurons have intrinsically low Ca2+ buffering capacity and high
AMPA receptors, making them selectively susceptible to excitotoxicity [137]. Past research
indicates that the reduced expression of the EAAT2/GLT-1 glutamate reuptake transporter
in astrocytes of postmortem brain and spinal cord tissues of ALS is the prime reason for
the elevated glutamate levels [138]. The decrease in EAAT2 expression was also seen in
several other neurodegenerative disorders such as AD, Huntington’s disease, and epilepsy,
corroborating the causal role of astrocytes to glutamate toxicity [139]. However, recent
studies highlight the glutamate released by non-neuronal cells as an additional significant
factor contributing to the increased glutamate levels in ALS [9]. This may be the reason for
the insufficient action delivered by the drug, Riluzole, a neuronal glutamate release inhibitor
in ALS, which is the only FDA approved drug for the treatment of ALS [140]. Further, it
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was observed that astrocytes present in the spinal cord of ALS patients showed substantial
elevation in the Sxc- levels as compared to controls [141]. Increased Sxc- mediated glutamate
release was observed even before the reduction in EAAT2, and this contributed to the early
glutamate toxicity during the disease initiation in the (SOD1)-G93A transgenic rodent
model of ALS [46]. A recent study showed that the deletion of xCT (core protein of Sxc-)
delayed the rate of disease progression in a mutant SOD1 ALS mouse model [142].

Since fibroblasts express a similar genetic composition to that of neuronal cells, metabo-
lite profiling of dermal fibroblasts of sporadic ALS has been carried out to assess the
bioenergetic alterations.Gene expression of Sxc- was significantly reduced and glutathione
peroxidase 6 (GPX6) was elevated in a cohort of patients characterized with hyperme-
tabolism and trans-sulphuration pathways. In addition, the fibroblasts of this cohort have
positively responded to anti-oxidant therapies under conditions of oxidative stress [143].
Altogether, under an oxidant environment, xCT is upregulated, causing an increase in the
extracellular glutamate levels that induce Ca2+ mediated excitotoxicity. Although there is
evidence for the upregulation of xCT—a functional subunit of Sxc—-in ALS mouse models
and postmortem spinal cords of ALS patients, there are few discrepancies concerning
their location. In the genetic mouse model of ALS, xCT levels were significantly found
upregulated in spinal cord microglial cells, whereas it was specifically expressed only in
astrocytes in human ALS postmortem spinal tissues [141,142]. This differential expression
could be due to differences in species, for example, humans versus mice. Besides, the mouse
study showed an increase in xCT gene expression whereas the human study demonstrates
immunohistochemical localization in astrocytes.

xCT was also shown to be upregulated in animal models as well as in AD patients.
As discussed above, oxidative stress ensures the overexpression of Sxc- which mediates
glutamate-mediated excitotoxicity. Accordingly, Ashraf et al. found upregulated xCT
levels associated with iron-dependent oxidative stress in the medial temporal gyri of AD
patients. The study demonstrates an increase in the expression of iron-storage proteins,
indicating the elevated labile iron levels in these patients, along with dysfunction of ferritin.
A decrease in GPX4 (anti-oxidant system) and augmented lipid peroxidation was also
observed, which explains the elevated xCT levels [144]. Previous evidence also showed
that acute toxic insults, such as Aβ (1–42) peptide, 6-hydroxy dopamine (6-OHDA) and
chronic AD conditions, increases levels of eukaryotic translation initiation factor eIF2α, to
combat oxidative insult through xCT upregulation and thereby maintaining glutathione
pools [145].

Similarly, Sxc- is implicated in PD. Upregulation of striatal Sxc- has been observed
in several animal models of PD [134,146,147]. Genetic deletion of xCT prevented the
dopaminergic neurodegeneration in substantia nigra pars compacta (SNpc) through the
reduction in striatal glutamate levels in the 6-OHDA rat model of PD in both young as well
as aged mice [134]. In a recent study, xCT deletion did not show any effect over 1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced neurodegeneration [146]. On the
other hand, xCT deletion conferred protection over Lactacystin-induced neurodegeneration
in aged but not young mice [148]. Lactacystin is a proteasome inhibitor and induces
PD differently compared with the other neurotoxins such as MPTP. It is reported that
proteasomal inhibition induces xCT overexpression [147], which contributes to elevated
extrasynaptic glutamate and thereby NMDAR activation induced neurotoxicity. The levels
of xCT were found to be similar in both young and aged mice; however, deletion of xCT
showed a protective effect against Lactacystin-induced neurodegeneration in old mice
only. Altogether, these studies indicate a possible age-dependent association of xCT with
proteasome degradation and neurotoxicity in PD [148].

A recent blood-based methylome-wide association study showed that hypermethyla-
tion of cg06690548 is linked to SLC7A11 (gene for xCT) downregulation, which causes glu-
tathione depletion, oxidative stress, and dopaminergic neurodegeneration. The cg06690548
hypermethylation and the SLC7A11 downregulation are again observed to be associated
with neurotoxin environmental exposure. This is supported by the fact that β-methylamino-
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L-alanine (BMAA) competes with Sxc- for cystine and causes glutathione depletion as well
as glutamate release. BMAA, a neurotoxin found in seafood, is shown to cause neurofib-
rillary tangles and Aβ deposition [149]. These studies provide a strong evidence over the
involvement of Sxc- in neurodegenerative diseases and poses Sxc- to be an attractive target
to prevent the glutamate mediated excitotoxicity.

2.4. Hemichannels

Connexins (Cx) and pannexins (Pn) are two membrane protein families that form
hemichannels, which are hexameric plasma membrane channels. Although these proteins
do not have a fundamental structure that is comparable, their secondary and tertiary struc-
tures are similar. They have four helical transmembrane domains joined by one cytoplasmic
and two extracellular loops, as well as intracellular N- and C- terminals [150]. Connexons
or gap junction hemichannels are made up of two aligned connexin hexamers, one in each
of the opposing membranes. Gap junctions (GJs) are a type of cell junction that allow
molecules and ions to move between cells. They can exchange toxic or oxidative substances,
such as excitatory amino acids, with neighboring cells and promote Ca2+ overload [151,152].
GJs are made up of hemichannels that are present on the cell membrane and, in conjunc-
tion with neighboring cells, they generate channels that allow GJ-mediated intercellular
communication (GJIC). This allows for coordinated information flow, as well as metabolic
substrate exchange and ion balance, between nearby astrocytes [153]. In the CNS, GJs
are widely expressed in astrocytes where they couple these cells to create a functioning
syncytium [154]. Importantly, hemichannel opening permits the release of glutamate [155].
Glutamate and other excitatory amino acids induce inflammatory responses in microglia,
dendritic cells, and other antigen-presenting cells [156]. While a variety of clinical circum-
stances cause glutamate to be released by microglia and astrocytes via GJs, [157] glutamate
is eliminated mostly by glial cells via EAAT1 and EAAT2 and it is rapidly recycled in
the glutamate/glutamine metabolic cycle [158]. As a result, glial cells are not only in
charge of safeguarding neurons from the negative consequences of high glutamate levels,
but they are also an important source of glutamate clearance from the synapses [159].
Zu-Cheng et al. showed that, given glutamate’s functional importance, it is crucial to
understand its travel and the control via the hemichannels. They reported in an in vitro
system that astrocytes have functional hemichannels that can drive substantial glutamate
and aspartate efflux [154]. NMDA receptors from the same or nearby astrocytes respond to
these hemichannel-induced glutamate release, thereby causing Ca2+_alterations [160]. This
glutamate released through hemichannels is required for NMDAR-dependent synaptic
plasticity [161]. Connexin 30 (Cx30) and Cx43 are expressed by astrocytic cells, whereas
Cx47, Cx32, and Cx29 are expressed by oligodendrocytes [162]. Individual Cx molecules
form hexamers around a central pore to create connexons, also known as hemichannels,
which are transmembrane channels. Interestingly, the hemichannels are not closed at rest
while their likelihood of opening is very low but not zero. Cx43 is a Cx protein abundantly
expressed in astrocytes and is found in gap junctions and hemichannels [163]. As a result,
the activation of astrocytic Cx43 hemichannels is crucial for the ions to diffuse into the
extracellular space from astrocytes, and also the release of ATP and gliotransmitters such
as glutathione, adenosine, and glutamate [164]. According to recent studies, hemichan-
nel opening at rest is crucial in basal synaptic transmission and long-term potentiation
(LTP) [165,166]. Gliotransmitters are essential in the regulation of LTP. The hippocampal
spatial short-term memory is aided by Cx43 hemichannels. Cx43 hemichannels permit the
outflow of tiny molecules from astrocytes under specific pathological situations [153,166].
Higher instances of astrocytic hemichannels opening and reductions in gap junction in-
teraction are linked to greater neuronal susceptibility and neuronal cell death in diseased
situations [167]. Cx43, which is located on the mitochondria and astrocytic cell membrane,
promotes neuronal damage. Orellana et al. found a novel mechanism involving the con-
tribution of inflammatory glial cell signaling in neuronal death. When activated by Aβ,
microglia produce pro-inflammatory cytokines such as TNF-α and Interleukin-1β, which
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enhance hemichannel activity in astrocytes. Subsequently, the opening of neuronal Panx1
hemichannels caused by the release of glutamate and ATP via Cx43 hemichannels could
lead to neuronal death [168,169].

Nagy et al. reported that Cx43 expression was higher in reactive astrocytes surround-
ing amyloid deposition, hyperactivated microglia, and neurons in a classic AD investigation
performed in human brains [170]. In cultured astrocytes and acute hippocampal slices,
the Aβ peptide-induced hemichannel opening caused neuronal death via the release of
glutamate and ATP [168]. In APP/PS1 animals, Cx43 and Cx30 expression was significantly
increased in reactive astrocytes surrounded by Aβ plaques, along with enhanced Cx43
hemichannel activity demonstrated in acute hippocampal slices [171]. In the astrocytes of
APP/PS1 mice, the elimination of Cx43 improved cognitive impairment [172]. Furthermore,
in APP/PS1 animals, the deletion of astrocytic Cx43 blocks hemichannel activation and
reduces neuronal injury in the hippocampus [171].

In the MPTP-induced PD animal model, which causes dopaminergic neurodegen-
eration, the striatal expression of Cx43 and Cx30 was found to be raised followed by an
increased intracellular Ca2+ level in the astrocytes [173,174]. Furthermore, in the rotenone-
induced model of PD, rotenone treatment caused the elevation of the Cx43 protein and
thereby promoted its phosphorylation in both in vivo and in vitro studies [175]. Studies
have shown how α-synuclein influences the function of astrocytic hemichannels. The
opening of Cx43 and Panx1 hemichannels in the mice cortical astrocytes by α-synuclein
causes changes in intracellular Ca2+ levels, nitric oxide generation, gliotransmitter release,
mitochondrial structure, and survival capabilities of astrocytes [176]. Increased Cx43 ex-
pression has also been found in human brain samples diagnosed with AD and PD, a process
that coincides with the course of both disorders [152].

It has been shown that oligodendrocytic and astrocytic GJ Cx43 proteins in the an-
terior horns of the spinal cords of mSOD1-Tg mice were significantly impacted at the
disease-progression and end phases, suggesting that disruption of GJs among glial cells
may aggravate motor neuron death and contribute to ALS [177]. Through hemichannels,
Keller et al. further revealed the intimate interactions between activated microglia and
astrocytes in late-stage ALS [178]. Another pathway in the SOD1-G93A mouse model
of ALS indicates that astrocyte-mediated toxicity in ALS is an aberrant increase in Cx43
expression. Moreover, Cx43 levels were also found to be higher in the motor cortex and
spinal cord of ALS patients. Therefore, neuroprotection through Cx43 blockers and Cx43
hemichannel blockers seemed beneficial [179].

2.5. Bestrophin-1 (Best-1)

Best1 is an anionic channel activated by Ca2+ that has a role in cellular activities such
as maintaining Ca2+ homeostasis, the release of neurotransmitters, and regulating cell
volume [180]. It is located in astrocytes residing in the cortex and hippocampus, glial cells
of the cerebrum, reticular neurons located in the thalamus, meninges, and the choroid
plexus epithelial lining. The striking feature of Best-1 is its ability to allow transport of
large organic anions such as glutamate, GABA, and chloride ions. It is shown that, in
hippocampal slice cultures, any stimulus under physiological conditions that increases the
astrocytic intracellular Ca2+ concentrations induces BEST-1 mediated glutamate release at
the microdomains. This released glutamate activates NMDAR and potentiates synaptic
responses, modulating synaptic plasticity [181].

The structural changes in astrocytes during CNS insult and pathological conditions
such as AD, serve to limit the injured area from spreading to other areas by barrier
formation and preventing the immune cell infiltration and entry of other harmful sub-
stances [182,183]. Several reactive astrocytes surrounding the Aβ plaques have been found
in AD patients [184]. The astrocytes also undergo a phenotypic switch from glutamate-
producing normal astrocytes to GABA producing reactive astrocytes. Along with that, these
reactive astrocytes show redistribution of Best-1 channels from perisynaptic microdomains
to soma and processes and begin producing GABA tonically. This directs its focus from
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synaptic NMDA receptors to extrasynaptic GABA receptors. The tonically released GABA
can negatively affect the synaptic transmission, plasticity and memory by inhibiting dentate
granule cell excitability [185]. This could be one of the many plausible reasons for memory
impairment in AD patients apart from neuronal cell death.

Similarly, a substantial number of reactive astrocytes were also described in the SNpc
of PD patients. It is possible that GABA released from these reactive astrocytes, via
BEST-1, can reduce dopamine neuronal excitability and output. A study by Heo et al.
demonstrates that the GABA released from reactive astrocytes reduces dopamine release in
the nigrostriatal pathway by tonic inhibition and dopamine synthesis by downregulating
tyrosine hydroxylase expression [186].

2.6. TREK-1

The TWIK related potassium channel, TREK-1, also called KCNK2 or K2P2.1, is a
type of K2P channel with a double-pore-domain background potassium (K+) channel. In
CNS, it is mostly present in the GABAergic neurons and regions such as the basal ganglia,
hippocampus, hypothalamus, and olfactory bulb. The channel activity is operated through
various physical and chemical stimuli including stretching, cell swelling, temperature,
polyunsaturated fatty acids (PUFA), and so forth. Mechanical stimuli such as stretching
are directly transmitted through the lipid bilayer and cause the direct opening of TREK-1
channels [187].

Trek-1 seems to have several important physio-pathological functional roles in the
CNS, mainly attributed to its potassium conductance and widespread presence. The
function of neuronal TREK-1 in depression, pain, and ischemia has been explored [187].
In astrocytes, TREK-1 controls cell excitability by maintaining the membrane negative
potential [188]. Upon heterodimerization, it mediates the passive potassium conductance
and release of glutamate in astrocytes [189]. Based on their location on astrocytes, they
can influence synaptic transmission. Mostly, they were found in the astrocytic soma and
processes instead of perisynaptic domains, limiting their influence only to mGluR. Unlike
Best-1, Trek-1 produces a rapid release of astrocytic glutamate resulting in fast inward
currents in neurons through mGluRs [41]. Glutamate released by the astrocytes through
TREK-1 acts on postsynaptic mGluRs and generates inward currents in the neurons [190].
Besides, cannabinoid, GABAB, adenosine A1, and opioid receptor activation cause Gi-
GPCRs activation which is also shown to cause fast astrocytic Ca2+-independent glutamate
release through TREK-1 stimulation in primary astrocyte cell cultures [191]. However,
the physiological and pathological relevance of this glutamate release remains unclear.
Owing to the colocalization of TREK-1 with opioid receptors, and opioid-induced glutamate
release, they might contribute to the progression of addiction-associated behaviors [192].

Recent studies indicate that the TREK-1 confers neuroprotection through PUFAs as
well as lysophospholipids against epilepsy and ischemia [187]. A very recent study in
SAMP8, an accelerated aging model of mice, suggested the role of TREK-1 in AD pathology
and learning deficits. In this study, TREK-1 activation through linolenic acid improved
learning and memory by improving glutamate metabolism [193]. However, how exactly
the TREK-1 contributes to learning and memory remains unexplored.

Riluzole, a non-specific TREK-1 activator, demonstrated protective effects in animal
models of PD [193,194]. However, the principal effects of riluzole, such as NMDA antago-
nism in its neuroprotective efficacy, cannot be ruled out. In another study, low-intensity
pulsed ultrasound improved neurodegeneration in the MPP+ model of PD by K2P channel
activation [194].

2.7. Volume Regulated Anion Channels (VRACs)

VRACs are widely expressed in mammals and regulate the cell volume characteristics
in physiological and pathogenic conditions linked to neuronal damage [195]. The astro-
cytic VRAC is stimulated by cell swelling and releases glutamate, thus reducing cell vol-
ume [196,197]. This massive glutamate release from swollen astrocytes mediated by VRAC
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activation overstimulates glutamate receptors in the neurons and induces excitotoxicity-
induced neuronal death [198]. Neurological conditions such as epilepsy, ischemia and trau-
matic brain damage include swollen astrocytes as a characteristic pathological feature [199].
Interestingly, ATP modulates VRAC functioning via Ca2+ dependent cascades [200]. Under
isotonic circumstances, this activated VRAC mediates glutamate release, suggesting that
this channel may also have a physiological function [196].

SWELL1 (LRRC8A) is a widely expressed transmembrane protein with numerous
leucine-rich repeats and is a key component of the VRAC channel. It is found in the plasma
membrane where, knocking it out causes endogenous VRAC currents and a reduction in
regulatory cell volume in a variety of cell types. Furthermore, point mutations in SWELL1
produce a considerable shift in VRAC anion selectivity [201]. This protein modulates
synaptic transmission and neuronal excitability in astrocytes where VRAC functions as a
glutamate-permeable channel in the presence of SWELL1 and facilitates glutamate release
through tonic and cell swelling mediated mechanisms [202]. Cellular swelling in a high
proportion of mammalian cells occurs via an increase in swelling-activated Cl− currents,
which are hypothesized to be associated with apoptosis, the modulation of membrane
potential, and the secretion of physiologically active chemicals in addition to cell volume
management [203].

The VRACs have been implicated in promoting inflammation. The cell swelling
mediated by VRACs is known to alter cell volumes which triggers the activation of NLRP3
-inflammasome to cause inflammation [204]. Their activity is upregulated in the presence of
ROS [205]. It is evident that the volume of excitatory amino acids release is controlled by the
VRACs [206]. Recently, another report showed the ability of hydrogen peroxide to promote
the activation of astrocytic VRACs followed by the release of excitatory amino acids [207].
The swelling of astrocytes in conditions of spreading depression was observed which
released excessive glutamate through the VRACs [208]. Such swelling in astrocytes also
prevented the conversion of glutamate to glutamine through the inhibition of glutamine
synthetase, ultimately causing glutamate toxicity [209].

VRAC inhibitors could help in targeting this glutamate excitotoxicity [210]. Benfenati et al.
reported, that carbenoxolone prevents volume-regulated anion conductance in cultured rat
cortical astroglia [211]. Neuronal cell death was reduced by 80–95% when VRAC blockers
were used [212].

As molecular identification is awaited, the evidence confirming VRAC as a channel
of astrocyte that releases glutamate is mostly indirect and relies on nonspecific pharma-
cological inhibitors, impacting the activity of other membrane proteins, along with those
engaged in the transportation of glutamate [203]. Therefore, even though the exact role
of VRACs in neurodegenerative diseases like AD and PD may not be well elucidated, the
glutamate excitotoxicity induced by them, in the presence of pathologies like Aβ oligomer
and α-synuclein might prove to be detrimental in these conditions.

2.8. Purinergic Receptors

Another important mechanism for the release of glutamate from astrocytes is through
the P2X Purinoreceptor 7 (P2X7) receptors. The P2X7 mediates the exocytosis of glutamate
from the astrocytes [213]. Although the glutamate-specific channel opened by P2X7 ligand
binding is not particularly selective, the considerable driving force for glutamate release in
comparison to other anions promotes a significant glutamate efflux through these activated
channels [214]. Ca2+ independent glutamate outflow from astrocytes has also been linked
to P2X7 receptor-gated channels [214]. P2X7 receptor activation reduces glutamate uptake
and glutamine synthetase activity in astrocytes through different pathways. The hypothesis
that ATP could trigger glutamate release from astrocytes by binding to P2X7 receptors
and driving channel opening was tested using mouse cerebral astrocyte cultures [214].
Both ATP and glutamate are bound by P2X7 receptors. In cultured and in situ astrocytes,
activating these receptors causes ATP uptake and glutamate release at the same time [215].
Radiolabeled tracers were used to establish the release of L-glutamate and D-aspartate
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through P2X7 channels [214]. Furthermore, the Aβ 25–35 fragment causes intracellular
Ca2+ concentration changes in astrocytes via connexin hemichannel opening and purinergic
receptor activation, causing both Ca2+-dependent and independent glutamate release in
the brains of the hAPP-J20 AD animal model [68].

Similarly, the activation of purinergic P2Y1 receptors was shown to release glutamate
through Ca2+ mediated mechanisms [216]. Therefore, the role of purinergic receptors in
glutamatergic transmission is crucial and needs further studies to understand the exact
mode of action.

3. Conclusions and Future Directions

Current evidence proposes that the astrocytes play a crucial role in regulating the
synaptic levels of glutamate, by mediating both uptake and release and thereby controlling
the synaptic plasticity. Astrocytes exhibit various modes of glutamate release, each with
a unique mechanism, specific location, time scale and selective neuronal target receptor,
which ultimately influence the neuronal excitability. The astrocytic Ca2+-mediated vesic-
ular exocytosis is a crucial mechanism that increases the synaptic pool of glutamate in
various neurodegenerative diseases, although Ca2+-independent mechanisms cannot be
ignored. The V-ATPases are functionally important for the vesicular release of glutamate
and their deregulation is implicated in neurodegenerative diseases. Secondly, non-vesicular
glutamate release by Sxc- has been well studied and implicated in various pathological
states through extrasynaptic neuromodulation. The hemichannels—BEST-1, TREK-1 and
VRAC—also facilitate effective glutamatergic transmission. However, their physiologi-
cal and pathological contributions have not been fully understood and remain an area
of extensive research. There are still a few major concerns to be resolved: what is the
contribution of the vesicular and non-vesicular exocytosis of glutamate to the development
of cognitive abnormalities in neurodegenerative disorders? In reactive astrocytes, what is
the role played by the channels regulating the release of glutamate? Understanding these
mechanisms might help us to control excessive glutamate release in the synaptic cleft that
contributes to glutamate excitotoxicity. Therefore, striking a balance in the release and
utilization of glutamate could be the key to managing these diseases for which further
research is awaited. Owing to the advancements in technology, such as electrophysiological
and optogenetic approaches, the presence of various channels and receptors involved in glu-
tamatergic signaling over astrocytes is gradually exposed and rapidly emerging. Though
the current evidence strongly indicates the release of astrocytic glutamate, their physiologi-
cal significance and contribution to the development of neurological diseases are not yet
fully known and remain to be explored. Understanding these mechanisms could help us
shift our neurocentric approach to the role of astrocyte in physiological and pathological
conditions and may be a promising therapeutic target for treating neurological disorders.
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