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Abstract

Mobile group II introns are bacterial retrotransposons that are thought to have invaded early eukaryotes and evolved into
introns and retroelements in higher organisms. In bacteria, group II introns typically retrohome via full reverse splicing of an
excised intron lariat RNA into a DNA site, where it is reverse transcribed by the intron-encoded protein. Recently, we showed
that linear group II intron RNAs, which can result from hydrolytic splicing or debranching of lariat RNAs, can retrohome in
eukaryotes by performing only the first step of reverse splicing, ligating their 39 end to the downstream DNA exon. Reverse
transcription then yields an intron cDNA, whose free end is linked to the upstream DNA exon by an error-prone process that
yields junctions similar to those formed by non-homologous end joining (NHEJ). Here, by using Drosophila melanogaster
NHEJ mutants, we show that linear intron RNA retrohoming occurs by major Lig4-dependent and minor Lig4-independent
mechanisms, which appear to be related to classical and alternate NHEJ, respectively. The DNA repair polymerase h plays a
crucial role in both pathways. Surprisingly, however, mutations in Ku70, which functions in capping chromosome ends
during NHEJ, have only moderate, possibly indirect effects, suggesting that both Lig4 and the alternate end-joining ligase
act in some retrohoming events independently of Ku. Another potential Lig4-independent mechanism, reverse transcriptase
template switching from the intron RNA to the upstream exon DNA, occurs in vitro, but gives junctions differing from the
majority in vivo. Our results show that group II introns can utilize cellular NHEJ enzymes for retromobility in higher
organisms, possibly exploiting mechanisms that contribute to retrotransposition and mitigate DNA damage by resident
retrotransposons. Additionally, our results reveal novel activities of group II intron reverse transcriptases, with implications
for retrohoming mechanisms and potential biotechnological applications.
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Introduction

Mobile group II introns are site-specific retrotransposons that

consist of a catalytically active intron RNA (ribozyme) and an

intron-encoded protein (IEP), with reverse transcriptase (RT)

activity [1]. Although they are found mainly in bacterial and

organellar genomes, group II introns are thought to have played a

major role in eukaryotic genome evolution as evolutionary

ancestors of nuclear spliceosomal introns and retrotransposons in

higher organisms [2–4]. Group II intron RNAs catalyze their own

splicing via two sequential transesterification reactions that are the

same as those for spliceosomal introns and yield an excised intron

lariat with a branched 29-59 phosphodiester linkage [5,6]. For

mobile group II introns, the splicing reactions are assisted by the

IEP, which binds specifically to the intron RNA and stabilizes the

catalytically active RNA structure [7,8]. The IEP then remains

bound to the excised intron lariat RNA in a ribonucleoprotein

particle (RNP) that promotes intron integration into new DNA

sites [9,10]. Intron integration is targeted to the ligated-exon

junction in an intronless alleles in a process called ‘‘retrohoming’’,

but can also occur at lower frequency into ectopic sites that

resemble the homing site in a process called ‘‘retrotransposition’’

or ‘‘ectopic retrohoming’’. In both cases, the intron inserts into the

new DNA site by a novel mechanism in which the excised intron

lariat RNA fully reverse splices into a DNA strand and is reverse

transcribed by the IEP, yielding an intron cDNA that is integrated

into the genome by host enzymes [1,10–14]. Retrohoming leads to

the expansion of intron-containing alleles in a population, while

ectopic retrohoming provides a means of intron dispersal to new

sites.

Group II intron RNAs can also splice without branching by an

alternate pathway, termed ‘‘hydrolytic splicing’’ [1]. In this

pathway, the first transesterification, 59-splice site cleavage, occurs

by hydrolysis rather than branching, and the second transester-

ification yields ligated exons and an excised linear intron RNA.

Hydrolytic splicing was first observed as a side reaction of group II

intron self-splicing under non-physiological conditions [15,16] and

was demonstrated to occur in vivo by using a mutant yeast

mitochondrial intron that was deleted for the branch-point A

residue [17]. Some subclasses of group II introns lack the branch-

point A residue and rely entirely on the hydrolytic mechanism for

splicing in vivo [18,19]. Linear group II intron RNAs can also be
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generated from excised intron lariat RNAs by debranching, which

is believed to accelerate RNA turnover [20]. However, the

physiological and evolutionary significance of hydrolytic splicing

and linear group II intron RNAs have remained largely unclear.

The Lactococcus lactis Ll.LtrB intron, which has been used

extensively as a model system for studying group II intron mobility

mechanisms, has a broad host range and is actively mobile in

Escherichia coli, making it possible to use E. coli genetic approaches

to dissect mobility pathways [11,21]. The major retrohoming

pathway used by the Ll.LtrB intron in E. coli is shown in Figure 1A.

After promoting splicing, the Ll.LtrB IEP, denoted LtrA protein,

remains bound to the excised intron lariat RNA in RNPs that

recognize a DNA target site at the ligated-exon junction (denoted

E1–E2) of an intronless allele. The intron lariat RNA initiates

retrohoming by fully reverse splicing into the top DNA strand,

leading to insertion of the intron RNA between the two DNA

exons. The IEP then uses a DNA endonuclease activity to cleave

the bottom strand and uses the 39 DNA end at the cleavage site as

a primer for reverse transcription of the inserted intron RNA. In

E. coli, the resulting intron cDNA is integrated into the host

genome by a mechanism that involves degradation of the intron

RNA template strand by a host RNase H and second-strand DNA

synthesis by a host DNA polymerase [11,21]. In variations of this

mechanism, Ll.LtrB and other group II introns can also retrohome

without bottom-strand DNA cleavage by using a nascent strand at

a DNA replication fork to prime reverse transcription of the intron

RNA [14,22,23], and yeast mitochondrial group II introns

retrohome by using recombination rather than DNA repair for

cDNA integration [24].

Recently, while carrying out experiments to test whether

microinjected group II intron RNPs could be used for gene

targeting in Xenopus laevis oocyte nuclei and Drosophila melanogaster

embryos, we found that linear as well as lariat group II intron

RNAs can retrohome in vivo [25]. This finding was surprising

because, unlike lariat RNAs, linear group II intron RNAs can

carry out only the first reverse-splicing step, ligation of the 39 end

of the intron RNA to the 59 end of the 39- exon DNA [26,27].

While reverse transcription of fully reverse-spliced intron RNA

yields an intron cDNA that can be extended directly by continued

DNA synthesis into the upstream exon (Figure 1A), reverse

transcription of a partially reverse-spliced intron RNA yields an

intron cDNA with an unattached 39 end that must be linked to the

upstream exon DNA in a separate step (Figure 1B). Sequencing of

59-integration junctions showed that this step occurs by an error-

prone process. Although some events result in the precise insertion

of the intron between the two DNA exons, most give 59-

integration junctions with 59-exon deletions, intron 59-end

truncations, insertion of extra nucleotides at the intron-exon

junction, or indications of DNA repair via base pairing of

microhomologies on opposite sides of the break [25], similar to

ligation junctions resulting from double-strand break repair by

non-homologous end joining (NHEJ) [28–31]. NHEJ activities

have been found to contribute to the retrotransposition of LINE

elements and other retrotransposons in eukaryotes [32,33] and

may be exploited preferentially by retrotransposons to gain

advantage in genetic conflict with their hosts, which rely on these

enzymes for survival [34]. Thus, although group II introns are

alien to Xenopus and Drosophila, they could be utilizing mechanisms

that contribute to the retrotransposition of resident retroelements

in eukaryotes and could be subject to host defenses that evolved to

counter or mitigate such retrotransposition.

Although NHEJ seemed the most likely mechanism for

attachment of the free cDNA to the 59 exon in linear intron

RNA retrohoming, an alternate possibility was that the RT

template switches to the 59-exon DNA, either directly or following

incorporation of extra nucleotide residues at the end of the cDNA,

resulting in synthesis of a continuous DNA bottom strand

containing intron and 59-exon sequences. Both template switching

and incorporation of extra nucleotide residues at the ends of

cDNA have been found for other non-LTR-retroelement RTs

[35–37]. Although we thought this possibility unlikely because

group II intron RTs appeared to have low DNA-dependent DNA

polymerase activity in vitro [21], template switching and non-

templated nucleotide addition by group II intron RTs have not

been investigated previously.

Here, we used Drosophila melanogaster mutants to investigate the

contribution of NHEJ activities to linear intron RNA retrohoming

and assessed the involvement of template switching by comparing

junctions formed by this mechanism in vitro with those formed

during linear intron RNA retrohoming in vivo. Our results indicate

that linear intron RNA retrohoming occurs primarily by a novel

variation of NHEJ that uses host enzymes, including DNA ligase 4

(Lig4) and DNA repair polymerase h (PolQ), but is minimally

dependent upon Ku.

Results

Retrohoming of linear and lariat RNA in D. melanogaster
mutant embryos

To investigate the involvement of NHEJ factors, we compared

lariat and linear group II intron retrohoming in D. melanogaster

embryos with mutations in the genes encoding DNA ligase 4

(Lig4), Ku70, and the DNA repair polymerase h (PolQ) [38,39].

For these experiments, we used a plasmid-based retrohoming

assay in which an Ll.LtrB-DORF intron with a phage T7

promoter sequence inserted near its 39 end integrates into a target

site cloned in an AmpR-recipient plasmid upstream of a

promoterless tetR reporter gene, thereby activating that gene

(Figure 2A) [25,26,40]. The recipient plasmid was injected into the

posterior of precellular blastoderm stage embryos, followed within

5 min by injection of lariat or linear RNPs, which were

Author Summary

Group II introns are bacterial mobile elements thought to
be ancestors of introns and retrotransposons in higher
organisms. They consist of a catalytically active intron RNA
and an intron-encoded reverse transcriptase, which
function together to promote intron integration into
new DNA sites in a process called ‘‘retrohoming.’’ In
bacteria, retrohoming occurs by the excised intron lariat
RNA fully reverse splicing into a DNA site, where it is
reverse transcribed, yielding an intron cDNA that is copied
directly into the host genome. However, little is known
about how group II introns behave in higher organisms.
Here, we find that linear group II intron RNAs, which
cannot fully reverse splice, retrohome in Drosophila
melanogaster by attaching themselves to only one end
of a DNA site. Reverse transcription then yields an intron
cDNA, which is integrated into the recipient DNA by host
enzymes that function in non-homologous end joining, a
critical cellular DNA–repair pathway. Biochemical experi-
ments exploring alternate mechanisms show that group II
intron reverse transcriptases can also template switch
efficiently from one RNA template to a second RNA or DNA
template, thereby directly linking the two template
sequences. Our findings have implications for retotran-
sposition and DNA repair mechanisms and potential
biotechnological applications.

Linear Group II Intron Retrohoming in Drosophila
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reconstituted in vitro from the purified IEP and intron RNA (see

Materials and Methods). After incubating the embryos for 1 h at

30uC, nucleic acids were extracted and transformed into an E. coli

strain (HMS174(DE3)), which expresses T7 RNA polymerase. The

transformed bacteria were then plated on medium containing

ampicillin or ampicillin and tetracycline, and mobility efficiencies

were quantified as the ratio of (TetR+AmpR)/AmpR colonies.

Figure 2B compares the retrohoming efficiencies of lariat and

linear intron RNAs in wild-type and mutant embryos, based on

parallel assays in ten separate experiments (summarized in Table

S1). For each strain in each experiment, 80 injected embryos were

pooled prior to extracting nucleic acids and transforming them

into E. coli. The results for the lig4 mutant show the retrohoming

efficiency of the lariat intron was unchanged, whereas the

retrohoming efficiency of the linear intron was decreased strongly

(18% wild type), but could be restored to wild-type levels by

ectopic expression of Lig4 from an integrated P-element (lig42;

P{lig4+} embryos). In the polQ mutant, the retrohoming efficiency

of the linear intron was decreased to #0.5% of wild type,

compared to 27% wild type for lariat RNPs. Finally, the ku70

mutant, a trans-heterozygote of two putative null alleles (see

Materials and Methods), showed only moderately decreased

Figure 1. Models for retrohoming of Ll.LtrB group II intron lariat and linear RNAs. (A) Retrohoming of lariat RNA. RNPs containing lariat
RNA recognize the DNA target site (ligated E1–E2 sequence) and carry out both steps of reverse splicing, resulting in insertion of the intron RNA
between E1 and E2. The IEP uses its En domain to cleave the bottom strand between positions +9 and +10 of E2, and then uses the 39 end of the
cleaved DNA strand as a primer for reverse transcription of the inserted intron RNA. The resulting full-length intron cDNA is extended directly into E1
by continued DNA synthesis. Retrohoming is completed by a process that includes removal of the 59 overhang on the bottom strand, degradation or
displacement of the intron RNA template strand, top-strand DNA synthesis by a host DNA polymerase, and sealing of nicks by a host DNA ligase [21].
(B) Retrohoming of linear RNA. RNPs containing linear intron RNA recognize the DNA target site and carry out the first step of reverse splicing,
resulting in ligation of the 39 end of the intron RNA to the 59 end of E2. The IEP then uses its En domain to cleave the bottom strand between
positions +9 and +10, generating a primer for reverse transcription of the intron RNA, as in lariat RNA retrohoming. However, because the 59 end of
the linear intron RNA is unattached, the resulting cDNA cannot be extended directly into E1 and is instead linked to the 59 exon DNA by an error-
prone process that sometimes leads to precise insertion of the intron RNA, but often gives imprecise 59 junctions due to deletion of E1 sequences, 59-
intron truncations, and/or insertion of extra nucleotide residues at the ligation junction. As for lariat RNA, retrohoming of the linear intron RNA is
completed by degradation or displacement of the intron RNA template strand, top-strand DNA synthesis, and sealing of nicks by host enzymes. E1
and E2, 59 and 39 exon, respectively; CS, bottom-strand cleavage site; IS, intron-insertion site.
doi:10.1371/journal.pgen.1002534.g001

Linear Group II Intron Retrohoming in Drosophila

PLoS Genetics | www.plosgenetics.org 3 February 2012 | Volume 8 | Issue 2 | e1002534



retrohoming efficiencies for both lariat and linear intron retro-

homing (67% and 46% wild type, respectively). The latter result

was surprising because Ku and Lig4 ordinarily function together

in the same NHEJ pathway [41,42].

The strong differential inhibition of linear compared to lariat

RNA retrohoming in the lig4 and polQ mutants supports models in

which these enzymes function directly at unique steps in this

process, presumably by providing the DNA ligase and repair DNA

polymerase activities needed to link the intron cDNA to the

upstream exon. The similar moderate decreases in lariat and

linear intron retrohoming efficiency in the ku70 mutant could

reflect that Ku functions at a common step in both pathways or

could be an indirect effect (see Discussion).

Comparison of 59-integration junctions from linear intron
RNA retrohoming in wild-type and lig4 and ku70 mutant
embryos

D. melanogaster uses at least two NHEJ pathways to repair

double-strand breaks: classical NHEJ (C-NHEJ), which is

dependent upon Lig4 and Ku70, and alternate end-joining (alt-

EJ), which operates without either factor and could be a mixture of

different pathways [31,38,39,43]. In a genetic assay for repair of

double-strand breaks induced in the germline by the meganuclease

I-SceI, lig4 and ku70 mutants inhibited NHEJ activity by 76–78%,

leaving 22–24% residual activity that was attributed to alt-EJ [43].

Our finding above that the lig4 mutant shows similar degrees of

inhibition and residual activity for linear intron retrohoming (82%

and 18%, respectively), most simply suggests that Lig4-indepen-

dent retrohoming occurs by using the alt-EJ pathway or

components thereof.

Previous studies showed that the DNA repair junctions resulting

from alt-EJ in Drosophila ku70 and lig4 mutants are generally similar

to those for C-NHEJ [31], although in some assays, the lig4 mutant

gave somewhat increased frequencies of junctions with extra

nucleotide additions (55–63% compared to 30–36% for wild type

[38,39]). To further investigate whether Lig4-independent retro-

homing occurs via alt-EJ, we compared 59- and 39-intron

integration junctions resulting from linear intron retrohoming in

the mutant and two commonly used wild-type strains (w1118 and Or-

Figure 2. Retrohoming efficiencies of linear and lariat group II intron RNAs in wild-type and mutant Drosophila. (A) Microinjection assay
for retrohoming of lariat and linear group II intron RNAs. D. melanogaster precellular blastoderm are microinjected with the AmpR-recipient plasmid
pBRR3-ltrB, which contains an Ll.LtrB target site (ligated E1–E2 sequence) cloned upstream of a promoterless tetR gene, followed by separate
microinjection of Ll.LtrB RNPs containing linear or lariat intron RNAs with a phage T7 promoter sequence inserted near their 39 end. The embryos are
incubated at 30uC for 1 h, during which the intron integrates into the target site in the recipient plasmid, placing the T7 promoter upstream of the
promoterless tetR gene. Nucleic acids are then extracted and transformed into E. coli HMS174(DE3) for plating assays, and retrohoming efficiencies are
calculated as the ratio of (TetR+AmpR)/AmpR colonies. T1 and T2, E. coli rrnB transcription terminators; Tw, phage T7 transcription terminator. (B)
Retrohoming efficiencies of lariat and linear Ll.LtrB RNPs in D. melanogaster wild-type (w1118 and Or-R) and mutant embryos were determined, as
described in panel A and Materials and Methods. The bar graphs show retrohoming efficiency in the indicated mutant embryos relative to that of
wild-type embryos assayed in parallel in ten independent experiments with different combinations of strains (Table S1). The values are the mean for
at least three independent determinations for each mutant, with the error bars indicating the standard error. The retrohoming efficiency of #0.5%
wild type for linear RNPs in the polQ mutant is an upper limit, as only a single TetR+AmpR colony was recovered in three separate experiments,
although 59-intron integration junctions could be detected by using a more sensitive PCR assay in all experiments (see Figure 3).
doi:10.1371/journal.pgen.1002534.g002

Linear Group II Intron Retrohoming in Drosophila
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R) by PCR using primers flanking the junctions, followed by cloning

and sequencing of the PCR products (Figure 3 and Figure 4).

The 59- and 39-integration junctions from lariat intron retro-

homing and the 39-integration junctions from linear intron

retrohoming result from reverse-splicing reactions (see Figure 1),

and as expected, the PCRs for these junctions gave single prominent

products, with no differences between the wild-type and mutant

strains (Figure 3, bottom gels; in each case, the expected precise

junction sequence was confirmed by sequencing; see legend for

details). By contrast, the 59-integration junctions resulting from

linear intron RNA retrohoming were heterogeneous in all strains,

with a major band of the size expected for full-length intron

insertion and smaller bands, which appeared most prominent in the

lig42; P{lig4+} and polQ2 embryos (Figure 3, top gels).

DNA sequences of the 59-integration junctions resulting from

linear intron retrohoming in wild-type w1118 and lig42, ku702, and

lig42; P{lig4+} embryos are summarized in Figure 4A–4D, and their

characteristics are compared by the bar graphs in Figure 5. As found

previously [25], the 59-integration junctions for linear intron RNA

retrohoming in the wild-type embryos were heterogeneous with

different combinations of 59-exon deletions, 59-intron truncations,

and extra nucleotide additions (Figure 4A). Some of the junctions

show evidence of DNA repair at regions of microhomology

(parentheses), and in some cases, the extra nucleotides inserted at

the junctions match and were presumably copied from neighboring

sequences in the 59 exon or intron (underlined).

The 59 junctions resulting from linear intron retrohoming in the

lig42, ku702, and lig42; P{lig4+} mutants were generally similar to

those in the wild type w1118, the more closely related wild-type

strain, with no large differences in the percentage of junctions with

59-exon deletions, 59-intron truncations, extra nucleotide addi-

tions, or microhomologies (Figure 4 and Figure 5). Compared to

the other strains assayed in parallel, the proportion of long 59-

intron truncations appears to be somewhat lower in the ku702

embryos and higher in the lig42 and lig42; P{lig4+} embryos, but

the significance of these findings is unclear, as the differences were

not large and the proportions of full-length and shorter 59-junction

products in each stock were somewhat variable in different

experiments. The similarity of the junction sequences resulting

from linear intron RNA retrohoming in the lig4 and ku70 mutants

to those resulting from double-strand break repair in these mutants

[31,39] supports the hypothesis that Lig4-independent linear

intron retrohoming occurs predominantly by using components of

the alt-EJ pathway.

The polQ mutation decreases extra nucleotide addition
and increases long microhomologies at 59-integration
junctions

The DNA repair polymerase h (PolQ) has been shown to

function in DNA end-joining repair in Drosophila, including a role

for extra nucleotide addition at the repaired junctions [38]. To

Figure 3. PCR analysis of integration junctions from lariat and linear intron RNA retrohoming in wild-type and mutant strains.
Retrohoming assays with lariat and linear RNPs were done as described in Figure 2A and Materials and Methods, and DNA was extracted from 80
pooled embryos for each strain. 59- and 39-integration junctions were amplified by PCR, using primers that flank the junction (59junction, forward
primer P1 and reverse primer LtrB933a; 39 junction, forward primer P3 and reverse primer P4; see Materials and Methods). The PCR products were
analyzed in a 1% agarose gel, which was stained with ethidium bromide. Precise 59 and 39 junctions for lariat intron RNA retrohoming and precise 39
junctions for linear intron RNA retrohoming were confirmed by sequencing junctions from at least 10 randomly selected TetR+AmpR colonies or PCR
products from pooled embryos for all strains (not shown).
doi:10.1371/journal.pgen.1002534.g003

Linear Group II Intron Retrohoming in Drosophila
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Figure 4. Sequences of 59-integration junctions from linear intron RNA retrohoming in wild-type and mutant strains. 59-integration
junctions of DNA extracted from 80 pooled embryos for each strain were amplified by PCR, as described in Figure 3, then TOPA-TA cloned, amplified
by colony PCR, and sequenced, as described in Materials and Methods. (A) wild-type w1118; (B) lig42; (C) ku702; (D) lig42; P{lig4+}; (E) wild-type Or-R; (F)
polQ2. Inserted or mutant nucleotide residues are shown in lower case letters; microhomologies between intron and exon end sequences prior to
ligation are shown in parentheses; and inserted sequences that match or are complementary to nearby 59-exon or intron sequences are underlined.
Freq., frequency of occurrence.
doi:10.1371/journal.pgen.1002534.g004

Linear Group II Intron Retrohoming in Drosophila
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investigate the function of PolQ in linear intron RNA retro-

homing, we compared the sequences of 59-intregration junctions

from parallel assays of this process in wild-type Or-R and polQ2

embryos (Figure 4E and 4F, Figure 5). Because the number of

unique junction sequences recovered from the polQ mutant was

lower than those for the other strains and some of these junctions

were represented multiple times, we calculated the proportion of

junctions with different characteristics in Figure 5 relative to both

the total number of junctions (left bars) and the total number of

unique junctions sequences (right bars, asterisks). Both compari-

sons show that that the polQ mutation decreases the proportion of

junctions containing extra nucleotide residues (4% of total

junctions and 20% of unique junctions compared to .64% of

junctions in wild-type Or-R and .48% in all other strains

analyzed), as expected from the known function of PolQ. Further,

the 59 junctions from the polQ2 embryos have a higher frequency

of long ($15 bp) 59-exon deletions (72% of total junctions and

80% of unique junctions compared to 29% in wild-type Or-R) and

a dramatically increased frequency of long ($5 nt) microhomol-

ogies between exon and intron sequences (56% of total junctions

and 40% of unique junctions compared to none among 170 total

junctions from all the other strains analyzed). This increased

frequency of long microhomologies may reflect that they are more

stringently required for annealing of the 39 end of the cDNA to the

upstream exon in the absence of PolQ. We note that among the

unique junction sequences from the polQ mutant, two with large

deletions were recovered $10 times each. Although we cannot

exclude that the repeated recovery of these junctions reflects

differential amplification by PCR, both have $5 nt microhomol-

ogies that could have been used preferentially for annealing in

multiple events, and indeed one of these junctions (Figure 4F

bottom sequence) comprised 6 of 12 recovered junctions in an

additional, separate experiment (data not included in Figure 4F).

Considered together, the junction sequences indicate that PolQ

functions in extra nucleotide addition to the 39 end of the cDNA

during linear intron RNA retrohoming and that this extra

Figure 5. Characteristics of 59-integration junctions resulting from linear intron RNA retrohoming in wild-type and mutant strains.
The bar graphs show the percentage of 59-integration junctions with (A) exon 1 deletions, (B) 59-intron truncations, (C) extra nucleotide additions, and
(D) microhomologies in the indicated strains. For the polQ2 embryos, where the number of unique junction sequences recovered was smaller than
for the other strains, the percentage of junctions having the indicated characteristics was calculated both as a percentage of total junctions (left bar)
and a percentage of unique junctions (right bar, asterisk).
doi:10.1371/journal.pgen.1002534.g005

Linear Group II Intron Retrohoming in Drosophila
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nucleotide addition may be critical for generating microhomolo-

gies that enable annealing between the 39 end of the cDNA and

the upstream exon DNA. Further, the strongly decreased

frequency of linear intron RNA retrohoming in the polQ mutant

indicates that PolQ functions in both the Lig4-dependent and

Lig4-independent retrohoming pathways.

The Ll.LtrB RT can template switch from the 59 end of
linear intron RNA to the upstream exon

Although the residual linear intron RNA retrohoming events in

the lig4 mutant can be accounted for by Lig4-independent (alt-EJ)

NHEJ, it remained possible that template switching of the RT

from the 59 end of the intron RNA directly to the 39 end of the 59-

exon DNA contributes to this process. Previous studies have shown

that other non-LTR retroelement RTs are proficient at template

switching directly to the 39 end of a template strand with little or

no complementarity to the cDNA end and that these events can be

accompanied by extra nucleotide addition at the junctions, as

found for NHEJ [35,36,37,44].

To determine if a template-switching mechanism could be

responsible for the manner of 59 junctions observed during linear

intron retrohoming, we carried out biochemical assays using small

artificial substrates that simulate the situation at the 59-integration

junction just prior to completion of intron cDNA synthesis

(Figure 6). The primary substrate consists of a 60-nt RNA template

(Ll.LtrB RNA), whose 59 end corresponds to that of the Ll.LtrB

intron, with a 45-nt DNA primer representing the nascent cDNA

(primer c) annealed to its 39 end. The Ll.LtrB RT (LtrA) initiates

Figure 6. Template switching of LtrA from the 59 end of the Ll.LtrB intron RNA to exon 1 DNA or RNA. The Ll.LtrB intron RT (LtrA protein;
40 nM) was incubated with artificial substrates corresponding to the 59 end of Ll.LtrB intron (Ll.LtrB RNA; 40 nM) with an annealed 59-32P-labeled DNA
primer c (Pri c; 44 nM) in presence of exon 1 (E1) DNA or RNA (40 nM; black and red, respectively), as diagrammed in schematics to the left of the gel.
The substrates were incubated with dNTPs (200 mM) in reaction medium containing 450 mM NaCl, 5 mM MgCl2, 20 mM Tris-HCl, pH 7.5, and 1 mM
DTT for 30 min at 30uC. After terminating the reaction by extraction with phenol-CIA, the products were analyzed in a denaturing 15%
polyacrylamide gel. Lanes (1) and (2) 32P-labeled Pri c incubated without and with LtrA, respectively; (3) and (4) LtrA incubated with 32P-labeled Pri c
and E1 DNA or RNA, respectively; (5) and (6) LtrA incubated with Ll.LtrB RNA with annealed 32P-labeled Pri c and E1 DNA or RNA, respectively; (7–9)
LtrA incubated with Ll.LtrB RNA with annealed 32P-labeled Pri c and E1 DNA or RNA with annealed complementary DNA oligonucleotides to leave a
blunt end (exon 1 AS) or a 59-bottom-strand overhang (exon 1 AS+9). Bands excised for sequencing (Figure 7) are indicated in the gel. In the
schematics, DNA and RNA oligonucleotides are shown in black and red, respectively; LtrA is shown as a gray oval; and the direction of cDNA synthesis
is indicated by a green arrow. The numbers to the right of the gel indicate the positions of 59-end labeled size markers (10-bp DNA ladder,
Invitrogen).
doi:10.1371/journal.pgen.1002534.g006
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reverse transcription of the intron RNA template from the

annealed DNA primer and extends it to the 59 end of the Ll.LtrB

RNA template, where it can then switch to a second 40-nt DNA or

RNA template with the nucleotide sequence of exon 1 (E1 RNA or

DNA, red and black, lanes 5 and 6, respectively). The 39 end of the

Ll.LtrB RNA has an aminoblock to impede the RT from switching

to a second molecule of the initial template.

Figure 6, lanes 5 and 6 show that the Ll.LtrB RT efficiently

extends the annealed primer c (Pri c) to the end of the intron RNA

template, yielding major labeled products of ,60-nt, which were

resolved as a doublet, along with smaller amounts of larger

products of the size expected for template switching to the exon 1

(E1) DNA or RNA (,100 nt) or to a second molecule of Ll.LtrB

RNA despite the presence of the aminoblock (,120 nt). Controls

show that no labeled products were detected after incubating the

RT with primer c in the presence or absence of the exon 1 RNA or

DNA (lanes 2–4).

Cloning and sequencing of the gel bands confirmed that the

major ,60-nt products (bands a and b in lane 5 and h and i in

lanes 6) correspond to cDNAs extending to or near the 59 end of

the intron RNA, with the doublet reflecting the addition of extra

nucleotide residues, mostly A-residues, to the 39 end of the cDNA

upon reaching the end of the Ll.LtrB RNA template (Figure 7A

and 7B). Such non-templated nucleotide addition is a common

property of DNA polymerases and RTs [35,36,45–48].

The first set of larger gel bands (90–110 nts; band c–e in lane 5

and j–l in lane 6) corresponds to products resulting from template

switching from the 59 end of the intron to the 39 end of exon 1

DNA or RNA (Figure 7A and 7B), as well as products resulting

from template switching to the 39 end or internal regions of the

Ll.LtrB intron (Figure S1). Many of the template switches to exon

1 DNA occurred seamlessly, but small numbers of extra nucleotide

residues, mostly A residues, were found at some junctions, as well

as at the 39 end of the cDNAs (Figure 7A; bands c–e). The

Figure 7. DNA sequences resulting from template switching of LtrA from Ll.LtrB RNA to exon 1 DNA or RNA. (A) and (B) Sequences of
DNA products resulting from template switching of the Ll.LtrB RT (LtrA protein) from the 59 end of the Ll.LtrB intron RNA template/Pri c DNA
substrate to exon 1 DNA (lane 5) or RNA (lane 6), respectively. (C) Sequences of DNA products resulting from template switching of the Ll.LtrB RT from
the 59 end of Ll.LtrB RNA/primer c substrate to double-stranded exon 1 DNA with a 59 bottom-strand overhang (AS+9; lane 9). Bands were excised
from the gel, cloned, and sequenced, as described in Materials and Methods. The substrate and expected cDNA or DNA product sequences are shown
boxed above each set of experimentally determined DNA product sequences. Extra or mutant nucleotide residues are shown in lower case letters.
Freq., frequency of occurrence; *, 32P-label at 59 end of primer c.
doi:10.1371/journal.pgen.1002534.g007
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template switches to exon 1 RNA showed similar characteristics,

but with a higher proportion of junctions containing extra

nucleotide residues (61% compared to 33% for exon 1 DNA;

Figure 7B; bands j–l).

The second set of larger bands (120–140 nts; bands f and g in

lane 5 and m and n in lane 6) contains products resulting from two

sequential template switches to exon 1 DNA or RNA (Figure 7A

and 7B, respectively) and/or the Ll.LtrB RNA (Figure S1). These

products of multiple template switches have characteristics similar

to those resulting from a single template switch, including addition

of extra nucleotide residues, mostly A residues, at some template-

switching junctions and at the 39 ends of the cDNAs.

The above results were obtained under reaction optimized for

reverse transcription by the Ll.LtrB RT in vitro (450 mM NaCl,

5 mM Mg2+), the high salt concentration helping to stabilize free

protein and minimize aggregation of this RT [9]. However, similar

results were obtained for template-switching reactions under near-

physiological salt conditions (100 or 200 mM KCl, 5 mM Mg2+).

Although the RT activity of the protein was lower under these

conditions, the gel profiles show roughly equal levels of template

switching to exon 1 RNA and DNA (Figure S2), and sequencing of

the products showed similar template-switching junctions and

patterns of non-templated nucleotide addition (Figure S3).

Finally, we tested whether the Ll.LtrB RT could template switch

to double-stranded exon 1 DNA or RNA with an annealed

bottom-strand DNA leaving either a blunt end or a 59 bottom-

strand overhang identical to that generated in vivo by the staggered

double-strand break accompanying group II intron insertion

(Figure 1; complete annealing confirmed by native gel analysis;

Figure S4). Neither of these configurations significantly decreased

the formation of the 100-nt product resulting from template

switching to exon 1 DNA or RNA (Figure 6, lanes 7–9). DNA

sequencing confirmed the template switch to double-stranded E1

DNA with a 59-bottom-strand overhang and showed that this

template switch was seamless in most cases (Figure 7C). The

sequencing also showed several instances in which the template

switch occurred to the penultimate rather than the 39 terminal

residue of exon 1 (Figure 7C), as well as template switches to

Ll.LtrB RNA and the bottom-strand overhang oligonucleotide

(Figure S5). Template switching to the penultimate nucleotide

residue was not seen for single-strand acceptor DNA templates

and could be related to the presence of the complementary DNA

strand.

Together, the biochemical assays show that the Ll.LtrB RT can

template switch from the 59 end of the intron RNA to exon 1 and

surprisingly that template switching is similarly efficient regardless

of whether the exon 1 template is RNA or DNA or single- or

double-stranded. However, the junctions resulting from template

switching differ from those generated during retrohoming of linear

intron RNA in vivo in that extra nucleotide additions are uniformly

short and mostly A-residues.

Discussion

Considered together, our results lead to the model shown in

Figure 8 for the key steps in linear intron RNA retrohoming. The

finding of strong differential inhibition of linear relative to lariat

intron retrohoming in D. melanogaster mutants indicates that the

NHEJ factor Lig4 is the predominant enzyme involved in ligating

the intron cDNA to the upstream exon and that extra nucleotide

addition by the DNA repair polymerase h (PolQ) also plays a

crucial role. Although Lig4 and PolQ appear to be the major

enzymes playing these roles in D. melanogaster, residual linear intron

RNA retrohoming with extra nucleotide addition occurs in both

Figure 8. Model for ligation of the intron cDNA to exon 1
during linear group II intron retrohoming. Partial reverse splicing
of the linear intron RNA into the DNA target site is followed by bottom-
strand cleavage between E2 positions +9 and +10 and synthesis of a
cDNA of the attached linear intron RNA. After cDNA synthesis reaches
the 59 end of the intron RNA template, extra nucleotide residues are
added to the 39 end of the cDNA generating microhomologies that
enable annealing of the cDNA strand to the top strand of E1. In
Drosophila, the repair DNA polymerase h is the major enzyme
responsible for this extra nucleotide addition, but some extra
nucleotide addition may also be done by other host DNA polymerases
or by the Ll.LtrB RT. The annealing of the cDNA requires unwinding
and/or resection of the bottom strand, leading to loss of the bottom-
strand 59 overhang resulting from the initial double-strand break by the
group II intron RNP. In the final step, the annealed cDNA is ligated to
the bottom strand of E1 by DNA ligase 4 or an alternate ligase. The
retrohoming of the linear intron RNA is completed by degradation or
displacement of the intron RNA template strand, second-strand DNA
synthesis, and sealing of nicks by host enzymes. E1 and E2, 59 and 39
exons, respectively.
doi:10.1371/journal.pgen.1002534.g008
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the lig4 and polQ mutants, indicating that other DNA ligases and

polymerases can serve as backups that perform the same functions

at lower efficiency. Biochemical experiments show that another

possible Lig4-independent mechanism, template switching by the

group II intron RT from the 59 end of the intron RNA directly to

the upstream exon DNA, is possible but gives junctions differing

from the majority of those in vivo. It seems likely that the mechanism

elucidated here involving host DNA ligases and repair polymerases

is also used for linear intron RNA retrohoming in Xenopus laevis,

where we observed similar 59-integration junctions [25], and more

generally, in other eukaryotes, including mammalian cells, where it

could have implications for group II intron-based gene targeting.

This mechanism also provides a possible means for proliferation of

non-branching group II introns in prokaryotes, some of which

encode a Ku homolog and ATP-dependent DNA ligases along with

DNA repair polymerases and use them in NHEJ pathways related

to those of higher organisms [49]. Additionally, features of this

mechanism, including the use of both Lig4-dependent and alt-EJ

and the requirement for extra nucleotide addition to the cDNA end

by a DNA repair polymerase, may be used to promote

retrotransposition and mitigate DNA damage caused by LINE

elements and other retrotransposons [33,50–52].

The involvement of Lig4 in linear intron RNA retrohoming in

Drosophila is indicated by the findings that a lig4 mutation decreases

the retrohoming efficiency of linear intron RNA by ,80% while

having no effect on the retrohoming of lariat RNA, and that the

decreased retrohoming efficiency of the linear intron in the mutant

could be restored to wild-type levels by ectopic expression of Lig4

from a P-element insertion. Most if not all of the residual linear

intron RNA retrohoming in the lig4 mutant appears to occur by

using components of the alt-EJ pathway, as judged both by similar

levels of activity and characteristics of the cDNA ligation junction,

particularly patterns of extra nucleotide and the use of micro-

homologies (see Results). In Drosophila, C-NHEJ and alt-EJ give

generally similar double-strand break repair junctions, albeit with

quantitative differences in the frequency of extra nucleotide

addition in some assays [31,38,39], whereas in yeast or

mammalian cells, alt-EJ junctions show increased deletion lengths

and use of microhomologies [53–55].

The involvement of PolQ in linear intron RNA retrohoming is

indicated by the findings that a PolQ mutation decreases the

retrohoming efficiency by .99% and substantially decreases the

frequency of 59-integration junctions having extra nucleotide

residues (4–20% of junctions compared to 67% for wild-type Or-R

assayed in parallel and .48% in all other strains; Figure 4 and

Figure 5). The mutation also increases the frequency of junctions

with long ($15 bp) 59-exon deletions and long ($5 nt) micro-

homologies. The latter increase is particularly striking, as such

long microhomologies were found at 56% of the total and 40% of

the unique junction sequences from the polQ mutant, but were not

found at junctions (170 total) from any of the other strains

analyzed (Figure 4 and Figure 5). The residual extra nucleotide

addition in the polQ mutant, which was also seen at 15–20% of

junctions in end-joining assays [38,39], could be due to small

amounts of the enzyme remaining in the mutant, which has an

unidentified expression defect, or to an alternate DNA polymer-

ase. The very strong decrease in linear intron RNA retrohoming

efficiency in the polQ mutant (.99%) indicates that PolQ functions

in both the Lig4-dependent and Lig4-independent retrohoming

pathways.

PolQ could potentially play at least two roles in linear intron

RNA retrohoming. First, extra nucleotide addition to the 39 end of

the cDNA by PolQ may be critical for generating microhomol-

ogies that can base pair with the upstream exon to facilitate DNA

ligation. Second, PolQ contains a putative DNA helicase domain

that could also contribute to retrohoming by promoting base

pairing between microhomologies at the cDNA end and the

upstream exon, either by annealing the cDNA end to comple-

mentary exon sequences or by unwinding the exon DNA strands,

making the top strand more accessible to base pairing [38]. The

increased frequency of long 59-exon deletions in the polQ mutant

may reflect a delay in cDNA attachment due to lack of suitable

microhomologies and/or impaired annealing of complementary

cDNA ends to the top strand. The striking increase in the

frequency of long microhomologies at the 59 junctions in the polQ

mutant (see above) indicates that an alternate annealing

mechanism exists in the polQ mutants, but that it is more

dependent upon longer microhomologies between exon and intron

sequences than the PolQ-assisted mechanism.

The function, if any, of Ku in linear intron RNA retrohoming is

unclear. The finding that ku70 mutations moderately inhibit

retrohoming of both linear and lariat intron RNA (54 and 33%

inhibition, respectively) could reflect either that Ku contributes to

both pathways or that Ku mutations affect one or both pathways

indirectly. The Ku protein interacts with a stem-loop region of the

RNA component of yeast and human telomerase [56–58], and it is

possible that Ku may similarly bind to linear or lariat group II

intron RNAs to protect them from degradation and/or recruit

other DNA repair enzymes to the site. An alternate possibility is

that Ku affects retrohoming efficiency indirectly by contributing to

the repair of double-strand breaks induced by the intron RNP in

the recipient plasmids. In yeast mitochondria, double-strand

breaks resulting from abortive retrohoming events are substantially

more frequent than completed integrations [59]. If not repaired

correctly, such double-strand breaks could lead to loss of

functional recipient plasmid target sites, which would appear as

decreased retrohoming efficiencies in our assay. A similar indirect

effect, involving repair of double-strand breaks in the recipient

plasmid could also account for the moderate inhibitory effect of

the polQ mutation on lariat intron RNA retrohoming.

Lig4 is ordinarily recruited to DNA breaks by Ku, and D.

melanogaster mutations in either lig4 or ku70 give similar decreases in

NHEJ efficiency, suggesting that Lig4 acts exclusively in Ku-

dependent NHEJ [41–43]. By contrast, we find that linear intron

RNA retrohoming is more strongly inhibited by a lig4 mutation

than by putative null mutations in ku70 (82 and 54% inhibition,

respectively). Even assuming that the inhibition by the ku70

mutations is a direct effect, these findings most simply suggest that

a substantial proportion of linear intron RNA retrohoming events

are promoted by Lig4 in the absence of Ku.

Unlike a conventional double-strand break, the double-strand

break formed during linear intron RNA retrohoming has an RNA

attached to one of the DNA ends, and this difference could

potentially affect the recruitment and use of NHEJ activities. We

noted previously that group II intron RNPs bind to both the 59-

and 39-exons during retrohoming, and such bridging of the

ligation junction could impede access and decrease the need for

Ku to cap the broken DNA ends [25]. Additionally, the attached

intron RNA could contribute directly to the recruitment of NHEJ

activities. The interaction of Ku with telomerase RNA noted

above is thought to help recruit telomerase to double-strand breaks

[57], and it is possible that a similar interaction between Ku and

the attached group II intron RNA contributes to the recruitment

of Lig4 for some linear intron RNA retrohoming events. More

generally, such a mechanism involving the interaction of Ku with

RNA could also be used by LINE elements and other retro-

transposons to recruit Lig4 and other NHEJ activities for cDNA

integration and repair of DNA breaks.
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Finally, our biochemical experiments demonstrate that template

switching by the group II intron RT from the 59 end of the intron

RNA directly to the 39 end of the upstream DNA exon is a

potential alternate mechanism for cDNA attachment during linear

intron RNA retrohoming. Although we found previously that the

Ll.LtrB RT has low DNA-dependent DNA polymerase activity in

vitro [21], we find here that it template switches and copies 59-exon

DNA templates as well as 59-exon RNA templates (Figure 6),

possibly reflecting that reverse transcription favors a conformation

of the enzyme that can initiate more efficiently on DNA templates.

In many cases, the template-switching junctions to DNA or RNA

templates are seamless, but some have a small number of extra

nucleotide residues, predominantly A-residues (corresponding to

T-residues in the top strand) that were added by the RT to the 39

end of the cDNA prior to the template switch. This pattern of

extra nucleotide addition, which we found under both enzyme

optimal and near-physiological conditions, differs from the

majority of 59-integration junctions resulting from linear intron

retrohoming in vivo, where the extra nucleotide residues do not

show a similar bias and sometimes correspond to copies of

neighboring DNA sequences. It remains possible, however, that

template switching by the Ll.LtrB RT could give different

junctions in vivo, and that template switching and extra nucleotide

addition by this enzyme contributes to some retrohoming events.

We note that the ability of the group II intron RT’s template

switching activity to efficiently link sequences in two different

templates could potentially be used to directly attach linker

sequences containing primer-binding sites to the ends of cDNAs

for cDNA cloning and sequencing applications.

Materials and Methods

D. melanogaster stocks
Flies were raised in standard fly media at 22uC. The lig4169

mutant, obtained from Mitch McVey (Tufts University, Medford,

MA), has a deletion that removes the start codon and most of the

region encoding the ATPase and adenylation domains [31]. The

ku707B2 and ku70Ex8 mutants were obtained from William Engels

(University of Wisconsin, Madison, WI). The ku707B2 allele lacks

1,359 bp at the 39 end of the 2,393-bp gene, including most of the

DNA and Ku80-interaction domains [43]. The ku70Ex8 allele lacks

at least 1 kb, including all of exon 1 and the start codon [43]. The

ku707B2/ku70Ex8 genotype, generated by crosses between trans-

heterozygous ku707B2/ku70Ex8 parents, is the same as that used

previously to study double-strand break repair pathways [39,43].

The mus308D2 stock [60] was obtained from the Drosophila Stock

Center (Bloomington, IA). The mutation lies outside of the coding

region and results in undetectable levels of PolQ protein

expression [38].

To obtain transgenic flies harboring a lig4 rescue fragment, a 6-

kb DNA segment containing the lig4 gene was amplified from

w1118 genomic DNA by using the Expand High Fidelity PCR

System (Roche Applied Science, Indianapolis, IN), with primers

Lig4 F1 BamHI (59-AAGAGGATCCAGTAGCTGTAGAAG-

CAGCCAAC) and Lig4 R1 XhoI 59-AAGACTCGAGCAG-

CAGTTCCTCCGACATGAAG). This PCR product was insert-

ed between BamHI and XhoI sites of the P-element

transformation vector pCaSpeR4 [61], and transgenic flies were

produced by GenetiVision (Houston, TX). A transgene insertion

on chromosome 2 was recombined with lig4169 to generate the fly

stock used in P{lig4+} rescue experiments.

Except for the trans-heterozygous ku707B2/ku70Ex8 embryos (see

above), embryos used for microinjection were obtained from

crosses between isogenic wild-type or homozygous mutant parents.

For all stocks, precellular blastoderm embryos were collected in

egg laying chambers in under 40 min, microinjected with recipient

plasmids and group II intron RNPs, and incubated for 1 h at 30uC
prior to DNA extraction.

Recombinant plasmids
pACD5C, which was used for synthesis of lariat and linear

intron Ll.LtrB intron RNAs, is a derivative intron-donor plasmid

pACD4C with a T7 promoter sequence inserted in the sense

orientation at the SalI site in intron DIV [25,62].

pBRR3-ltrB, the target plasmid for intron-integration assays,

contains the Ll.LtrB intron homing site (ligated exon 1 and 2

sequences of the ltrB gene from positions 2178 upstream to +91

downstream of the intron-insertion site) cloned upstream of a

promoterless tetR gene in an AmpR pBR322-based vector [63].

pIMP-1P, used for expression of the LtrA protein for RNP

reconstitution, contains the LtrA ORF cloned downstream of a tac

promoter and W10 Shine-Dalgarno sequence in the expression

vector pCYB2 (New England BioLabs, Ipswich, MA) [9]. LtrA is

expressed from this plasmid as a fusion protein with a C-terminal

tag containing an intein-linked chitin-binding domain, enabling

LtrA purification via a chitin-affinity column, followed by intein-

cleavage [9].

pMAL-LtrA, used for expression of the LtrA protein for

biochemical assays, contains the LtrA ORF [64] cloned down-

stream of a tac promoter and W10 Shine-Dalgarno sequence

between BamHI and HindIII of the protein-expression vector

pMAL-c2t. The latter is a derivative of pMal-c2x (New England

BioLabs, Ipswich MA) with a TEV protease-cleavage site in place

of the factor Xa site [65]. LtrA is expressed from this plasmid with

an N-terminal fusion to maltose-binding protein (MalE), enabling

its purification via an amylose-affinity column, followed by TEV-

protease cleavage to remove the tag (see below).

Preparation of Ll.LtrB lariat and linear RNAs
Ll.LtrB-DORF intron RNAs were transcribed from DNA

templates generated by PCR of plasmid pACD5C with primers

that append a phage T3 promoter sequence (underlined in

sequences below) [26]. For the lariat precursor RNA, the PCR

primers were pACD-T3 (59-GGAGTCTAGAAATTAACCCT-

CACTAAAGGGAATTGTGAGCG) and NheIR (59-CTAG-

CAGCACGCCATAGTGACTGGCG), and for linear intron

RNA, the PCR primers were T3LIS-1G (59-AATTAACCCT-

CACTAAAGTGCGCCCAGATAGGGTGTTAAGTCAAG)

and HPLC-purified LtrB940a (59-GTGAAGTAGGGAGG-

TACCGCCTTGTTC). The PCR products were purified by

using the Wizard SV Gel and PCR Clean-up System (Promega),

extracted with phenol-chloroform-isoamyl alcohol (phenol-CIA;

25:24:1 by volume), ethanol precipitated, and dissolved in

nuclease-free water. In vitro transcription and the preparation of

lariat and linear intron RNAs were as described [26].

Preparation of LtrA protein and RNPs
The LtrA protein used for RNP reconstitution was expressed in

E. coli BL21(DE3) from the intein-based expression vector pImp-

1P and purified via a chitin-affinity column and intein cleavage, as

described [9], except that the column buffer contained 50 mM

Tris-HCl, pH 8.0, 0.1 mM EDTA, and 0.1% NP-40. Ll.LtrB

RNPs were reconstituted with the purified LtrA protein and in

vitro-synthesized lariat or linear Ll.LtrB-DORF intron RNA, as

described [26], except that the final RNP pellet was dissolved in

10 mM KCl, 5 mM MgCl2, and 40 mM HEPES, pH 8.0.

The LtrA protein used in biochemical assays was expressed in E.

coli BL21(DE3) from the plasmid pMAL-LtrA. Cells were grown in
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starter cultures of LB medium overnight at 37uC, inoculated into

0.5-l LB medium in ultra-yield flasks, and autoinduced by growing

at 37uC for 3 h, followed by 18uC for 24 h [66]. Cells were

harvested by centrifugation (Beckman JLA-8.1000; 4,0006 g,

15 min, 4uC), resuspended in 1 M NaCl, 20 mM Tris-HCl,

pH 7.5, 20% glycerol, and 0.1 mg/ml lysozyme (Sigma-Aldrich,

St. Louis, MO), kept on ice for 15 min, and lysed by 3 freeze-thaw

cycles on dry ice followed by sonication (Branson 450 Sonifier,

Branson Ultrasonics, Danbury, CT; three or four 10 sec bursts on

ice at an amplitude of 60%, with 10 sec between bursts). After

pelleting cell debris (Beckman JA-14 rotor, 10,000 rpm, 30 min,

4uC), nucleic acids were precipitated from the supernatant with

0.4% polyethylenimine (PEI) and constant stirring for 20 min at

4uC, followed by centrifugation (Beckman JA-14 rotor,

14,000 rpm, 30 min, 4uC). Proteins were precipitated from the

supernatant by adding ammonium sulfate to 50% saturation with

constant stirring for 1 h at 4uC. The precipitated proteins were

pelleted (Beckman JA-14 rotor, 14,000 rpm, 30 min, 4uC),

dissolved in 500 mM NaCl, 20 mM Tris-HCl, pH 7.5, 10%

glycerol, and run through a 10-ml amylose column (FPLC;

Amylose High-Flow resin; New England BioLabs, Ipswich, MA),

which was washed with 3 column volumes of 500 mM NaCl,

20 mM Tris-HCl, pH 7.5, 10% glycerol and eluted with 500 mM

NaCl, 20 mM Tris-HCl, pH 7.5, 10% glycerol containing 10 mM

maltose. Fractions containing the MalE-LtrA fusion were

incubated with TEV protease (80 mg/ml, 18 h, at 4uC), and

imidazole was added to a final concentration of 40 mM. LtrA

freed of the MalE tag was then purified by FPLC through a Ni-

NTA equilibrated with 500 mM NaCl, 20 mM Tris-HCl, pH 7.5,

10% glycerol, 40 mM imidazole. The Ni-NTA column, which

takes advantage of endogenous histidine residues in LtrA’s C-

terminal domain, was washed with 3 column volumes of 500 mM

NaCl, 20 mM Tris-HCl, pH 7.5, 10% glycerol, 40 mM imidaz-

ole, and eluted in 500 mM NaCl, 20 mM Tris-HCl, pH 7.5, 10%

glycerol, 300 mM imidazole. Finally, the peak LtrA fractions from

the Ni-NTA column were further purified through two tandem 1-

ml heparin Sepharose columns (New England BioLabs). The

columns were equilibrated with 500 mM NaCl, 20 mM Tris-HCl,

pH 7.5, 10% glycerol, loaded directly with LtrA protein from the

Ni-NTA column, washed with 5-column volumes of 500 mM

NaCl, 20 mM Tris-HCl, pH 7.5, 10% glycerol, and eluted with a

20-column volume gradient of 0.5 to 1 M NaCl, 20 mM Tris-

HCl, pH 7.5, 10% glycerol. The protein elutes approximately

midway through the gradient at ,750 mM NaCl. The purified

protein was concentrated to 30 mM, exchanged into 100 mM

NaCl, 20 mM Tris-HCl, pH 7.5, 10% glycerol by dialysis, flash-

frozen in liquid nitrogen, and stored at 280uC.

Retrohoming assays and analysis of intron-integration
junctions

Drosophila embryos were microinjected with ,300 pl recipient

plasmid pBRR3-ltrB at 1.4 mg/ml in solution with 500 mM

MgCl2 and 17 mM dNTPs, followed within 5 min by ,300 pl of

Ll.LtrB lariat or linear RNPs at 2.6 mg/ml in 10 mM KCl, 5 mM

MgCl2, 40 mM HEPES, pH 8.0. The RNPs consist of LtrA

protein bound to Ll.LtrB lariat or linear intron RNA with a phage

T7 promoter sequence inserted in intron domain IV, and the

recipient plasmid contains the Ll.LtrB intron target site (ligated

exon 1 and 2 sequences of the ltrB gene; E1 and E2) cloned

upstream of a promoterless tetR gene in a pBR322-based vector

carrying an AmpR marker. Site-specific integration of the intron

into the target site introduces the T7 promoter upstream of the

promoterless tetR gene, thereby activating that gene. Eighty

embryos were injected and incubated at 30uC for 1 h for each

assay. The pooled embryos were incubated in lysis buffer (20 mM

Tris-HCl, pH 8.0, 5 mM EDTA, 400 mM NaCl, 1% SDS (w/v))

with 400 mg/ml proteinase K (Molecular Biology Grade; Sigma-

Aldrich) for 1 h at 55uC, and then extracted with phenol-CIA.

Nucleic acids were ethanol precipitated and dissolved in 12 ml of

distilled water.

For assays of retrohoming efficiency, a 4-ml portion of the

nucleic acid preparation was electroporated into electrocompetent

E. coli HMS174(DE3) F2, hsdR, recA, rifr (Novagen, EMD

Chemicals, Gibbstown, NJ), which expresses T7 RNA polymerase.

Cells were plated at different dilutions on 2% agar containing LB

medium with ampicillin (50 mg/ml) plus tetracycline (25 mg/ml) or

the same concentration of ampicillin alone. Colonies were counted

after overnight incubation at 37uC, and the integration efficiency

was calculated as the ratio of (AmpR+TetR)/AmpR colonies.

For analysis of intron-integration junctions, a 1-ml portion of the

nucleic acid preparation was used as template for PCR using

Phusion High Fidelity PCR Master Mix with HF buffer (New

England BioLabs). The 59-junction PCRs were done with primers

P1 (59-CTGATCGATAGCTGAAACGC) and LtrB933a (59-

AGGGAGGTACCGCCTTGTTCACATTAC), and the 39 junc-

tion PCRs were done with primers P3 (59-CAGTGAATTTT-

TACGAACGAACAATAAC) and P4 (59-AATGGACGA-

TATCCCGCA). The PCR was done for 25 cycles for all

strains, except for parallel assays of wild-type Or-R and the polQ

mutant, which required 35 PCR cycles to obtain sufficient PCR

product from the mutant. The PCR products were purified using a

MinElute PCR purification Kit (Qiagen), cloned into a TOPO TA

cloning vector (pCRII-TOPO; Invitrogen, Carlsbad, CA), and

transformed into chemically competent E. coli (One Shot TOP10;

Invitrogen). The cloned PCR products were then amplified from

randomly picked colonies by colony PCR using Phusion High

Fidelity PCR Master Mix with HF buffer and primers M13 F(-20)

(59- GTAAAACGACGGCCAGT) and M13 R(-26) (59-CAG-

GAAACAGCTATGAC) for 25 cycles, and sequenced using

primers M13 R(-24) (59-GGAAACAGCTATGACCATG) or

M13 F(-20) [67].

Biochemical assays of group II intron RT template
switching

Biochemical assays were done by incubating purified LtrA

protein (40 nM) with synthetic oligonucleotide substrates that

correspond to the 59 end of the Ll.LtrB intron (60-nt Ll.LtrB RNA;

40 nM) with an annealed 59-32P-labeled DNA primer correspond-

ing to nascent cDNA (45-nt Pri c; 44 nM) in the presence of exon

1 RNA or DNA (40-nt E1; 40 nM) in 20 ml of reaction medium

containing 450 mM NaCl, 5 mM MgCl2, 20 mM Tris-HCl,

pH 7.5, 1 mM dithiothreitol (DTT) and 200 mM dNTPs. The

reaction components were assembled on ice with substrate added

last and then incubated at 30uC for 30 min. Reactions were

terminated by phenol-CIA extraction. Portions of the reaction

product (3 ml) were added to an equal volume of gel loading buffer

II (95% formamide, 18 mM EDTA and 0.025% each of SDS,

xylene cyanol, and bromophenol blue; Ambion, Austin, TX),

denatured at 98uC for 7 min, and analyzed by electrophoresis in a

denaturing 10 or 15% polyacrylamide gel, which was visualized by

scanning with a PhosphorImager (Typhoon Trio, GE Healthcare,

Piscataway, NJ). 32P-labeled DNA products were excised from the

gel, amplified by PCR, as described (Sabine Mohr, Scott

Kuersten, and A.M.L., manuscript in preparation), and cloned

into the TOPO-TA pCR2.1 vector (Invitrogen), according to the

manufacturer’s protocol. Random colonies were picked and the

cloned PCR products were amplified by colony PCR using

Phusion High Fidelity PCR Master Mix/HF buffer with primers
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M13 F(-20) and M13 R(-26), and sequenced using the M13 R(-24)

primer (see above).

The oligonucleotides used in the biochemical assays were

Ll.LtrB RNA [LtrB5’S20Anchor6,5 RNA] ((59- GUGCGCCCA-

GAUAGGGUGUUCUCGUUGGCAAUGGUGUCCAACUU-

GUGCUGCCAGUGCUCG), with an aminoblock on its 39 end);

annealed primer c (59- CGAGCACTGGCAGCACAAG-deox-

yuridine-TGGACACCATTGCCAACGAGAACAC); and exon 1

DNA (59-TGTGATTGCAACCCACGTCGATCGTGAACA-

CATCCATAAC) or RNA (59-UGUGAUUGCAACCCACGUC-

GAUCGUGAACACAUCCAUAAC). Oligonucleotides com-

plementary to exon 1 DNA or RNA were: exon 1 AS (59-

GTTATGGATGTGTTCACGATCGACGTGGGTTGCAATC-

ACA) and exon 1 AS+9 (59-AATGATATGGTTATGGATGT-

GTTCACGATCGACGTGGGTTGCAATCACA).

DNA and RNA oligonucleotides used in the assays were

obtained from Integrated DNA Technologies (IDT; Coralville, IA)

and purified in a denaturing 10% (w/v) polyacrylamide gel. DNA

primers were 59-end labeled with [c-32P]-ATP (10 Ci/mmol;

Perkin-Elmer, Waltham, MA) by using phage T4 polynucleotide

kinase (New England BioLabs) according to the manufacturer’s

protocol. Complementary oligonucleotides were annealed at ratios

of 1:1 (E1 oligonucleotides) or 1:1.1 Ll.LtrB/primer c by mixing at

20 times the final concentration in annealing buffer (100 mM Tris-

HCl, pH 7.5, and 5 mM EDTA), heating to 82uC, and slowly

cooling to 25uC for 45 min. The efficiency of annealing was

assessed by electrophoresis in a non-denaturing 6% polyacryl-

amide gel containing Tris-borate-EDTA (90 mM Tris, 90 mM

boric acid, 2 mM EDTA) at 30uC [67].

Supporting Information

Figure S1 DNA sequences resulting from template switching of

LtrA from Ll.LtrB RNA to another Ll.LtrB RNA. (A) and (B)

Sequence of cDNA products resulting from template switching of

the Ll.LtrB RT (LtrA protein) from the 59 end of the initial Ll.LtrB

RNA template/primer c substrate to second and third molecules

of Ll.LtrB RNA. Some sequences appear to result from the use of

primer c to initiate directly at or near the 39 end of the Ll.LtrB

RNA. Bands were excised from the gel, cloned, and sequenced, as

described in Materials and Methods. The substrate and expected

cDNA product sequences are shown boxed above each set of

experimentally determined sequences. Extra or mutant nucleotide

residues are shown in lower-case letters; microhomologies at ends

prior to template switching are shown in parentheses; and dashes

indicate absence of a nucleotide residue. Freq., frequency of

occurrence; *, 32P-labeled at the 59 end of primer c.

(TIF)

Figure S2 Template switching of the LtrA from Ll.LtrB RNA to

exon 1 DNA or RNA at different salt concentrations. The Ll.LtrB

intron RT (LtrA protein; 40 nM) was incubated with artificial

substrates corresponding to the 59 end of the Ll.LtrB intron (Ll.LtrB

RNA; 40 nM) with an annealed 59-32P-labeled DNA primer c (Pri c;

44 nM) in the presence of exon 1 (E1) DNA or RNA (40 nM; black

and red, respectively), as diagrammed in schematics to the left of the

gel. Reactions were done in media containing 200 mM dNTPs,

5 mM MgCl2, 20 mM Tris-HCl, pH 7.5, and 1 mM DTT plus

450 mM NaCl, 200 mM KCl, or 100 mM KCl for 30 min at 30uC.

After terminating the reaction by phenol-CIA extraction, the

products were analyzed in a denaturing 10% polyacrylamide gel.

Lanes (1) and (2) 32P-labeled Pri c incubated without and with LtrA

in 450 mM NaCl, respectively; (3–5) LtrA incubated with 32P-

labeled Pri c and E1 DNA in 450 mM NaCl, 200 mM KCl, and

100 mM KCl, respectively; (6–8) LtrA incubated with Ll.LtrB RNA

with annealed 32P-labeled Pri c and E1 RNA in 450 mM NaCl,

200 mM KCl, and 100 mM KCl, respectively. Bands excised for

sequencing are indicated in the gel. In the schematics, DNA and

RNA oligonucleotides are shown in black and red, respectively;

LtrA is shown as a gray oval; and the direction of DNA synthesis is

indicated by a green arrow. The numbers to the right of the gel

indicate the positions of 59-end labeled size markers (10-bp DNA

ladder, Invitrogen).

(TIF)

Figure S3 DNA sequences from template switching from Ll.LtrB

RNA to exon 1 DNA or RNA under near physiological conditions.

Sequences of DNAs resulting from template switching of the Ll.LtrB

RT (LtrA) from the 59 end of the Ll.LtrB RNA template/primer c

DNA substrate to exon 1 DNA or RNA in reaction medium

containing 100 mM KCl and 5 mM MgCl2 (Figure S2; lanes 5 and

8, respectively). Bands were excised from the gel, cloned, and

sequenced, as described in Materials and Methods. The substrate

and expected cDNA or DNA product sequences are shown boxed

above each set of experimentally determined sequences. Extra or

mutant nucleotide residues are shown in lower-case letters, and

dashes indicate absence of a nucleotide residue. Freq., frequency of

occurrence; *, 32P-label at 59 end of primer c.

(TIF)

Figure S4 Non-denaturing gel analysis of annealed oligonucleo-

tides used in 59 and 39-intron integration assays. 59-32P-labeled

oligonucleotides by themselves or annealed to a complementary

DNA strand (see Materials and Methods), were diluted 1:20 into

450 mM NaCl, 5 mM MgCl2, 20 mM Tris-HCl, pH 7.5 and

incubated for 30 min at 30uC. The samples were then mixed 6:1

with 30uC non-denaturing loading buffer (0.25% bromophenol blue,

0.25% xylene cyanol and 1.5% Ficoll 400 and analyzed by

electrophoresis in a non-denaturing 6% polyacrylamide gel

containing Tris-borate-EDTA (90 mM Tris, 90 mM boric acid,

2 mM EDTA) at 30uC [67]. Gels were soaked for 15 min in 25%

isopropanol, 20% glycerol and 10% acetic acid to prevent cracking

during drying, dried, and scanned with a PhosphorImager (Typhoon

Trio, GE Healthcare). In the schematics below the gel, DNA and

RNA oligonucleotides are shown in black and red, respectively.

Lanes (1) 40 nM 32P-labeled Ll.LtrB RNA; (2) 40 nM 32P-labeled

Ll.LtrB RNA annealed with 44 nM DNA primer c (Pri c); (3) 40 nM
32P-labeled exon 1 (E1) DNA; (4) 40 nM 32P-labeled E1 DNA

annealed with 40 nM E1 AS DNA; (5) 40 nM 32P-labeled E1 RNA;

(6) 40 nM 32P-labeled E1 RNA annealed with 40 nM E1 AS DNA;

(7) 40 nM 32P-labeled E1 AS DNA; (8) 40 nM 32P-labeled E1 AS

DNA annealed with 40 nM E1 DNA; (9) 40 nM 32P-labeled E1

AS+9 DNA; (10) 40 nM 32P-labeled E1 AS+9 DNA annealed with

40 nM E1 DNA; (11) 40 nM 32P-labeled E1 DNA; (12) 40 nM 32P-

labeled E1 DNA annealed with 40 nM E1 AS+9 DNA.

(TIF)

Figure S5 DNA sequences of additional products obtained in

template-switching experiments to double-strand E1 DNA with a

9-nt 59-overhang. The figure shows sequences of additional

products from bands o and p of Figure 6 lane 9 that result from

using primer c to initiate directly on the exon 1 AS+9 DNA or at

or near the 39 end of Ll.LtrB RNA. One product (bottom) results

from multiple template switches to exon 1 AS+9 DNA and Ll.LtrB

RNA. Bands were excised from the gel, cloned, and sequenced, as

described in Materials and Methods. The substrate and expected

cDNA or DNA product sequences (boxed) are shown above each

set of experimentally determined DNA sequences. Extra or mutant

nucleotide residues are shown in lower-case letters, and dashes

indicate absence of a nucleotide residue.

(TIF)
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Table S1 Summary of experiments comparing retrohoming

efficiencies of linear and lariat Ll.LtrB intron RNAs in wild-type

and mutant D. melanogaster embryos. Retrohoming assays using

lariat and linear RNPs were done in D. melanogaster precellular

blastoderm embryos, as described in Figure 2A and Materials and

Methods. After incubating the embryos for 1 h at 30uC, nucleic

acids were extracted and transformed into E. coli HMS174(DE3)

for plating assays of retrohoming efficiency. WT, wild type.
aRetrohoming efficiency calculated as (TetR+AmpR)/AmpR colo-

nies. bRetrohoming efficiency relative to wild-type w1118 or Or-R

assayed in parallel.

(DOC)
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