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Simple Summary: Invasive plant species are one of the major threats to biodiversity and cause
the loss of natural habitats. Invasive Mesquite plant was continuing to spread all over the world
and invaded most of the forest-shrubland biomes. We aimed to evaluate the contribution of soil
and huaman-influence factors and climatic factors to the distribution dynamics and expansion of
Mesquite invasive plant. Also, it aimed at ranking the threatened areas in each global biome. Our
findings revealed that the invasion risk increases with temperature, soil alkalinity, and clay fractions.
This study would provide great insights into prioritization and management guidelines to monitor
the expansion and invasion risk of Mesquite plant in the whole world.

Abstract: Prosopis juliflora is one of the most problematic invasive trees in tropical and subtropical
regions. Understanding driving forces affecting the potential global distribution would help in
managing its current and future spread. The role of climate on the global spatial distribution of
P. juliflora has been well studied, but little is known about the role of soil and human impacts as
potential drivers. Here, we used maximum entropy (MaxEnt) for species distribution modelling to
understand the role of climate (C), soil (S) and human impacts (H), C+S, and C+S+H in controlling
the potential invasion range of P. juliflora, and to project its global potential invasive risk. We defined
the top threatened global biomes, as predicted by the best-selected model. The incorporation of the
edaphic factors improved the model performance and enhanced the accuracy of the outcome. Our
findings revealed that the potential invasion risk increases with increases in mean temperature of the
driest quarter (Bio9), soil alkalinity and clay fractions. Arid and semi-arid lands are at the highest
risk of invasion than other moist biomes.

Keywords: invasion risk assessment; temperature variability; habitat suitability; global biomes;
MaxEnt; conservation priority

1. Introduction

The increase in human travel and trade has accidentally or intentionally increased the
spread of many species from their native ranges [1]. The increasing numbers of introduced
invasive species and their potential to change the social-ecological systems have been con-
sidered a major global change component [2–4]. The ecological impacts of the introduction
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of invasive plants include, for example, degradation of ecosystem structure and function,
change in community composition, and loss of species diversity [5,6]. Invasive exotic
plants have become among the major challenges facing social-ecological systems, especially
rangelands and livestock [4]. The social-ecological impacts of introduced invasive plants
would be severe without applying effective and preventive management approaches [7].

Prosopis L. (Fabaceae) has 44 species of trees and large shrubs [8]. Prosopis juliflora is
the hardiest and most resilient xerophytic tree of the genus, originated from North America
(Mexico) or Central America (Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua,
Panama). It is naturalized and invaded several tropical and sub-tropical regions worldwide
at an alarming rate [1,9]. In addition, this species is surviving and thriving in the harsh
conditions of the hyperarid Arabian deserts, where annual average rainfall is less than
100 mm and average temperatures reach above 40 ◦C during summer [10–15]. The intro-
duction was for different purposes, including for example, combating desertification and
land reclamation, greening deserts, and its utilization as sources of animal feed, especially
pods that represent a considerable part of goats’ diet, biofuel, timber, shelter, building
material and furniture for local farmers [1,8,16]. However, after its introduction, P. juliflora
turned to be one of the most problematic trees globally, particularly in the rangelands,
croplands, and forests, and threatens the pastoral livelihoods and ecosystems. The IUCN
has considered P. juliflora as one of the worst 100 invasive alien species globally [17,18].

Several environmental factors helped the rapid invasion of P. juliflora to new ranges.
For example, the hardy nature of P. juliflora and its ability to tolerate a wide range of
temperature, water/soil quality, and humidity makes it among successful invasive species
to the hot, dry, and wet tropical and subtropical regions. Moreover, plants’ ability to
adopt a wide range of climatic and soil conditions, high coppicing ability, effective dis-
persal mechanisms and production of allelochemicals accelerated the invasion rate of
P. juliflora [19,20]. Furthermore, this species propagates both sexually with vast numbers
of viable seeds and vegetatively by adventitious buds present on the shallow roots. The
dormant seeds build long-lasting seed banks as a bet-hedging strategy against unfavorable
years of below-average precipitation or drought [21]. Such diversity in the propagation
methods enabled P. juliflora to successfully colonize new areas [22,23].

Among several algorithms, maximum entropy (MaxEnt) was regarded as one of the
best bioclimatic species distribution models (SDMs). MaxEnt uses presence-only data to
predict species distribution [24]. Several studies have used SDMs and MaxEnt to predict
the invasion of introduced plants at a continental scale, based on their occurrence records
and preferable environmental variables. Most studies have used climatic, environmental
variables to model invasive plant distribution [25]. However, there are numerous environ-
mental variables that can affect the ability of models to predict the distribution of invasive
plants [26]. For example, the use of other environmental factors, such as soil, water and
human impacts, in addition to the climatic data, should provide higher predictive powers
in SDMs [27].

Several researchers have used the SDM to study the impacts of climate change on
future invasion and distribution range of P. juliflora at local and regional scales [7,28,29]. For
example, Wakie et al. [28] concluded that Moderate Resolution Imaging Spectroradiometer
(MODIS) vegetation indices and species occurrence points with MaxEnt modeling software
could be used to quantify the current distribution of P. juliflora. Moreover, [29] studied
the effect of global warming on the distribution of P. juliflora in its introduced range using
SDMs and MaxEnt approach. They concluded that more than 87% of the model’s variations
were explained in the light of the annual mean temperature, annual precipitation, and
temperature means diurnal range. Besides, it has been reported the intolerance to low
temperatures was the most critical factor that limits the global distribution of P. juliflora; the
level, duration, and frequency of frosts limit the reproduction and growth of this species [9].

Several studies have reported the importance of using combinations of predictor
variables to understand the complex interplay between biological invasions and global
environmental distribution to understand plant invasion [30]. For example, several models



Biology 2021, 10, 203 3 of 18

indicated that soil factors could affect the physiological performance of invasive plants and,
therefore, could affect their distribution range [31,32]. Despite the fact that several studies
have studied the effect of climatic factors on the potential distribution of P. juliflora, few have
assessed the roles of soil attributes as well human pressures as potential environmental
drivers that could affect the distribution of this species. For example, Nascimento et al. [33]
have recently shown that both soil properties and human activities could be potential
drivers for the distribution, proliferation, and invasion ability of P. juliflora. They concluded
that some life-history traits of this species could help it to benefit from human activities.
For example, grazing animals could increase seed dispersal, germination, and enhance soil
fertility, enhancing the dispersal of P. juliflora to new habitats, even in less-fertile degraded
lands. In addition, [28] reported that the inclusion of soil and related hydrologic parameters
in the spatial distribution models could provide more insights into the current and potential
distribution of P. juliflora.

Furthermore, Abbas et al. [34] modeled the spatial distribution of P. juliflora along
an environmental gradient in Upper Egypt. They concluded that elevation and distance
from the road, as an indicator of human disturbance, significantly correlated with its ability
to spread in new habitats. However, little knowledge is known about human impacts
and soil variability on the potential distribution of P. juliflora at a global scale [32]. We
expect that incorporating soil properties and human impact data into SDMs would provide
more accurate and precise predictions of the potential distribution, hence the invasion risk
of P. juliflora. Therefore, the objectives of the current study were to estimate the global
potential invasion risk of P. juliflora using three different models: climate (C), climate
and soil (C+S), and climate, soil, and human influence (C+S+H). The study also aimed
at ranking the top threatened global biomes based on the potential invasion suitability
produced by the best-selected model.

The combination of more predictor variables would help explain the complex interplay
between biological invasions and the global environment and the socio-economic processes
and provide more insights towards effective management of the invasive P. juliflora. More-
over, incorporating soil quantity data into SDMs would provide more accurate and precise
predictions of the invasion risk (i.e., the potential distribution of P. juliflora under current
conditions of climate and soil. To the best of our knowledge, this is the first study involv-
ing potential evapotranspiration and aridity index, wind speed, solar radiation variables
along with soil variables simultaneously into the SDM to investigate the global pattern of
distribution of P. juliflora. These variables can potentially affect the growth and potential
distribution of plant species, and this incorporation could improve the prediction of plant
distribution [35]. The overall result would help determine the best predictor variable(s)
that could explain the potential distribution of P. juliflora.

2. Materials and Methods
2.1. Global Distribution Data

We obtained the occurrence data of P. juliflora from the Global Biodiversity Informa-
tion Facility (GBIF.org, https://doi.org/10.15468/dl.sgpgg0 (accessed on 13 December
2018)). The downloaded database hosts 1752 geo-referenced records (1950–2018), including
coordinates. The source of these occurrence data was human observations and preserved
specimens. We verified the records using ArcGIS 10.3 [36] to remove records outside the
shapefile [36] of the world map or located in water and deleted duplicate geographical
records. This resulted in 1173 distribution points representing 35 world countries (Figure 1
and Supplementary A, Table S1), which were reduced further into 866 records representing
34 countries after deleting the reciprocated missing values of the resampled environmental
variables of climate, topography, and soil.

https://doi.org/10.15468/dl.sgpgg0
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Figure 1. Global distribution of the sixteen terrestrial biomes and the occurrence records of P. juliflora.

2.2. Environmental and Human Variable Predictors
2.2.1. Bioclimatic Variables

To predict the potentially suitable habitats for P. juliflora in the world, we downloaded
the nineteen standards bioclimatic variables of the current climate (1970–2000) from the
WorldClim 2.0 along with wind speed and solar radiation (http://www.worldclim.org;
accessed on 7 April 2019 [37]) at a spatial resolution of 2.5 arc-minutes (~5 km × 5 km at
the equator). We generated the mean raster layers of the monthly layers of wind speed and
solar radiation using the spatial analyst toolbox in ArcGIS 10.3 [36].

The data of potential evapotranspiration (PET), actual evapotranspiration (AET) and
aridity index (AI) were downloaded from CGIAR-CSI Global database ([38]; www.cgiar-
csi.org; accessed on 16 May 2017) at a spatial resolution of 30 arcseconds (~1 km at the
equator), and then resampled into resolution 2.5 arc-minutes using ArcGIS10.3 [36].

2.2.2. Edaphic Variables

Nine quantitative variables representing the soil physical and chemical properties
were downloaded from the ISRIC-World Soil Information database (ftp://ftp.soilgrids.org/
data/aggregated; accessed on 27 March 2019 [39] at a depth of 0–2 m and a spatial resolution
of 30 arcseconds. The mean raster layers of the different soil depths were generated using
the spatial analyst toolbox and then resampled into a resolution of 2.5 arc-minutes using
ArcGIS10.3 [36].

2.2.3. Human-Activity Variable

The Global Human Influence Index Dataset of the Last of the Wild Project is a global
dataset of 1-km2 grid cells [39] was created from nine global data layers covering human
population pressure, human land use, and infrastructure (land use/land cover, built-up
areas and nighttime lights), and human access (roads, railroads, coastlines, and navigable
rivers). The human influence data was resampled into a resolution of 2.5 arc-minutes using
ArcGIS10.3 [36].

2.3. Multicollinearity, Model Construction, and Predictions

All the environmental data (34 variables; see Supplementary A, Table S2) were ex-
tracted from the raster layers using species occurrence records in ArcGIS 10.3 [36] for
multicollinearity analysis of the environmental predictors to avoid overfitting of mod-
els, poor model performance, and misleading interpretations. The climatic and edaphic
predictors were analyzed separately, and only the predictors with correlation coefficient
“Spearman” or “Pearson” |r| ≤ 0.7 (Supplementary A, Table S3 and Table S4) and eco-
physiologically meaningful were selected for the model development [40]. We used IBM
SPSS v.21.0 [40] to perform multicollinearity analysis.

http://www.worldclim.org
www.cgiar-csi.org
www.cgiar-csi.org
ftp://ftp.soilgrids.org/data/aggregated
ftp://ftp.soilgrids.org/data/aggregated
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We converted 15, out of the 34 environmental predictors (Table 1), in addition to
human influence index predictor layers, into ASCII format before their use for MaxEnt
models. We used the resolution of 2.5 arc-minutes to allow more flexibility of the interactive
geographical relationship between the species and its environment; this resolution was
used previously in similar studies concerned with global distribution modelling of invasive
plant species such as Phragmites australis [41] and Parthenium hysterophorus [42].

Table 1. List of the predictor variables used in the distribution modelling of P. juliflora. All data were standardized to
2.5 arc-min spatial resolution.

Variable Code Description Original Resolution Source

(1) Climate

Bio_4 Temperature seasonality [Coefficient
of Variation (C of V)] 2.5 arc-min www.worldclim.org

PET potential evapotranspiration (mm) 30 arc-sec CGIAR-CSI Global database
Solar_rad solar radiation (kJ m−2 day−1) 2.5 arc-min www.worldclim.org

AI aridity index 30 arc-sec CGIAR-CSI Global database
Wind_spd wind speed (m s−1) 2.5 arc-min www.worldclim.org

Bio_8 mean temperatures of the wettest
quarter * (◦C) 2.5 arc-min www.worldclim.org

Bio_9 Mean temperature of the driest
quarter (◦C) 2.5 arc-min www.worldclim.org

Bio_15 precipitation seasonality (C of V) 2.5 arc-min www.worldclim.org
Bio_16 precipitation of wettest quarter (mm) 2.5 arc-min www.worldclim.org

(2) Soil

PHIHOX soil pH × 10 in H2O 30 arc-sec ISRIC-World Soil Database
CEC cation exchange capacity in cmolc/kg 30 arc-sec ISRIC-World Soil Database

CLYPPT soil texture fraction clay in percent 30 arc-sec ISRIC-World Soil Database
ORCDRC soil organic carbon content in g per kg 30 arc-sec ISRIC-World Soil Database
CRFVOL coarse fragments volumetric in

percent 30 arc-sec ISRIC-World Soil Database
AWCh Available soil water capacity 30 arc-sec ISRIC-World Soil Database

(3) Human
Influence HII human influence index 30 arc-sec

NASA Socioeconomic Data
and Applications Center

(SEDAC)

* The term quarter means the mean temperatures during the wettest three months of the year.

We used MaxEnt version 3.4.1k [43] to map the potential distribution of P. juliflora.
The default settings were used, i.e., the maximum number of iterations (500), the replicated
run type (cross-validation), and the output of the logistic. The accuracy of the models was
tested by partitioning the data into 75% training and 25% testing subsets. Furthermore, the
regularization setting was optimized to 2.5 to improve models’ transferability across space
and reduce the likelihood of models overfitting [44–47].

We built three different models: (1) model C (based on climate only), (2) model C+S
(based on both climate and soil variables), (3) model C+S+H (based on climate, soil, and
human influence variables). Then, we ran MaxEnt using occurrence records with each of
the three models separately.

To evaluate the model accuracy, we calculated the True Skill Statistic (TSS), which is
threshold dependent. Therefore, we used two settings in MaxEnt: write background pre-
dictions and the minimum training presence threshold (MTP). The latter is recommended
to study invasive species distribution and risk assessment, providing a greater area of
invasion suitability [45,48].

The logistic output of habitat suitability provides the probability of P. juliflora, which
ranges from 0 to 1. MaxEnt may give high-prediction values for environmental conditions
outside the range of the target species. Hence, to avoid overestimation, we used only those
pixels with values ≥ 0.5 of the continuous suitability index, representing high invasion
suitability [9,43,49]. The invasion suitability values were also extracted using the number
of grid cells with suitability ≥ 0.5 in each global terrestrial biome [50] (Figure 1 and
Supplementary A, Table S5) using spatial join in ArcGIS 10.3 [36]. Then, we ranked the
world terrestrial biomes based on the number of grid cells with a suitability score ≥ 0.5 to
determine the invasion risk level.

www.worldclim.org
www.worldclim.org
www.worldclim.org
www.worldclim.org
www.worldclim.org
www.worldclim.org
www.worldclim.org
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2.4. Model Performance and Evaluation

The area under the curve (AUC) values of the receiver operating characteristic (ROC),
helped us to compare the performance of the three models. The AUC is usually commonly
used in evaluating multiple MaxEnt models. An AUC value closer to 1 indicates better
model performance [42,51]. Sensitivity and True Skill Statistic (TSS) are also appropriate
measures of the model accuracy to evaluate the model performance [52,53]. Unlike the
AUC, sensitivity and TSS are threshold-dependent, and the latter accounts for both sensi-
tivity and specificity, with values ranging from −1 to +1. TSS is the sensitivity (percent of
presences correctly predicted) + specificity (percent of absences correctly predicted)—1 of
model predictions [52]. It is more likely to make a correct prediction when the species is
present (means has higher sensitivity) [54].

Jack-knife tests and permutation importance provide an approach to evaluate the
efficiency or predictive power and the relative importance of predictors where each variable
is excluded in turn, and the model of each predictor in isolation is compared with a
model comprising the remaining predictors [51]. The importance of the variables in the
invasion suitability models was calculated by randomly permuting training presence and
background data, i.e., permutation importance, which is an essential indicator for the
strong model dependence on a particular variable [44,55]. The response curves show
how environmental variables affect the prediction of invasion suitability. The curves
show how the predicted probability of presence (invasion suitability) changes as each
environmental variable is changed, keeping all the other environmental variables at their
average values [56].

3. Results
3.1. Model Performance

All three models showed good fits and high performance in the prediction of the
species distribution. All values of the sensitivity and AUC of the models were >0.9;
meanwhile, the TSS values of the three models were larger than 0.5; meaning a good
performance (Table 2). Furthermore, the AUC values of the models “C+S” and “C+S+H”
were slightly larger than those of “C” (Table 2). We represented the output of the climate
and soil model (C+S) due to the higher relevant contribution and relative importance of
the soil variables (Table 2) in the prediction of the species distribution.

Table 2. The relative contributions and importance of the climatic, edaphic, and human factors to the potential invasion risk
of P. juliflora. The sensitivity, true skill statistic (TSS), and the area under the receiver-operating characteristic curve (AUC)
indicate the performance or accuracy of the three models generated by MaxEnt. The most important variables and their
values are shown in bold.

Variable *

Model

Climate Climate + Soil Climate + Soil + Human

Percent
Contribution

Permutation
Importance

Percent
Contribution

Permutation
Importance

Percent
Contribution

Permutation
Importance

Bio4 49.6 37.2 43.1 42 36.5 47.7
PET 15 4.6 10.7 0.4 15.2 0.3

Solar_rad 14.7 17.8 3.8 2.2 2.4 2.7
AI 13 19.5 0.3 1.3 0.9 1

Wind_spd 4.2 1.7 0.6 0.7 2 1
Bio8 0.9 3.7 0.6 5.3 2.2 5.4
Bio9 1.5 14.2 1.8 21.1 1.4 15.9
Bio15 0.3 0.7 0 0 1.4 0
Bio16 0.8 0.5 0.3 0.4 0.5 1

PHIHOX - - 25.6 17.5 23.4 18.9
CEC - - 0.8 0.9 3.1 1.4

CLYPPT - - 9.3 5.9 7.7 3.5
ORCDRC - - 0.6 0.3 0.6 0.5
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Table 2. Cont.

Variable *

Model

Climate Climate + Soil Climate + Soil + Human

Percent
Contribution

Permutation
Importance

Percent
Contribution

Permutation
Importance

Percent
Contribution

Permutation
Importance

CRFVOL - - 0.3 0.3 0.4 0.3
AWCh - - 2.2 1.5 2.3 0.3

HII - - - - 0.1 0.1

AUC 0.947 0.958 0.958

Sensitivity 1 1 0.998

TSS 0.589 0.559 0.585

* Bio4: temperature seasonality (standard deviation * 100); PET: potential evapotranspiration (mm); Solar_rad: solar radiation (kJ m−2

day−1); AI: aridity index; Wind_spd: wind speed (m s−1); Bio8: mean temperatures of the wettest quarter (◦C); Bio9: Mean temperature of
the driest quarter (◦C); Bio15: precipitation seasonality (C of V); Bio16: precipitation of wettest quarter (mm), PHIHOX: soil pH × 10 in
H2O; CEC: cation exchange capacity in cmolc/kg; CLYPPT: soil texture fraction clay in percent; ORCDRC: soil organic carbon content in g
per kg; CRFVOL: coarse fragments volumetric in percent; AWCh: Available soil water capacity; HII: human influence index.

3.2. Global Distribution and Potential Invasion Suitability of P. juliflora

Most of the occurrence records (99%) were located in the arid and hyper-arid re-
gions (Aridity index < 0.2, Supplementary A, Table S2), which are located mainly in the
tropical and subtropical biomes (Figure 1). The invasion of suitable areas was reduced
when soil or human influence variables were incorporated into the model (Figure 2A–C).
Moreover, the human influence factor was contributed only by 0.1% to the potential dis-
tribution, indicating that human influence is not an important variable to the potential
invasion suitability.

3.3. P. juliflora Invasion Suitability and Environmental Variables

Based on the percent contribution of the predictor variables that were generated by
MaxEnt model C+S, the most important factors defining the potential global distribution
of P. juliflora were temperature seasonality (Bio4, 43.1%), PET (10.7%), soil pH (25.6%),
and soil clay texture fraction (9.3%) (Table 2). The responses of the remaining variables
that showed less importance were shown in Supplementary B, Figure S2. Regarding the
permutation importance, the maximum influence on the potential invasion suitability was
for temperature seasonality (Bio4, probability of the presence was 42%), followed by the
temperature of the driest quarter (Bio9, 21.1%), then soil pH (17.5%), and finally by soil
clay texture fraction (5.9%).

The probability of the presence of P. juliflora decreased in response to temperature
seasonality (Bio4), gradually up to a variation of 13% (Figure 3). The likelihood of P. juliflora
presence increased gradually with the increase of the driest quarter temperature (Bio9) at a
suitable range (approximately 21–23 ◦C); the optimal value is approximately 22 ◦C. Above
23 ◦C, the invasion suitability of P. juliflora showed a gradual decline (Figure 3).

Regarding the climate-based model (Model C), the invasion suitability decreases
gradually with the increase of aridity index up to an approximate value of 0.42 (semi-arid
conditions) above which the suitability is very low and becomes constant (Supplementary
B, Figure S2). With the increase of solar radiation, the invasion suitability increases up to an
approximated maximum value of 19,500 kJ m−2 day−1, above which a sharp decline of the
logistic suitability occurs (Supplementary B, Figure S2). The overall response of invasion
suitability prediction for the wind speed is positive above 18 m s−1; the logistic invasion
suitability increases with the increase of wind speed up to the maximum approximated
speed of 120 m s−1 (Supplementary B, Figure S2).
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Regarding the soil suitability for the occurrence of P. juliflora, the model “C+S” results
showed that soil pH and soil clay fraction were the key soil factors determining the
distribution of this species along with the climatic factors mentioned above. The potential
invasion suitability increases with soil pH; the most excellent presence probability was at
an approximate pH of 9.2 (Figure 3). This result suggests that P. juliflora prefers alkaline
habitats. There is a sharp increase in the presence probability of P. juliflora with the increase
in clay content up to 22%, after which there is a gentle linear increase of the occurrence till
70% (Figure 3). Moreover, there is a linear increase in the occurrence suitability of P. juliflora
with the increase in the available soil water capacity from 2% up to 11.5%; above that; there
is no change (Supplementary B, Figure S2).
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3.4. Potential Invasion Risk at Biom Level

The invasion suitability of P. juliflora varied remarkably among the main biome types
(Figure 4). The highest invasion suitability is in the tropical and subtropical grasslands,
savannahs, and shrublands (TSGSS, 52,896 grid cells), followed by the deserts and xeric
shrublands (DXS, 23,713) (Figure 4, and Supplementary A, Table S5). The tropical and sub-
tropical moist and dry broadleaf forests (TSMF and TSDF) have moderate chances of being
among high invasion risk biomes. Furthermore, there is a lower chance of flooded grass-
lands and savannahs (FGS) and mangroves among invaded high-risk biomes (Figure 4).
The biomes that have the lowest chance for invasion are Mediterranean forests, woodlands,
and scrub (MFWS), montane grasslands and shrublands (MGS), tropical and subtropical
coniferous forests (TSCF), and lakes. It is worth noting that the global biomes showing
high potential invasion suitability fell in the order: TSGSS > DXS > TSMF > TSDF > FGS >
mangroves > MFWS > MGS > TSCF > lakes (Figure 4).
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Figure 4. Invasion risk to global biomes with high habitat suitability (≥0.5) for the invasion of P. juliflora. Abbreviations:
TSMF = Tropical and Subtropical Moist Broadleaf Forests; TSDF = Tropical and Subtropical Dry Broadleaf Forests; TSCF =
Tropical and Subtropical Coniferous Forests; TBMF = Temperate Broadleaf and Mixed Forests; TCF = Temperate Conifer
Forests; BF = Boreal Forests/Taiga; TSGSS = Tropical and subtropical grasslands, savannahs, and shrublands; TGSS =
Temperate Grasslands, Savannahs, and Shrublands; FGS = Flooded Grasslands and Savannahs; MGS = Montane Grasslands
and Shrublands; Tun. = Tundra; MFWS = Mediterranean Forests, Woodlands, and Scrub; DXS = Deserts and Xeric
Shrublands; Man. = Mangroves; Lak. = Lakes; RI = Rock and Ice.

4. Discussion
4.1. Potential Distribution of P. juliflora and Invasion Suitability Models

Climate is a key factor in determining the species capabilities to conquer and invade
new areas [7,29]. However, other non-climatic factors are as important as the climate
in influencing species abilities to invade new areas, including physical and chemical
properties of soils, moisture availability, topographic features, and human-induced distur-
bances [35,57]. The earlier studies that assessed the invasive abilities of P. juliflora to new
range depended mainly on climate [1,7]. For example, EPPO [9] had used MaxEnt in an
ensemble modelling with other models to explain the potential distribution of P. juliflora.
MaxEnt model showed high accuracy with similar contribution and response of the cli-
matic moisture index (18%) [9], and this agrees to our results of the contribution and
response of the evapotranspiration (15%). On the other hand, the model also showed high
contribution of the temperature of the coldest month (64%), but this differ from our results
which revealed that temperature seasonality (49.6%). This difference may be attributed to
using different predictors, but our study showed more precise predictions of the invasion
suitability because we built our best model on climate and soil. Furthermore, we selected
the relevant variables based on the occurrence data of the species where it was distributed
in the arid and hyper-arid regions, so temperature of the driest quarter and temperature
seasonality are more relevant bioclimatic variables than other variables. However, incorpo-
rating the edaphic factors in our models showed a higher performance and produced more
accurate predictions. The suitable areas for invasion with P. juliflora were reduced when
soil or human influence variables were incorporated into the model. Provided that suitable
climatic conditions are available, edaphic factors can set the ecological boundaries that
restrict species distributions and determine community composition [58]. Adding the soil
variables, particularly soil pH and clay fraction, showed high relevant contribution and
relative importance in the prediction of P. juliflora distribution. For example, the increase in
soil pH (i.e., alkalinity) markedly increased the probability of the presence of P. juliflora.
However, the probability decreased above pH 9.0. It has been reported that the suitability
of soil substrates for germination and seedling growth of P. juliflora was significantly re-
duced above pH of 9.0 [58]. Soil texture, pH, and moisture content are important ecological
conditions that significantly influenced native and invasive species distribution in the arid
and semi-arid ecosystem [59]. Other biological factors that can play a significant role locally
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in the invasion potential, which was not accounted for at the global level, are livestock and
birds in long-distance seed-dispersal [60,61].

In general, non-climatic factors related to human-induced activities such as land-use
changes, the establishment of road networks, transportation, etc. facilitate introducing
species to new areas and increase invasion susceptibility [62]. In our study, however, the
human influence indicator did not contribute significantly to the models’ performance
predicting the distribution of P. juliflora at the global scales. The significance of the human
activities and the associated disturbances in influencing the potential invasion suitability
of P. juliflora could be more significant at a local rather than a global scale. For example,
Abbas et al. [34] found that the probability of P. juliflora was higher in areas closer to roads.
The Human Influence Index (HII) used in the current study as an indicator of human
disturbances on the natural ecosystems was derived based on measures urbanization
level measures, accessibility by transportation means, degree of landscape modification,
and access to electricity and power networks. The elements of the HII are higher in the
developed countries that are mostly located outside the range of occurrence of P. juliflora,
whereas areas that are suitable climatically to the occurrence of P. juliflora are located in
the arid and hyper-arid developing countries (99% of the occurrence records); mainly in
the southern hemisphere. Therefore, the index did not contribute much in connecting
human-induced disturbances to the invasion potential of P. juliflora at the global scale.

4.2. Environmental Drivers Best Explain the Invasion Suitability of P. juliflora

Our results of the response curves revealed that the increase in temperature of the
driest season would increase the invasion risk or expansion of P. juliflora. The projected
global increase by about 1–3 ◦C in temperature by the end of this century would trigger
shifts in arid/humid climate zones worldwide [63]. The projected conversion of some areas
that are currently considered humid and semi-arid into arid zones due to global warming
will provide more suitable areas for the invasion of P. juliflora [64,65]. In addition, climate
scenarios projected an increase in the temperatures of the driest seasons and in the aridity
of many parts of the humid and semi-arid regions, which again could create more suitable
areas for the invasion of P. juliflora under climate change.

Our study’s outcomes suggested that the optimum temperature for the logistic poten-
tial distribution or presence suitability was 22 ◦C. Earlier studies have revealed the ability
of P. juliflora to withstand temperatures up to 50 ◦C [10,14,15]. Moreover, the increase in
temperature was associated with increases in the germination rate [8,66]. The accumulation
of a high density of seeds (ca. 60 million seeds ha−1 yr−1) in the soils can enable P. juliflora
to regenerate at higher temperatures successfully and under light conditions [66–68]. It
is worth noting that temperature interacted with light to regulate seed germination of
P. juliflora, provided that moisture is available. This indicates that disturbance could bring
seeds to the upper layers, where both light and temperature conditions are suitable for
germination [69]. Livestock and flooding are two crucial dispersal agents of seeds; both
enhance seed germination and seedling establishment and facilitate the expansion and in-
vasion of P. juliflora [70]. According to the plant-soil feedbacks hypothesis, both leguminous
plant and microbes affect each other to improve soils’ physical and chemical properties [71].
P. juliflora can improve soil properties through soil microorganisms, living free in soils or
forming a symbiotic relationship in the plants’ nodules. Besides, soil microflora can increase
litter decomposition that increases clay fraction and water holding capacity. According to
our models, the increase in soil moisture and clay fraction can enhance the invasive ability
of P. juliflora. The amelioration of soil characters by P. juliflora is particularly important in
sandy soils in arid biomes, which are characterized by lower fertility and higher pH [10,14].
Soil fertility, including N, was significantly greater beneath and around P. juliflora canopies
than in soils away from them [14].
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4.3. Potential Invasion Risk
4.3.1. At the National Level

Ninety percent of the total world countries where P. juliflora currently occurs showed
high suitability of invasion risk. This finding is supported by earlier studies [1,9].Surveys
and monitoring of the population dynamic of this invasive species are needed, especially
in countries with no current records. Moreover, there should be preventive approaches for
the arrival and propagation of this invasive species, especially in countries with no current
records and those predicted to achieve high invasion under climate change [29].

Livestock and wildlife animals help in seed dispersal and germination of P. juliflora
by increasing chemical and physical scarifications for seeds that have deep physical dor-
mancy [69,72]. For example, in arid and semi-arid north Mediterranean African regions,
camels and sheep are common domestic animals that can potentially disperse the seeds of
P. juliflora and can help in the invasion expansion along animals’ routes [72,73]. In Egypt,
these animals disperse P. juliflora along Gebel Elba National Park, the southeast part of the
Eastern Desert on the border between Egypt and Sudan [72]. Our study defined this region
among the threatened regions by the invasion of P. juliflora (Figure 2B). Therefore, animal
grazing could help expand P. juliflora invasion in the southern part of Egypt. Currently, the
middle and northern parts of Egypt are not infested with P. juliflora. However, these regions
and most of the northern regions of the Mediterranean countries could get considerably
warmer by 2050 under the moderate and high climatic emission scenarios (RCP 4.5 and
RCP 8.5) [29]. Accordingly, both climate change and seed dispersal from south to north,
mainly by livestock, could result in the invasion of northern regions of the African counties
with P. juliflora. It is recommended to monitor and remove any small young populations
that appear along animals’ routes in the northern region. Similarly, P. juliflora was not
considered invasive in Spain until 2014 [1]. This was recently observed in the frost-free
coastal and low-lying inland areas of Spain [9], which strongly supports our prediction
that Spain is at high invasion risk.

African countries are at high risk of invasion, e.g., Kenya, Ethiopia, Somalia, South
Sudan, and Sudan, which introduced this species for economic purposes, mainly for
firewood, timber, fodder, and other uses [26,35]. The species provide over 70% of firewood,
mainly in rural India and parts of its urban areas [1,74]. The trade-in P. juliflora products
were valued as above 1.5 million USD in some villages in Kenya [75]. However, after
the introduction, P. juliflora became invasive and threaten ecosystem services and human
health [11]. With the expected climate change and increasing human activities, P. juliflora
might become more invasive. Therefore, the management and control of P. juliflora invasion
may pose challenges in some of the affected countries due to some socio-economic factors
that facilitate the expansion of P. juliflora. Among the socio-economic factors are the
economic dependence of local communities in certain nations, especially in developing
countries, on the species for production and marketing of charcoal and firewood [1].

In Africa, one of the most critical vital barriers for the effective management of
P. juliflora species is the lack of strategic planning and prioritization [76]. Adaptive measures
to control the invasion of P. juliflora vary among the nations and need to consider the
ecological settings plus the socio-economic needs. There are huge costs associated with
the invasion of P. juliflora, such as a reduction in ecosystem services and species diversity.
However, this plant provides numerous goods and services, including, for example, the
production of honey, edible exudates, gums, fibers, tannins, bio-pesticides, medicinal
compounds, biochar, and several forms of biofuels [77,78]. This argued decision-makers
to adopt a new cost-effective management strategy depends on the control of P. juliflora
through sustainable utilization for the control [79]. However, efficient management of the
species invasion in countries predicted as edges of high potential invasion may require
cross-boundary endeavors for controlling its extension to new regions, mainly when
livestock disperse seeds across the borders. Therefore, the findings of the current study
would help in strategic planning and prioritization of the invaded land areas based on
the potential invasion suitability (i.e., invasion risk level). The accurate maps of invasion
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suitability for each country provide a promising tool to different stakeholders for the
strategic planning towards effective management of this invasive species.

It has been reported that P. juliflora is more aggressive in its introduced range as
compared to its native range [80]. In its native range, P. juliflora coexists with large numbers
of other native species; its canopies have strong facilitative effects on neighbor plants [80].
However, P. juliflora has interfering effects on the associated plants in its non-native range.
For example, this species completely suppressed the native flora in the arid deserts of
the UAE, despite it significantly improved the physical and chemical properties of the
soil beneath it [14,15]. However, according to our results, the presence probability of
P. juliflora is higher in some non-native ranges (e.g., Kenya, Ethiopia) than in all countries
within the native range. It seems that P. juliflora acquired adaptive ecological features
enable it to invade the non-native range and determinately affect its ecosystem services and
species diversity [9,80]. The detrimental effects of P. juliflora in the non-native range further
emphasize the importance of adopting an efficient management strategy for controlling
this plant through sustainable utilization [79].

4.3.2. At the Biome Level

The global biomes showed remarkable variation in the suitability of the invasion by
P. juliflora. The tropical and subtropical biomes exhibited the highest suitability compared
to other biomes. This can be attributed to the native range of P. juliflora, which is the sub-
tropical regions of Central America, northern South America, and the Caribbean [8,80,81].
The tropical and subtropical grasslands, savannahs, and shrublands exhibited the highest
suitability, followed by the Deserts and Xeric Shrublands. Other studies e.g., Heshmati
et al. [29], concluded that the species pose a higher risk for expansion in these biomes,
particularly the Mediterranean region, west and central Asia, North African, and North
America. The variation in the invasion suitability of P. juliflora in the different global biome
types, is due to the broad ecological amplitude, which makes this specie a successful
invader in different biomes [19,20].

Our results indicate a high-risk chance for the invasion of P. juliflora in the Mediter-
ranean region, especially North African countries and South Europe, such as Spain
(Figure 2B). The most critical factor limiting the potential geographical distribution of
P. juliflora is the minimum temperatures during winter [9]. The level, duration, and fre-
quency of frosts limit the reproduction and growth of this species [1,9]. Severe frost can
cause stem and mortality of P. juliflora in countries with cold weather [8]. Therefore, there
is a doubt about P. juliflora’ occurrence in countries of Mediterranean climates, such as
Morocco, Algeria, Tunisia, Libya, and Egypt [8,9]. P. juliflora was introduced to Spain for
vegetation trials in a single location and showed naturalization, but no invasion signs [1].
However, future global warming in the Mediterranean region is expected to exceed global
rates by 25% [82]. Besides, temperature increase has been projected to range between 2 ◦C
and 4 ◦C by the 2080s in Southern Europe with a chance of short or no frost seasons in
the Balkans [83]. Such climatic change would increase the chance of the invasive risk of
P. juliflora to the Mediterranean region.

Also, P. juliflora has several adaptive features that enable it to grow well and even
flourish in very poor dry hot desert habitats that are commonly considered to be unsuitable
for the dominance of many other plant species [11–13,74] For example, the deep taproot
of this species allows it to secure its water requirements during dry seasons and hence to
invade the dry arid lands [74]. In addition, P. juliflora was able to tolerate high sun intensity
and temperatures of the hyper-arid environment of the Gulf region by avoiding permanent
damage of the photosynthetic apparatus that happened by lowering PSII efficiency and
dissipating extra light energy through the increase of non-photochemical quenching [12].
Furthermore, the intrinsic water-use efficiency of P. juliflora was significantly greater than
in the congeneric native P. cineraria in the arid deserts [13]. According to our models, higher
temperatures, soil alkalinity, and a higher ratio of fine soil particles accelerate the invasion
of P. juliflora. In the Arab Gulf deserts, the high temperatures coupled with soil alkalinity
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of the calcareous soils (i.e., higher pH) enhanced the invasion ability of P. juliflora invading
the region at an alarming rate [10,15,84]. Notably, the growth of P. juliflora trees adds
more organic contents, which increases the proportion of fine soil particles [10,14]. Such a
change in soil texture would exacerbate the invasion rate of P. juliflora in such arid deserts.
Moreover, P. juliflora gains more advantages over its native competitors, making it spread
faster in the infested countries [12,13]. The investigations conducted in the Sultanate of
Oman, one of the top threatened countries in the desert biome according to our models,
indicated that P. juliflora germinated faster and greater, even under stress conditions, such
as heat and drought, as compared with its native congener P. cineraria [84]. In addition,
P. juliflora produces allelochemicals that suppress seed germination and growth, and even
survival, of other species growing in its vicinity [10,15,22,66,85].

The results predicted the dry shrublands and grasslands biomes to be more suitable for
P. juliflora than moist forest biomes. Prosopis juliflora has a more competitive advantage over
other native woody plants in arid and semi-arid lands due to its ability to proficiently access
and abstract underground water via its efficient root system [74]. Moreover, adult plants of
P. juliflora have greater resistance to fire than other woody species [86]. Furthermore, the
ability of P. juliflora to replace native species of the same lifeform and niche [87] is higher in
arid regions compared to other moist ecosystems.

Climate change is the key driver in shaping P. juliflora distribution patterns continen-
tally and may lead to a shift in biomes boundaries [88]. Moreover, climate change may
increase the risk of the proliferation of invasive species [7]. Some biomes are believed
to be of relatively higher susceptibility to climate change consequences, especially the
tropical rainforest, the deciduous forest, steppe, and grasslands of Asia and North and
South America [89]. The ecological sensitivity of these regions will exacerbate the risk of
invasion by P. juliflora. However, local conditions and factors, particularly soil properties,
the substrate’s nature, the existence of natural enemies, and biotic interactions, will define
the limits for the species invasion [7].

5. Conclusions

Species distribution models that incorporate edaphic factors and climate to project
the potential distribution, invasion risk or expansion of P. juliflora provide a more precise
estimate of the potential susceptible areas to the species invasion. The potential invasion
risk of P. juliflora increases with the increase of temperature of dry seasons along with soil
alkalinity and clay fractions. This confirms that hot arid and semi-arid lands are currently
at the highest risk of invasion or expansion than other moist biomes. The top threatened
countries that exhibited high invasion suitability are mostly developing countries, most of
which are located in Africa. The introduction of the species in some of these countries was
for economic purposes, which may pose challenges for control actions. Cross-boundary
endeavors for controlling P. juliflora expansion to new regions, particularly in countries
predicted as edges of high potential invasion, are required to efficiently manage the species
invasion, particularly in the tropical and subtropical broadleaf-forests and shrublands.
Finally, logical directions of future research on the ranking of world countries with invasion
risk based on the area and number of the country’s protected areas with high invasion risk.
This would provide great insights into conservation planning.
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