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ABSTRACT
Background: The tiny casebearer moth Coleophora obducta, an important defoliator
of Larix spp., is a major threat to ecological security in north China. Studies have
shown that C. obducta is strongly specific to host plants; it is unable complete its life
cycle without Larix spp. The sex pheromones of C. obducta Z5-10:OH have been
elucidated; and eight types of antennae sensilla, have been detected, indicating that an
exploration of its olfactory proteins is necessary, due to the general lack of
information on this topic.
Methods:We investigated the whole body transcriptome of C. obducta, performed a
phylogenetic analysis of its olfactory proteins and produced expression profiles of
three pheromone-binding proteins (CobdPBPs) by qRT–PCR.
Results:We identified 16 odorant binding proteins, 14 chemosensory proteins, three
sensory neuron membrane proteins, six odorant degrading enzymes, five antennal
esterases, 13 odorant receptors, seven ionotropic receptors and 10 gustatory
receptors, including three PBPs and one odorant co-receptor. Additionally, three
putative pheromone receptors, two bitter gustatory receptors and five functional
ionotropic receptors were found by phylogenetic analysis. The expression profiles of
three PBPs in males and females showed that all of them exhibited male-specific
expression and two were expressed at significantly higher levels in males. These data
provide a molecular foundation from which to explore the olfactory recognition
process and may be useful in the development of a new integrated pest management
strategy targeting olfactory recognition of C. obducta.

Subjects Entomology, Molecular Biology
Keywords Odorant binding proteins, Chemosensory proteins, Odorant receptors,
Ionotropic receptors, Odorant-degrading enzymes, Sensory neuron membrane proteins,
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INTRODUCTION
The olfactory insect-plant chemical communication system is central and significant to
survival and propagation due to its essential function in growth and development
e.g., eating, orientation, searching for hosts, copulation and oviposition (Jones et al., 2011;
Syed & Leal, 2008; Zwiebel & Takken, 2004). To achieve integrated pest management, the
molecular mechanisms of the olfactory recognition system have come under scrutiny.

How to cite this articleWang D, Tao J, Lu P, Luo Y, Hu P. 2020. The whole body transcriptome of Coleophora obducta reveals important
olfactory proteins. PeerJ 8:e8902 DOI 10.7717/peerj.8902

Submitted 7 November 2019
Accepted 12 March 2020
Published 10 April 2020

Corresponding author
Ping Hu, hupingcs@163.com

Academic editor
Pedro Silva

Additional Information and
Declarations can be found on
page 20

DOI 10.7717/peerj.8902

Copyright
2020 Wang et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj.8902
mailto:hupingcs@�163.�com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.8902
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/


The tiny casebearer moth Coleophora obducta (Meyrick) (Lepidoptera: Coleophoridae) is
an important defoliator of larch that exclusively destroys the leaves of Larix spp., including
Larix gmelini, Larix principisrupprechtii, Larix olgensis and Larix kaempferi, which
are widely distributed in far eastern Russian, Japan, Korea and Liaoning, Jilin,
Heilongjiang, Inner Mongolia, Hebei and the Henan province in China. C. obducta is
8–10 mm long, including 2–3 mm wing over the abdomen (Fig. 1) (Li, 2003; Yang, 1984).
In northeast China, especially the Greater Khingan Mountains, L. gmelini, which makes up
half of the trees in the forest, has been damaged by C. obducta since 1956. From 1956
to 1990, there were four 10-year fastigium cycles (Yushan, 2004), so C. obducta is the main
defoliator of L. gmelini in northeast China. The larvae remain on the leaves for the first
two instars; they then produce and wear a sheath that damages larch leaves. The oldest
instar larvae cause the fastest and greatest damage by eating four needles in 1 day
(Bao, Yang & Zhao, 1990). When there is an outbreak, the damage, which is similar to fire
disastersn larch forests, seriously affects the growth and development of trees and may
lead directly to the death of a large number of trees. As a result the ecological value of a
forest is weakened. Because the local tree species, L. gmelini has important ecological value
in northeast China, C. obducta has been deemed the main menace to north China’s
ecological security, especially in the Greater Khingan Mountains (Bao, Yang & Zhao, 1990)
(Fig. 1).

After a long period of coevolution between insects and plants, a complex chemical
information network has been gradually established. These chemicals are responsible for
many insect behaviors and physiological reactions, coordinating utrition among plants,
herbivorous insects and their natural enemies (Du & Yan, 1994). Previous studies have

Figure 1 The figure of Coleophora obducta and damaged leaves of Larix gmelini (A). Old sheath on
the leaf of Larix gmelini (B). Blue boxes in (A) and (B) are new and old sheath, respectively.

Full-size DOI: 10.7717/peerj.8902/fig-1
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shown that C. obducta cannot complete its lifecycle without Larix spp., due to its
strong specificity for host plants (Shu et al., 2003), so the chemical communication and
messaging between C. obducta and larch trees is interesting. Eight types of C. obducta
sensillum, placodea, basiconica, coeloconica, styloconica, trichodea, squamiformia,
furcatea of sensillum and Bohm bristles, have been found in antennae; they function as
chemoreceptors and as gustatory and mechanosensory receptors (Yang, Yan & Liu, 2009).
Z5-10:OH (cis-5-decene-1-alcohol), the sex pheromone of C. obducta, was shown to be a
strong attractant for male moths. Z5-10:AC and Z5-12:OH were also found to be
strong and weak inhibitors, respectively, of this pheromone (Clearwater et al., 1991).
An optimal dose of 100 µg of pheromone was developed for field monitoring (Chu &
Zhang, 1995); however, the trapping effect is not efficient at high population densities
(Chen et al., 2002; Liu et al., 2008). Thus, we investigated the olfactory recognition system
to clarify the sex pheromone recognition process.

In the first step of olfactory recognition, the perireceptor event, mostly hydrophobic
olfactory chemical molecules (pheromones and odors) are transformed into water-soluble
molecules and transported from the external environment to the membranes of
chemosensing neurons (Zhou, 2010). This is performed by odorant binding proteins
(OBPs) and chemosensory proteins (CSPs), which are small soluble proteins that are
highly concentrated in the lymph of chemosensilla (Ban et al., 2002; Fleischer et al., 2018;
Kaissling, 2001; Leal et al., 2005; Pelosi et al., 2006; Vieira & Rozas, 2011; Vogt & Riddiford,
1981). Soluble OBPs have a conserved pattern of six cysteines that form three disulfide
bridges (Leal, Nikonova & Peng, 1999). Pheromone binding proteins (PBPs) are members
of a subfamily of OBPs (Zhou, 2010) that bind to pheromone compounds, participate
in the pheromone recognition process and exhibit biased expression in antenna, such as in
Eogystia hippophaecolus, Sesamia nonagrioides and Helicoverpa assulta (Glaser et al., 2013;
Hu et al., 2016a; Li et al., 2015). CSPs have only four cysteines are smaller than OBPs
(Pelosi et al., 2006), and bind to various odors (Ban et al., 2002; Briand et al., 2010;
Jacquinjoly et al., 2001; Lartigue et al., 2002). Since the development of genomic and
transcriptomic sequencing techniques, OBPs and CSPs have been widely investigated
(Pelosi et al., 2018). In the insect chemosensory system, OBPs and CSPs function in the
detection and recognition of environmental chemical stimuli. OBPs and CSPs also have
different functions in non-sensory organs, including the solubilization of nutrients,
pheromone delivery, development and insecticide resistance (Pelosi et al., 2018). OBPs are
thought to be involved in the conveyance of odors to odorant receptors (ORs) for specific
signal transduction of behaviorally active odors (Venthur & Zhou, 2018).

In insects, chemoreception is mediated by transmembrane receptors, including ORs,
ionotropic receptors (IRs), gustatory receptors (GRs) and sensory neuron membrane
proteins (SNMPs), which recognize and discriminate between different kinds of
semiochemicals and environmental odors (Carraher et al., 2015; Clyne et al., 1999;
Fleischer et al., 2018; Leal, 2013; Vosshall et al., 1999; Wicher, 2015). Among these, ORs
have been most extensively studied. ORs transmit chemical signals through heteromeric
complexes with an Orco-receptor (Orco), which functions as a nonselective cation
channel (Sato et al., 2008; Wicher et al., 2008). ORs perceive most food odors
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(Ronderos & Smith, 2009), while pheromone receptors (PRs) bind pheromones and their
complexes (Chang et al., 2015; Leal, 2013). ORs can raise the specificity and sensitivity of
odorant recognition. When CsupPR4 and CsupPR6 were co-expressed with CsupPBP4,
the sensitivity of the reaction with (Z)-11-hexadecenal was significantly enhanced (Chang
et al., 2015). Many kinds of odors, including acids, aldehydes and even humidity, are
perceived by IRs (Ronderos & Smith, 2009). GRs perceive nucleotides, sugars, amino acids,
salts, CO2, acidic pH conditions and multifarious bitter compounds (Liman, Zhang &
Montell, 2014). The main function of ORs and GRs is as ligand-gated ion channels in the
perception of pheromones and environmental chemicals. They are also involved in
photoreception and thermosensation and they have non-sensory roles (Richard, 2015).
SNMPs are part of the CD36 protein family, which participates in pheromone recognition
(Vogt et al., 2009) and is conserved throughout holometabolous insects (Jiang et al., 2016;
Vogt et al., 2009). Depending on the functional groups of different odors, which may
be plant volatiles, pheromones, aldehydes, alcohols, or esters, degradation involves specific
enzymes in odor degradation pathways, including multi-functional odorant-degrading
enzymes (ODEs), pheromone degrading enzymes (PDEs) and antennal esterases (AES)
and all of them are belong to carboxylesterases (CXEs). The subgroup of CXEs uses the
Oakeshott classification system (Chertemps et al., 2015).

In this study, we examined the whole body transcriptome of C. obducta, identified
olfactory proteins and evaluated the phylogenetic relationships between C. obducta and
other species. We also explored the expression profiles of three PBPs in C. obducta males
and females. The identified olfactory proteins provide a molecular foundation from which
to explore the olfactory recognition process and to develop a new integrated pest
management strategy targeting olfactory recognition in C. obducta.

MATERIALS AND METHODS
Ethics statement
The tiny casebearer moth C. obducta is a Chinese forestry pest and collection of it is
permitted by the leader of Xinganmeng forestry bureau, Yinghua Lu and member Tianhua
Zhen. It is not in ‘‘List of Endangered and Protected Animals in China’’. For reduction
ache and discomfort to them, all operations were implemented on the basis of ethical
guidelines.

Insect collection
Artificial rearing C. obducta need L. gmelini to feed, pupate, eclosion, oviposition,
environment to mating and overwintering. We are exploring it, but it’s hard to control.
So we collected spoiling L. gmelini braches with pupa and mature larva of C. obducta on
leaves, putted the braches in bucket with clean water and fed in insect cage outdoors during
end of May to end of June 2019 in Wuchagou, Xinganmeng, China, then collected the
adult C. obducta from the cage during that period every day. In this way we collected
hundreds of C. obducta, which are too tiny and not enough to construct antennal
transcriptome and extract antennal RNA. All bodies of C. obducta were stored in RNAlater
(Ambion, Austin, TX, USA), then deposited at −80 �C.
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cDNA library construction and illumina sequencing
We extracted total RNA from whole body of C. obducta males and females utilization
TRIzol reagent (Ambion, Austin, TX, USA) and the RNeasy Plus Mini Kit (No. 74134;
Qiagen, Hilden, Germany) according to the manufacturer’s instructions. NanoDrop2008
(Thermo, Waltham, MA, USA) and agarose gel electrophoresis examined density and
quality of RNA. Half RNA of male and female bodies with three biological replicates were
used to construct three cDNA libraries respectively. Construction cDNA libraries and
Illumina sequencing of samples were implemented at Majorbio Corporation (Shanghai,
China). Using TruSeq RNA Sample Preparation Kit v2-Set A (No. RS-122-2001; Illumina,
San Diego, CA, USA) was to perform purification and fragmentation of mRNA samples.
The first-strand cDNA was synthesized by utilization random hexamer primers, then
using RNase H, dNTPs, buffer and DNA polymerase I at 16 �C for 1 h to synthesize
the second-strand cDNA. After end repair, A-tailing and the ligation of adaptors, the
products were amplified by PCR and quantified precisely by the Qubit DNA Br Assay Kit
(Q10211; Invitrogen, Carlsbad, CA, USA). cDNA libraries were obtained after they were
purified by the MinElute Gel Extraction Kit (Cat No. 28604; Qiagen, Hilden, Germany).
On the HiSeq2500 platform three cDNA libraries were sequenced.

Assembly and functional annotation
All low quality and adaptor sequences in all raw reads were removed by Trimmomatic
(http://www.usadellab.org/cms/index.php?page=trimmomatic) to get clean reads. Clean
reads assembly was implemented by Trinity (Version: r2019-07-31) with the default
parameters. The largest alternative splicing variants in the Trinity results were unigenes.
The annotation of unigenes was in six databases which include NCBI non-redundant
protein sequences (Nr), Protein family (Pfam), Clusters of Orthologous Groups of proteins
(COG), Swiss-Prot, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene
Ontology (GO). We performed search against the Nr database (http://www.ncbi.nlm.nih.
gov/genbank/), Swiss-Prot (http://www.uniprot.org/) and COG (http://www.ncbi.nlm.nih.
gov/COG/) with an E value cutoff of 1.0E−5 in Diamond (v0.8.37.99) to annotate
and classify putative protein sequences. KEGG database (http://www.genome.jp/kegg/
pathway.html) were searched by Kobas (2.1.1) with default parameters. Pfam (http://pfam.
sanger.ac.uk/) were searched by HMMER 3.0 package (Finn, Clements & Eddy, 2011) with
default parameters. BLAST2GO was used to obtain Gene Ontology (GO) annotation of
assembled unigenes with an default parameters (Götz et al., 2008). Using the NCBI
ORF Finder tool (http://www.ncbi.nlm.nih.gov/gorf/gorf.html) explored the longest
complete open reading frames (ORFs) of unigenes. The FPKM (fragments per kilobase per
million reads) represent expression levels (Mortazavi et al., 2008), which was calculated
by RSEM (RNA-Seq by Expectation–Maximization) (Version: v1.2.6) with default
parameters (Bo & Dewey, 2011).

Identification of chemosensory genes
Candidate unigenes involved in C. obducta olfaction from Nr database were identified by
Diamond (v0.8.37.99) based on the available sequences of OBPs, CSPs, SNMPs, ODEs,
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ORs, GRs and IRs proteins from insecta species. All putative OBPs, CSPs, SNMPs,
ORs, GRs, IRs and ODEs were examined by tBLASTn online manually to assess the
Diamond results. In File S1, the nucleic acid sequences of all chemosensory genes were
listed.

Sequence and phylogenetic analysis
The N-terminal signal peptides of OBPs and PBPs were checked by SignalP4.0
(http://www.cbs.dtu.dk/services/SignalP/). All sequences to construct phylogenetic tree
except C. obducta were obtained from NCBI protein database. Utilization Muscle
method implemented in Mega v6.0 software package carried out amino acid sequence
alignment (Tamura et al., 2011). The phylogenetic trees were constructed using the
neighbor-joining (NJ) method (Saitou & Nei, 1987) with a pairwise deletion of gaps and
P-distances model implemented in Mega v6.0 and colored in FigTree (Version 1.4.2).
The reliability of the tree structure and node support was assessed by bootstrap analysis
with 1,000 replicates. Considering higher reliability of tree, we eliminated binding
proteins with less than 122 amino acids and membrane proteins with less than 333 amino
acids. The phylogenetic tree of OBPs was based on two amino acid sequences of GOBPs,
9 OBPs (except CobdOBP1 and 2) and 3 PBPs of C. obducta, all Lepidoptera PBPs,
15 of Apis mellifera, 23 of Bombyx mori, 28 of Tribolium castaneum, 21 of Dendrolimus
kikuchii, 11 of Heliothis virescens and 14 of C. suppressalis. CSPs tree was based on
seven of C. obducta (except CobdCSP1, 4, 7, 8, 10, 11, 12) 20 of D. melanogaster, 17 of
T. castaneum, 15 of E. hippophaecolus, 14 of Ostrinia furnacali and 14 of D. kikuchii.
The phylogenetic analyses of ORs were based on six ORs of C. obducta (except CobdOR2,
5, 6, 7, 8, 9, 10), 33 of D. kikuchii, 4 Lepidoptera PRs, 17 of Tenebrio molitor, 7 of
D. mauritiana, 41 of Manduca sexta and all 39 of insect Orco. ODEs tree were based on
all ODEs and CXEs of C. obducta (except CobdCXE4) and all known CXEs of Plodia
interpunctella (Liu et al., 2019), Ectropis oblique (Sun et al., 2017b), Spodoptera littoralis
(Durand et al., 2010) and Chertemps et al. (2015). IRs tree was based on all IRs of
C. obducta, 35 of D. melanogaster, 7 of E. hippophaecolus, 3 of H. armigera and IRs of
M. sexta, B. mori, D. plexippus and H. Melpomene (Schooten et al., 2016). GRs tree was
based on five GRs of C. obduct (except CobdGR1, 2, 3, 64, 43a), 30 of D. melanogaster, 7 of
B. mori and Xu used in H. armigera (Xu et al., 2016). SNMPs tree was constructed
with 3 SNMPs of C. obducta and all known insect SNMPs. Accession number of all
chemosensory protein sequences obtained from NCBI protein database in phylogenetic
tree without reference was listed in File S2.

Expression analysis by fluorescence quantitative real-time PCR
Fluorescence quantitative real-time PCR was performed to verify the expression of
candidate chemosensory genes. Total RNA of whole body of males and females were
extracted following the methods described above. cDNA was synthesized from total
RNA using the PrimeScriptRT Reagent Kit with gDNA Eraser to remove gDNA
(No. RR047A; TaKaRa, Shiga, Japan). Gene-specific primers were designed using Primer3
(http://bioinfo.ut.ee/primer3-0.4.0/) (File S3). Lymantria dispar β-actin was set as
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reference gene (File S3). The fluorescence quantitative real-time PCR (qRT–PCR) analysis
was conducted using the Bio-Rad CFX96 PCR System (Hercules, CA, USA). SYBRPremix
ExTaqTM II (No. RR820A; TaKaRa, Shiga, Japan) was used for the PCR reaction under
a three-step amplification. Each PCR reaction was conducted in a 25 ml reaction
mixture containing 12.5 µl of SYBR Premix Ex Taq II, one ml of each primer (10 mM),
two µl of sample cDNA (2.5 ng of RNA) and 8.5 µl of dH2O (sterile distilled water).
The qRT–PCR cycling parameters were as follows: 95 �C for 30 s, followed by 40 cycles of
95 �C for 5 s, 60 �C for 30 s and 65 �C to 95 �C in increments of 0.5 �C for 5 s to generate
the melting curves. To examine reproducibility, each qRT–PCR reaction for each tissue
was performed in three biological replicates and three technical replicates, in which each
biological replication was with 20 individuals. Negative controls without either template
were included in each experiment. Bio-Rad CFX Manager (version 3.1.1517.0823)
was used to normalize expression based on ΔΔCt values, with CobdPBP3 of male in
analyze mode as control sample and the 2−ΔΔCT method was used (the amplification
efficiency for three genes was equal to 100%) (Livak & Schmittgen, 2001). A Chi-square
test was using to compare the expression level of male and female adult in SPSS Statistics
22.0. Values are presented as means ± SE.

RESULTS
Transcriptome sequencing and sequence assembly
We generated 44.07, 48.57 and 43.37 million clean reads from cDNA libraries of three
biological repeats of C. obducta whole body (half males and females). The q20 quality
scores were 97.71%, 97.55% and 97.45% respectively. The q30 quality scores were
93.84%, 93.48% and 93.27%, respectively (Table 1). After splicing and assembly, 96,657
transcripts, 52,354 unigenes, with a N50 of 1,533 bp, an average length of 900 bp and a
maximal length of 19,273 bp were obtained (Table 1; Fig. 2A). The raw reads of three
C. obducta transcriptome have been deposited in the NCBI SRA database under the
accession number PRJNA587422.

Table 1 Number and length of unigenes.

Quality indexs Transcriptome 1 Transcriptome 2 Transcriptome 3

Raw reads 44,539,192 49,142,628 43,896,156

Clean reads 44,072,110 48,571,928 43,368,300

Q20 (%) 97.71 97.55 97.45

Q30 (%) 93.84 93.48 93.27

GC content (%) 47.83 47.64 48.11

Total transcripts number 96,657

Total unigenes number 52,354

Largest length (bp) 19,273

Average length (bp) 900

N50 1,533
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Homology analysis and gene ontology annotation
There were 17,176 (46.52%) unigenes that were obtained through annotation with the Nr
database (Table 2). Of those, 12,206 (33.06%) aligned to the Swiss-Prot database, 12,674
(34.32%) aligned to the protein family (Pfam) database, 9,741 (26.38%) aligned to GO

Figure 2 Length distribution of unigene and BLASTx unigenes with other species in the whole body
transcriptome of C. obducta (A) length distribution of unigenes; (B) BLASTx analysis of identified
unigenes with known homologs from other species. Full-size DOI: 10.7717/peerj.8902/fig-2
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database and 2,937 (7.95%) aligned to the COG database (Table 2). In all, 17,821 (48.26%)
unigenes were annotated in six databases. Interestingly, 2,001, 88, 155, 4 and 9 unigenes
were uniquely annotated to the Nr, Swiss-Prot, Pfam, COG and KEGG databases,
respectively (Table 2). The greatest number of sequences (13.77%) matched genes from
Amyelois transitella, followed by 12.63% from H.armigera, 12.17% from Spodoptera litura,
9.18% from Heliothis virescens and 6.28% from Bicyclus anynana. A BLASTx search
found that 32.03% were similar to nine species and 13.94% of unigenes were similar to
other species (Fig. 2B). There were 40,565 unigenes that were categorized as functional
groups by gene ontology (GO) annotation. In the C. obducta transcriptome, the ontology
category with the most annotations was cellular component (39.96%, 16,209 gene
numbers), followed by biological process (33.32%, 13,515 gene numbers) and molecular
functions (26.72%, 10,841 gene numbers). In the cellular component category, the terms
membrane, cell and cell part were the most representative. In the biology process category,
cellular process, metabolic process and single-organism process were the most enriched
terms. Binding, catalytic activity and transporter activity were the most abundant
molecular functions terms (Fig. 3A). In total, 1,492 unigenes were classified into 24 COG
categories. The major COG category was with 210 unigenes relating to storage and
processing (14.08%), followed by cellular processes and signaling (180 unigenes, 12.06%)
and poorly characterized (153 unigenes, 10.25%) (Fig. 3B). To elucidate active biosynthesis
pathways in C. obducta, annotation of Nr data with the Kyoto Encyclopedia of Genes
and Genomes (KEGG) database discovered that 14,419 gene numbers were assigned to six
main categories. The highest number of KO identifiers were involved in human diseases
(2,488 unigenes), followed by organismal systems (1,927), metabolism (1,840), cellular
processes (1,008), genetic information processing (368) and environmental information
processing (309). Signal transduction (1,321), cancer overview (854), transport and
catabolism (759), the endocrine system (702), the immune system (637) and translation
(630) were largest number of KO identifiers in pathways (Fig. 3C).

Nonreceptor olfactory gene families
Odorant binding proteins

We identified 16 unigenes encoding putative OBPs in C. obducta, including two general
odorant binding proteins (GOBPs) and three PBPs. Only CobdOBP11 was a full-length

Table 2 Functional annotation of unigenes using various public protein databases.

Annotated in databases Number of unigenes Percentage

Nr 17,176 46.00

SwissProt 12,206 33.06

Pfam 12,674 34.32

COG 2,937 7.95

GO 9,741 26.38

KEGG 9,192 24.89

Annotated in all databases 17,821 48.26

Annotated in at least one databases 36,925 70.50
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Figure 3 GO gene function classification, KOG and KEGG function classification. (A) GO classifi-
cation. (B) KOG function classification and (C) KEGG function classification.

Full-size DOI: 10.7717/peerj.8902/fig-3
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gene with a complete ORF, with signal peptides and a length >400 bp (File S4). The FPKM
of CobdOBPs showed that CobdOBP4, CobdGOBP1, CobdGOBP2, CobdOBP11,
CobdOBP1, CobdOBP8 and CobdPBP1 exhibited the highest expression; the top three
FPKMs of CobdOBP4, CobdGOBP1 and CobdGOBP2 were 197.37, 178.96 and 86.05,
respectively. CobdPBP1 was exhibited the highest expression with an FPKM of 23.86,
followed by CobdPBP3 and CobdPBP2 with FPKM values of 9.08 and 5.00, respectively.
In the phylogenetic tree (Fig. 4; File S2), the distinct PBPs clade included CobdPBP1,
CobdPBP2, DkikOBP1 and all other PBPs; however, CobdPBP3 was not in the PBP lineage.
The GOBP clade included CobdGOBP2 and all other GOBPs except CobdGOBP1.
By fluorescence quantitative real-time PCR, we verified the expression of three PBPs in

Figure 4 Neighbor-joining phylogenetic tree of odorant binding proteins (OBPs). The NJ phyloge-
netic analysis of OBPs of C. obducta (CobdOBP, red) was performed with reference OBPs of Lepidoptera
(black) and Coleoptera (celeste). The yellow and purple fill area refer to PBP and GOBP lineage
respectively. The scale bar represents 1.0 substitutions per site.

Full-size DOI: 10.7717/peerj.8902/fig-4
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adult males and females and observed higher expression levels in males than females in
three PBPs. Moreover, we detected significantly higher expression levels of CobdPBP1 and
CobdPBP3 in males than in females (p < 0.05). CobdPBP3 in males exhibited the highest
expression of the remaining PBPs investigated in males and females. The expression of
CobdPBP2 did not differ between males and females obviously (Fig. 5).

Chemosensory proteins
A total of 14 unigenes encoding putative CSPs were identified (Table 1). The FPKM of
CobdCSP showed that CobdCSP14, CobdCSP3, CobdCSP4, CobdCSP10, CobdCSP1,
CobdCSP6 and CobdCSP5 exhibited the highest expression in antenna; the top three FPKM
of CobdCSP14, CobdCSP3 and CobdCSP4 were 379.12, 370.89 and 92.22, respectively.
However, the FPKM of the other seven CobdCSP ranged from 1.43 to 12.72 (File S4). Based
on the neighbor-joining tree of CSPs (Files S2 and S5), the Dipteran (D. melanogaster)
clade was labeled with green circles; however the CSPs of Coleoptera (T. castaneum) were
divided into five clades.

Sensory neuron membrane proteins
We identified three SNMPs unigenes. The FPKM of CobdSNMPs showed that
CobdSNMP3 was much higher expressed than CobdSNMP1 and CobdSNMP2 (File S4).
In the phylogenetic tree of SNMPs (Files S2 and S6), three clades of SNMPs (SNMP1,
SNMP2 and SNMP3) were revealed. The clades of SNMP1, SNMP2 and SNMP3 was
labeled with blue, green and black circle.

Odorant degrading enzymes
Six putative odorant degrading enzymes (ODEs) and five putative antennal esterases
(CXE) were identified. Nine of these, excluding CobdCXE4 and CobdCXE5, the other nine
hadORFs of approximately 1,600 bp. The FPKM of CobdCXEs showed that CobdCXE2,
CobdODE3 and CobdODE4 were the highest expression in the transcriptome; the
FPKM of the other eight ranged from 2.86 to 9.72 (File S4). Based on the neighbor-joining
tree of ODEs and CXEs (Fig. 6; File S2) and the classification system described in
Chertemps et al. (2015), we found that CobdCXE1, CobdODE2 and CobdODE6 belong
to mitochondrial and cytosolic esterases (yellow area in phylogenetic tree), CobdODE5
belongs to microsomal a-esterases (pink) CobdODE4, CobdODE1, CobdCXE3 and

Figure 5 Pheromone binding protein (PBPs) transcript levels of C. obducta in male and female. (A) CobdPBP1; (B) CobdPBP2; (C) CobdPBP3;
Actin was used as the reference gene to normalize target gene expression. The standard errors are represented by the error bars, asterisk above the
bars denote significant differences at p < 0.05. Full-size DOI: 10.7717/peerj.8902/fig-5
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CobdCXE5 belong to antennal esterases (blue) and CobdCXE2 belongs to Lepidopteran
juvenile hormone esterases (JHE) (gray).

Receptor encoding genes
Odorant receptors
A total of 13 ORs were identified. Among them, the full length genes of CobdOR3,
CobdOrco and CobdOR11 encoded more than 405 amino acids and had complete
ORFs. Only two ORs of C. obducta were best matches with the same species and
sequence (i.e., accession number), the best match for CobdOR8 and CobdOR10 was

Figure 6 Neighbor-joining phylogenetic tree of carboxylesterases (CXEs). The NJ phylogenetic
analysis of CXEs of C. obducta (CobdODEs and CobdCXEs, red) was performed with reference CXEs of
Plodia interpunctella (Liu et al., 2019), Ectropis oblique (Sun et al., 2017b), Spodoptera littoralis
(Durand et al., 2010) and Chertemps et al. (2015). The pink, blue, gray and yellow fill area refer to
microsomal a-esterases, antennal esterases, juvenile hormone esterases (JHE) and mitochondrial and
cytosolic esterases, respectively. The scale bar represents 0.5 substitutions per site.

Full-size DOI: 10.7717/peerj.8902/fig-6
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Helicoverpa armigera AIG51872.1. CobdOR10 and CobdOR12 were the highest expression
with a FPKM of 24.94 and 19.56, respectively; the other eleven CobdORs had a FPKM
ranging from 1.25 to 7.95 (File S4). In the neighbor-joining tree (Files S2 and S7), the Orco
lineage (yellow filled area) included all known insect Orco, CobdOrco, MsexOR2 and
DkikOR32. CobdPR1 (CobdOR1), CobdPR2 (CobdOR3) and CobdPR3 (CobdOR4) formed
a clade with a PR lineage, including MsexPR, HarmPR, ObruPR, OnubPR, CmedPR1,
CmedPR2 and three MsexORs.

Ionotropic receptors
A total of 7 IRs were identified in the transcriptome, including IR25a and IR93a. Among
them, five were full length genes with complete ORFs longer than 1,500 bp. CobdIR5,
CobdIR4 and CobdIR25a were the highest expression with a FPKM of 25.69, 23.73 and
12.86, respectively; the other four had a FPKM ranging from 1.6 to 8.22 (File S4). In the NJ
tree (Fig. 7; File S2), most IRs were clustered with a known group; the IR62a group
contained CobdIR62a (CobdIR3), seven HmelIR62a, two DpleIR62a and two BmorIR62a
and the IR25a clade contained CobdIR25a, DmelIR25a, BmorIR25a, DpleIR25a and
HmelIR25a. The IR76b group contained CobdIR76b (CobdIR5) DmelIR76b, BmorIR76b,
DpleIR76b and HmelIR76b, while the IR93a clade contained CobdIR93a, DmelIR93a,
BmorIR93a, DpleIR93a, HmelIR93a and HarmIRa. The IR64a group included CobdIR64a
(CobdIR2), BmorIR64a, DpleIR64a and HmelIR64a,the IR75p2 group included
CobdIR75p2 (CobdIR1), BmorIR75p2, DpleIR75p2 and EhipIR75p2 and the IR68a group
contained CobdIR68a (CobdIR4), BmorIR68a, DpleIR68a and EhipIR68a.

Gustatory receptors
We identified 10 putative GRs, including two GRs for sugar, CobdGR64 and CobdGR43a,
which did not have a full-length gene. Four (CobdGR4, CobdGR5, CobdGR6 and
CobdGR8) were the best matches with Athetis dissimilis. CobdGR1 and CobdGR64 were
the highest expression in males and females with a FPKM of 172.98 and 70.34, respectively;
the other eight GRs had a FPKM ranging from 1.40 to 9.92 (File S4). In the phylogenetic
tree (Fig. 8; File S2), the bitter lineage consisted of two subclades, one including
CobdGR4, HarmGR14, HarmGR78p and DmelGR66a and the other containing CobdGR5,
BmorGR68 and DmelGR33a.

DISCUSSION
Olfactory proteins of 246 species of insects have been reported in the NCBI protein
database, which includes 51 lepidopteran species (6th-August-2019). However, the
olfactory proteins in lepidopteran species that are small and slender with lance-like wings
and have larvae covered with a sheath, such as the casebearer moth Coleophoridae,
have not been studied to date. We explored CSPs in the body transcriptome of C. obducta,
based on the feasibility and necessity of exploring the chemical ecology of C. obducta.
These data provide a direct molecular foundation for understanding olfactory protein
function in chemosensory reception. They also show the important function of olfactory
proteins in the casebearer moth and establish the groundwork for understanding the
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molecular mechanisms of olfactory recognition and applying these data to C. obducta
integrated pest management.

In terms of the number of olfactory proteins, C. obducta had similar amount OBPs
compared with the whole body transcriptome of Oedaleus infernalis (Zhang et al., 2018).
Compared with the insect antenna transcriptome (Chang et al., 2017; Nie et al., 2017;
Rojas et al., 2018; Sheng et al., 2017;Wang, Liu & Wang, 2017;Wu et al., 2017; Yang et al.,
2017, 2018) (File S8), C. obducta had an intermediate number of OBPs. The number of
olfactory proteins identified in the whole body transcriptome of C. obducta is smaller
than that inmost other species based on analyses of insect antennal genes. This is probably
due to the inclusion of multiple tissues (besides antenna) which would be expected to
show a lower abundance of antennal proteins and the exclusion of genes with very low
expression levels from our bioinformatics analysis. C. obducta is a specialist insect and

Figure 7 Neighbor-joining phylogenetic tree of ionotropic receptors (IRs). The NJ phylogenetic
analysis of IRs of C. obducta (CobdIR, red) was performed with reference IRs of Lepidoptera, Diptera
species. There are 14 subgroup of IRs in the tree. The scale bar represents 0.5 substitutions per site.

Full-size DOI: 10.7717/peerj.8902/fig-7
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polyphagous insects with huge expansions of genes associated with chemosensation
compared with specialist insects have been identified (Gouin et al., 2017). Importantly,
74 CSPs were identified in the whole body transcriptome of C. obducta, including
3 PBPs, 1 Orco, 3 PRs, 3 SNMPs and 2 bitter and sugar GRs, which included most of the
important olfactory genes. Thus, the preparation of a whole body transcriptome was a
feasible way to search for most of the olfactory proteins in this tiny insect species, which
cannot be reared artificially and for which sample collection is difficult.

OBPs are thought of as the first gate in the odorant recognition process with important
biological functions, to bind and convey odors across the lymph in the sensillum
(Scaloni et al., 1999). The ability of OBP native sensing units to detect odorants and
eliminate important behaviors may be useful in the development of novel strategies for

Figure 8 Neighbor-joining phylogenetic tree of gustatory receptors (GRs). The NJ phylogenetic
analysis of GRs of C. obducta (CobdGR, red) was performed with reference GRs of B.mori (BmorGR,
dark),H.armigera (HarmGR, blue) and D. melanogaster (DmelGR, Diptera, blue). The GRs group labeled
with purple, red and yellow fill area refer to detect CO2, sugar and bitter. The scale bar represents
0.5 substitutions per site. Full-size DOI: 10.7717/peerj.8902/fig-8
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insect population management, as well as other biotechnological applications (Brito,
Moreira & Melo, 2016). It was recently demonstrated that OBPs can function as molecular
recognition units in gas-phase biosensors (Barbosa, Oliveira & Roque, 2018) including
OBP22 of Aedes aegypti (Zhao et al., 2012). We identified 16 putative OBPs including
2 GOBPs and 3 PBPs. However, from the results of the OBPs phylogenetic tree,
determining whether CobdPBP3 and CobdGOBP1 belong to PBPs GOBPs, respectively,
will require further study.The FPKM values of six CobdOBPs were higher than the FPKM
values of the CobdPBPs in the whole body transcriptome. Considering that OBPs in insects
have numerous non-olfactory functions, such as pheromone delivery, solubilization of
nutrients, development and insecticide resistance (Pelosi et al., 2018), the strong expression
of CobdOBP4 s, CobdGOBP1, CobdGOBP2, CobdOBP11, CobdOBP1 and CobdOBP8
should make them good targets to determine their expression profiles and functions.
Meanwhile, the eight OBPs found in Ceracris kiangsu revealed a clear divergence,
indicating their varying functions (Li, Jiang & Dong, 2018). It has also been demonstrated
that CvesOBP2 can bind the Carpomya vesuviana male-emitted odor (Z)-3-hexen-1-ol
acetate (Li et al., 2017). Notably, most OBPs are expressed in antennae, which indicating
the important functions of OBPs in antennal identification processes, such as in C. kiangsu
(Li, Jiang & Dong, 2018), H. assulta (Jin et al., 2015) and C. suppressalis (Xia et al., 2015).
AlinOBP11 is expressed in the tarsal gustatory sensilla of Adelphocoris lineolatus
(Sun et al., 2017a). Expression profiling showed that three CobdPBPs were more highly
expressed in males than females and two exhibited significantly higher expression in males,
indicating the sex biased expression of CobdPBPs, similar to Conopomorpha sinensis
(Li et al., 2018); thus, these proteins may function in male binding of female-emitted
pheromones. CobdPBP3 exhibited the highest expression in males. The same expression
profile was identified in of E. hippophaecolus for PBP1 (Hu et al., 2018), which is the main
protein involved in binding sex-pheromone components during pheromone
communication.

We identified 14 CSPs. The top two CobdCSPs, CobdCSP14 and CobdCSP3 had
FPKM values that were nearly double those of the top two CobdOBPs (379.12 and 370.89).
OBPs and CSPs exhibit different expression patterns, OBPs are expressed in the
antenna, while CSPs do not have a distinct expression preference (Zhang et al., 2013).
Anoplophora glabripennis CSPs are not expressed in the antenna, but are highly expressed
in the maxillary palps and propodeum (Hu et al., 2016b). The expression pattern of CSPs
in Empoasca onukii showed that CSPs were highly expressed in the head and thorax
(Bian et al., 2018). An analysis of the expression patterns of CSPs, indicated that
exploration of the functions of CobdCSP14 and CobdCSP3 in antenna and other tissues
will be important. Some CSPs were significantly expressed in antennae, including most of
the CSPs of Lobesia botrana (Rojas et al., 2018) and MmedCSP2 and MmedCSP3 of
Microplitis mediator (Peng et al., 2017). MmedCSP3 can bind insect odors and
plant volatiles, as well as pheromone components of Noctuidae, Z11-16:Ald, Z11-16:
OH and E11-14:Ac (Peng et al., 2017), illustrating the binding ability and functions of
CSPs in olfactory recognition. CSPs of Diptera constitute an order-specific clade in
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the CSP phylogenetic tree, which was the same as Mamestra brassicae (Jacquinjoly et al.,
2001).

Three SNMPs were identified from the transcriptome. Both CobdSNMP3 and
CobdSNMP2 were identified as nearly full-length genes and the annotation results
suggested they were homologous to Ostrinia nubilalis sequences. Moreover, SNMPs are
conserved throughout holometabolous insects (Jiang et al., 2016; Vogt et al., 2009);
three lineages of SNMPs (SNMP1, SNMP2 and SNMP3) were obvious in the phylogenetic
tree.

SixODEs and fiveCXEs were also identified. The biggest groups identified in C. obducta,
the mitochondrial and cytosolic esterases of CobdCXE1, CobdODE2 and CobdODE6
and the antennal esterases of CobdODE4, CobdODE1, CobdCXE3 and CobdCXE5, have
also been found in P. interpunctella (Liu et al., 2019). CobdODE5 is a microsomal
a-esterases. Such enzymes are well known for their involvement in the detoxification of
insecticides and xenobiotics and in the digestion of dietary esters (Campbell et al., 2003;
Gong et al., 2017; Yang et al., 2016). The best characterized ODE in D. melanogaster
is esterase 6, which degrades the major volatile, aggregation pheromone cis-vaccenyl
acetate (Chertemps et al., 2012; Mane, Tompkins & Richmond, 1983) and various short
chain fatty acid food esters (Benton, 2007; Chertemps et al., 2015).

ORs combine olfactory sensory neurons with binding proteins and they function in
olfactory signal transduction, which also uses native sensing units to detect odors.
In addition, the interactions between odorant molecules and ORs or OBPs are a source
of inspiration for the design of peptides with tunable odorant selectivity (Barbosa,
Oliveira & Roque, 2018; Venthur & Zhou, 2018). Insect olfactory receptors are dimers
consisting of constant and variable regions (Horsfield, Haase & Turin, 2017). The constant
region is a seven transmembrane helix spanning the membrane receptor Orco (formerly
OR83b) (Larsson et al., 2004). CobdOrco in the Orco lineage of the OR tree demonstrated
that we identified C. obducta Orco again. The expression of ORs show that 59 ORs of
Tessaratoma papillosa were primarily expressed in the antennae (Wu et al., 2017) and that
most ORs and two PRs of Loxostege sticticalis showed antenna-biased expression
(Wei et al., 2017), suggesting their putative role in olfaction. It is also obvious that OR
subtypes are expressed in different numbers of cells (Fleischer et al., 2018) and can be
co-expressed, such as the six co-expressed ORs in the A. gambia genome (Karner et al.,
2015). Insect ORs appear to be more specifically tuned to odorants than OBPs
(Fleischer et al., 2018). In B. mori, the receptors for bombykol (the major component of
the sex pheromone) and bombykal (the minor component of the sex pheromone) are
BmorOR1 and BmorOR3, respectively (Große-Wilde, Svatoš & Krieger, 2006; Nakagawa
et al., 2005). HvirOR13 and HvirOR6 have also been identified as PRs for the major and
minor sex pheromone constituents, respectively (Große-Wilde et al., 2007). Besides,
CobdPR1 (CobdOR1), CobdPR2 (CobdOR3) and CobdPR3 (CobdOR4) are putative PRs in
C. obducta; the functions of these receptors require further exploration. Identifying ORs,
their ligands and key amino acid positions in the receptors (e.g., Ala195 in AgamOR15
which functions as part of an inhibitor interaction site) (Rahman & Luetje, 2017), could
serve as a foundation for the design of pest control agents for a given insect species.
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In the antennae of D. melanogaster, ionotropic glutamate receptors responsive to
chemical compounds were identified and annotated as IRs (Abuin et al., 2011). The IR
group was added and improved based on the genomic analysis of Heliconius IRs
(Schooten et al., 2016). Overall, the amino acid sequence identities of Drosophila IRs range
from 10% to 70%, suggesting functional diversity (Richard et al., 2009). Seven IR
groups were identified in C. obducta, CobdIR62a, CobdIR76b, CobdIR64a, CobdIR75p2,
EhipIR68a, CobdIR25a and CobdIR93a, with different functions. There are three subtypes
of IRs, antennal IRs, divergent IRs and IR25a and IR8a, which are expressed, along
with antennal IRs, in antennae, gustatory organs (e.g., the labellum) and coeloconic
olfactory sensory neurons of the antenna respectively. IR25a and IR8a are co-expressed
(Croset et al., 2010; Abuin et al., 2011; Rytz, Croset & Benton, 2013), but we did not identify
CobdIR8a. IRs also have multiple functions and expression patterns that are general
essential chemosensory cues for insects.

Ten GRs were detected in the transcriptome. GRs typically function in sensing sugar,
CO2 and bitter molecules (Liman, Zhang & Montell, 2014), they were also clustered in
groups according to different functions in the phylogenetic tree. The type 2 bitter GRs
ofH. armigerawere clustered together in the phylogenetic tree (Xu et al., 2016); two groups
of bitter lineages were also identified. CobdGR4 and CobdGR5 were clustered with
DmelGR66a and DmelGR33a, respectively, indicating CobdGR4 and CobdGR5 function
as bitter sensors. DmelGR21a and DmelGR63a are required for responsiveness to CO2

(Jones et al., 2007; Kwon et al., 2007). The sugar receptor lineages included BmorGR8
and BmorGR9 (Koji, Kana & Kazushige, 2011; Zhang et al., 2011) and HarmGR8,
HarmGR7, HarmGR4, HarmGR12, HarmGR10, HarmGR6 and HarmGR5 (Xu et al.,
2016), consistent with their function. We did not find that CobdGRs function in sugar and
CO2 sensing. Some GRs are important in pheromone detection, which is required for
sexual behavior (Joseph & Carlson, 2015). For example, a previous study speculated that
Gr39a participates in female pheromone detection and the authors demonstrated that
the knockdown of Gr39a led to less courtship behavior in males (Watanabe et al., 2011).
Thus, GRs-binding pheromones are usually considered olfactory signals (Bray & Amrein,
2003; Jeong et al., 2013; Miyamoto & Amrein, 2008; Moon et al., 2009).

CONCLUSIONS
We reported the whole body transcriptome of C. obducta; this is the first analysis of
olfactory proteins in a Coleophoridae species. We identified 74 olfactory proteins, which
will provide a foundation for exploring their functions in olfactory recognition process
and system. We also explored the expression profiles of three CobdPBPs, which showed
that all PBPs exhibited higher expression in males than females, consistent with the
previously reported male-biased expression of PBPs. Future studies will explore the
functions of the identified olfactory proteins in the antenna of C. obducta.
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