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a b s t r a c t 

The consumption of non-renewable fossil fuels has directly contributed to a dramatic rise in global carbon dioxide 

(CO2 ) emissions, posing an ongoing threat to the ecological security of the Earth. Microbial electrosynthesis (MES) 

is an innovative energy regeneration strategy that offers a gentle and efficient approach to converting CO2 into 

high-value products. The cathode chamber is a vital component of an MES system and its internal factors play 

crucial roles in improving the performance of the MES system. Therefore, this review aimed to provide a detailed 

analysis of the key factors related to the cathode chamber in the MES system. The topics covered include inward 

extracellular electron transfer pathways, cathode materials, applied cathode potentials, catholyte pH, and reactor 

configuration. In addition, this review analyzes and discusses the challenges and promising avenues for improving 

the conversion of CO2 into high-value products via MES. 
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. Introduction 

Since the advent of the industrial revolution, non-renewable fossil
uels including coal, petroleum, and natural gas have served as crucial
nderpinnings for the progress of human society. As global energy de-
and continues to increase, these fuel resources are rapidly depleting

nd proving to be unsustainable. Moreover, the widespread utilization of
ossil fuels persistently jeopardizes global ecological safety through the
mission of toxic and hazardous gases [ 1 , 2 ]. By the end of 2018, global
nergy consumption had increased by 2.3%, which was nearly double
he average growth rate since 2010. This surge in global fossil fuel con-
umption has directly contributed to a significant rise in the cumulative
lobal CO2 emissions, reaching a staggering 33.1 Gt [3] . Currently, an-
hropogenic activities continue to release CO2 into the atmosphere at an
larming annual growth rate of 4%. Projections from the International
nergy Agency indicate that the cumulative global CO2 emissions are
xpected to reach 40.2 Gt by 2030 [ 4 , 5 ]. According to the estimates of
he Intergovernmental Panel on Climate Change, atmospheric CO2 lev-
ls could potentially reach as high as 570 ppm by 2100, resulting in an
verage global temperature increase of approximately 1.9°C and a sea
evel rise of 3.8 m [6] . Excess CO2 will worsen ocean acidification and
ay result in a dramatic decline in marine species diversity, including

he complete extinction of some species [7] . By 2060–2080, 5–13% of
Abbreviations: CO2 , carbon dioxide; MES, microbial electrosynthesis; EAB, electroa

ET, indirect electron transfer; H2 , hydrogen; SH, soluble hydrogenase; MBH, membran

DH, formate dehydrogenase; RM, redox mediator; 2D, two-dimensional; 3D, three-d
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errestrial tetrapods and 2–6% of marine animals are estimated to be-
ome extinct, with global warming caused by CO2 emissions being one
f the major causes [8] . From a sustainability perspective, CO2 is also
ecognized as the most abundant and cost-effective C1 resource in the
nvironment [ 9 , 10 ]. Therefore, the development of efficient and eco-
omically viable technologies for CO2 capture, sequestration, and uti-
ization holds immense importance. These technologies not only offer
he potential to mitigate the worsening effects of global warming but
lso reduce the dependence on and consumption of fossil fuels. How-
ver, converting CO2 into complex molecules remains a formidable chal-
enge, owing to its inherently strong C = O bond, with a bond energy as
igh as 750 kJ mol− 1 [11] . 

Currently, the utilization of CO2 is primarily categorized into two
ajor classes: physicochemical conversion [12–17] and biological con-

ersion [ 18 , 19 ]. Non-biological conversion processes require the pre-
ise control of reaction conditions and the use of expensive catalysts.
any known catalysts are yet to address certain challenges, such as

ow selectivity, low Faradaic efficiency, and difficulties in catalyst re-
overy [ 12 , 20 ]. Additionally, the chemical conversion pathway still re-
ies on non-renewable resources and has a negative environmental im-
act [21] , making non-biological carbon fixation economically unfea-
ible. In contrast, traditional biological carbon fixation processes, such
s photosynthesis, require arable land and solar energy, posing limita-
ctive bacteria; EET, extracellular electron transfer; DET, direct electron transfer; 

e-bound hydrogenase; SHE, standard hydrogen electrode; PFC, perfluorocarbon; 

imensional; Rubisco, ribulose-1,5-bisphosphate carboxylase. 

 February 2024 

niversity. This is an open access article under the CC BY-NC-ND license 

https://doi.org/10.1016/j.engmic.2024.100141
http://www.ScienceDirect.com/science/journal/26673703
http://www.elsevier.com/locate/engmic
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engmic.2024.100141&domain=pdf
mailto:ghwx@sdu.edu.cn
https://doi.org/10.1016/j.engmic.2024.100141
http://creativecommons.org/licenses/by-nc-nd/4.0/


T. Cai, X. Gao, X. Qi et al. Engineering Microbiology 4 (2024) 100141

Fig. 1. Schematic of a typical two-chamber MES system. 
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ions for its widespread application. These limitations of physicochemi-
al and traditional biological carbon fixation processes can be overcome
y employing microbial electrosynthesis (MES), an emerging interdisci-
linary technology that combines microbiology, electrochemistry, and
ngineering [22] . This technology has remarkable advantages in effi-
iently synthesizing high-value products from CO2 or organic waste by
tilizing the microbial internal metabolic pathways coupled with ex-
ernal energy or bioelectricity [23–26] . Therefore, MES is an efficient,
nvironmentally friendly, and sustainable bioenergy regeneration strat-
gy. 

The cathode chamber is the core part of an MES system and its in-
ernal factors are closely related to its performance. However, few re-
iews have systematically summarized and analyzed these key factors
bout cathode chambers. In this review, we summarized the key fac-
ors affecting the catalytic conversion of CO2 via MES in recent years,
s well as the challenges and breakthroughs in improving the conver-
ion capability of high-value products. This will help researchers un-
erstand the progress, challenges, and opportunities for CO2 conversion
n MES. 

. The microbial electrosynthesis system 

.1. Principles and components of MES 

The MES is a bioelectrochemical system that utilizes microorgan-
sms as biocatalysts to convert CO2 or other organic compounds into
igh-value products by integrating electric energy with microbial intra-
ellular metabolism. A typical MES system consists of an anode cham-
er (non-biological compartment) and a cathode chamber (biological
ompartment) separated by a proton exchange membrane, as illustrated
n Fig. 1 [27] . The microbial component in the biocathode chamber
an either be pure or mixed cultures. Pure cultures mainly employ au-
2

otrophic microorganisms with high electron utilization efficiencies, in-
luding acetogens, methanogens (such as Sporomusa ovata, Clostridium

jungdahlii, and Moorella thermoacetica ), and hydrogen-oxidizing bacteria
such as Ralstonia eutropha ) [28] . Additionally, mixed cultures have also
een widely used as they have higher production rates, like in produc-
ng volatile fatty acids, and greater potential for practical applications
 29 , 30 ]. Applying a negative potential to the cathode drives the electro-
hemical synthesis reaction and protons generated via water electrolysis
n the anode chamber migrate across the proton exchange membrane
nto the biological cathode chamber. In the cathode chamber, biocat-
lysts can regenerate the reducing power using the cathode and sus-
ain a series of metabolic processes. These include the Calvin–Benson–
assham cycle [31] , the Wood–Ljungdahl pathway [32] , the reverse 𝛽-
xidation pathway [33] , and other non-autotrophic bacterial pathways
hat require the assistance of special materials [ 34 , 35 ]. 

.2. The unique advantages of MES 

The MES is a carbon recycling system and an energy storage tech-
ology that produces high-value products. For example, the electric con-
ersion efficiency of MES for acetate can exceed 80% [36] . Meanwhile,
ES is compatible with various forms of electrical energy input, rang-

ng from conventional electricity to unstable and renewable clean en-
rgy sources such as solar, wind, and tidal power, and even bioelec-
ricity [37–40] . Although enzymes and organelles may provide high re-
ction specificity and controllability, the utilization of microorganisms
n bioelectrosynthesis presents several unique benefits, such as the self-
egeneration of the catalyst, adaptability of the number of catalysts to
he desired conversion activity, having a flexible and wide substrate
pectrum, and more versatile product synthesis pathways than those
f enzymes or organelles [22] . Additionally, the enzymatic nature of
ellular metabolism greatly reduces the difficulty and energy consump-
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Fig. 2. (A) Schematic of extracellular electron transfer (EET) pathways of microorganisms. (B) Inward direct electron transfer (DET) pathway performed using the 

MtrCBA complex. (C) H2 -mediated indirect electron transfer (IET) pathway. (D) Formate-mediated IET pathway. 
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ion required for CO2 reduction, enabling the efficient and targeted con-
ersion of CO2 into various high-value products under mild conditions
sing low-quality energy sources. While the primary products of MES
emain short-chain fatty acids and alcohols, applying synthetic biology
echniques has enabled the successful synthesis of complex compounds,
ncluding terpenes, carotenoids, lycopene, and poly- 𝛽-hydroxybutyrate.
herefore, MES offers a groundbreaking platform for the utilization of
O2 . 

. Key factors for catalytic CO2 conversion in an MES system 

.1. Extracellular electron transfer pathway 

In the cathode chamber of an MES system, electroactive bacteria
EAB), also known as electrotrophs, take up electrons from the cathode
s an energy source to convert CO2 into high-value products [ 41 , 42 ].
herefore, the extracellular electron transfer (EET) pathway between
he cathode and EAB becomes a crucial factor in improving the rate of
athodic microbial electron uptake and achieving high MES productiv-
ty. Currently, EET pathways are primarily categorized into two classes:
irect electron transfer (DET), mediated by membrane-bound redox pro-
eins, and indirect electron transfer (IET), mediated by substances such
s hydrogen (H2 ), formate, and redox mediators ( Fig. 2A ). Table 1 sum-
arizes the EET pathways of various microorganisms used in MES sys-

em reported in recent years. 
3

.1.1. Direct electron transfer pathway 

The DET pathway is a process in which EABs directly uptake elec-
rons from the electrode surface without the involvement of any external
ediators or additional components; it only requires physical contact

etween the EABs and the electrode. The metal-reducing MtrCBA path-
ay in Shewanella oneidensis is currently the most extensively studied
ET pathway ( Fig. 2B ). EABs that utilize the DET pathway typically ad-
ere to solid electrode surfaces and form biofilms, relying on redox pro-
eins located in their extracellular membrane to facilitate inward elec-
ron transfer, like c-type cytochrome. As shown in Table 1 , most EABs
sed in MES systems can acquire electrons from electrodes through the
ET pathway. 

Researches on the DET pathway started relatively early. In 2009,
ethanobacterium palustre was reported to directly take up electrons

rom the cathode and convert CO2 into methane [46] . In 2010, the term
MES ” was proposed for the first time when Nevin et al. [43] reported
he carbon fixation of the acetogenic microorganism S. ovata by relying
n the DET pathway. Subsequently, Nevin et al. significantly expanded
he selection range of biocatalysts for MES systems by further identify-
ng other organisms that drive CO2 reduction through the DET pathway:
. aceticum, S. sphaeroides, M. thermoacetica , and C. ljungdahlii [44] . The
ET pathway has also been discovered in the photosynthetic autotrophic
acterium Rhodopseudomonas palustris , an excellent MES biocatalyst ca-
able of converting CO2 by taking up electrons from the cathode using
arious functional proteins in its own photosynthetic electron transfer
hain [ 25 , 57 ]. R. palustris was revealed to utilize electrodes and light as
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Table 1 

The electron transport mechanisms of various strains used in MES systems in recent years. 

Electron transport 

mechanism Mediator Strain Substrate Products Engineering transformation References 

DET No S. ovata CO2 Acetate – [43] 

No C. aceticum CO2 Acetate, 2-Oxybutrate – [44] 

No S. sphaeroides CO2 Acetate – [44] 

No M. thermoacetica CO2 Acetate – [44] 

No C. ljungdahlii CO2 Acetate, 2-Oxybutrate – [44] 

No M. vannielii CO2 CH4 – [45] 

No M. maripaludis CO2 CH4 – [45] 

No M. petrolearia CO2 CH4 – [45] 

No M. congolense CO2 CH4 – [45] 

No M. submarinus CO2 CH4 – [45] 

No M. palustre CO2 CH4 – [46] 

No R. palustris CO2 n-Butanol Introduce the n-butanol synthesis 

pathway 

[25] 

No S. oneidensis Acetoin 2,3-Butanediol Introduce proteorhodopsin and 

butanediol dehydrogenase 

proteins 

[47] 

No Engineered E. coli Fumarate Succinate Introduce the MtrCBA pathway 

from S. oneidensis MR-1 

[48] 

IET H2 A. woodii CO2 Acetate – [ 44,49 ] 

H2 M. maripaludis CO2 CH4 – [50] 

H2 R. eutropha CO2 Lycopene – [11] 

H2 S. ovata CO2 Lycopene – [ 51,52 ] 

H2 M. barkeri CO2 CH4 – [ 63 ] 

Formate R. eutropha CO2 Isobutanol, 3-Methyl-1-butanol Introduce the isobutanol 

synthesis pathway 

[53] 

Anthraquinone-2,6-disulfonate C. glutamicum Glucose Lactate – [54] 

Neutral red M. extorquens CO2 Formate – [55] 

Neutral red R. eutropha CO2 Poly-3-Hydroxybutyrate Overexpression 

ribulose-1,5-bisphosphate 

carboxylase protein 

[31] 

Methyl viologen M. thermoacetica CO2 Formate – [56] 

Methyl viologen C. formicoaceticum CO2 Formate – [56] 

“No ”: No mediator is required. 

“–”: No genetic engineering. 
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ources of electrons and energy, respectively, enabling direct electron
ptake at a potential of + 0.1 V [58] . Based on this result, Bai et al. in-
roduced the n-butanol biosynthesis pathway into R. palustris TIE-1 and
uccessfully produced biofuel from CO2 [ 25 ]. 

Owing to its low overpotential requirement, the DET pathway has
onsiderable potential to achieve high current efficiencies between elec-
rodes and EABs [59] . Additionally, EABs can easily form biofilms on
lectrode surfaces, providing advantages such as direct catalysis and
rolonged residence time. However, increasing biofilm thickness may
imit the diffusion of both substrates and products. More significantly,
lthough many strains have been confirmed to possess the capability of
nward electron transfer, the corresponding molecular mechanism re-
ains obscure. The MtrCBA pathway is one of the few inward elec-

ron transfer pathways with a known molecular mechanism that can
e utilized for engineering purposes. Introducing the MtrCBA pathway
nd cytochrome c maturation system I separately into Escherichia coli

as demonstrated to provid engineered strains with the direct ability of
xtracellular electron uptake, and these engineered strains successfully
onverted malate to succinate [48] . Furthermore, the efficiency of the
ET pathway is also influenced by factors such as the type, specific sur-

ace area, and biocompatibility of electrode materials [60] , which will
e comprehensively discussed in another section of this review. 

.1.2. H2 -mediated indirect electron transfer pathway 

H2 is an excellent electron donor for biocatalysts in the reduction of
O2 [61–63] . It can be captured and oxidized by biocatalyst-possessing
ydrogenase systems to generate the necessary reducing power for
AD(P)H during CO2 reduction ( Fig. 2C ). Hydrogenase, an important
nzyme in energy metabolism, employs electron bifurcation to drive the
hermodynamically uphill reduction of endergonic ferredoxin by cou-
4

ling it with the energetically downhill reduction of the exergonic NAD+ 

64] . 
The most widely recognized hydrogenase system is characterized by

he presence of four oxygen-tolerant [Ni-Fe] hydrogenases in R. eutropha

65–67] . R. eutropha , an exemplary autotrophic bacterium, can profi-
iently harness H2 from water electrolysis to efficiently channel CO2 

ssimilation toward producing the desired target compounds in an MES
ystem. Although R. eutropha contains genes encoding four types of hy-
rogenases, only soluble hydrogenase (SH) and membrane-bound hy-
rogenase (MBH) play critical roles in H2 oxidation [68] . The SH in R.

utropha primarily supplies reducing power in the form of NADH for
O2 reduction and other biosynthetic routes [69] . Simultaneously, the
BH releases electrons that feed into the respiratory chain, providing
TP to the bacterial cells [70] . When SH and MBH expression levels are
nhanced through plasmid overexpression and chromosomal promoter
eplacement, the autotrophic growth of R. eutropha is enhanced, holding
rucial implications for the construction of CO2 -fixing cellular factories
68] . 

Theoretically, when the cathodic potential is below the redox poten-
ial of H+ /H2 , specifically at − 0.41 V (vs. the standard hydrogen elec-
rode [SHE], pH 7.0), the cathode can readily undergo electrocatalytic
ater splitting to produce sufficient H2 [71] . However, under standard

emperature and pressure conditions, the solubility of H2 in water is only
.16 mg/100 g H2 O [72] . Consequently, biocatalysts employing the H2 -
ediated IET pathway for electron transfer are inherently limited to the

olubility of H2 . To address this issue, Bajracharya et al. [52] imple-
ented a solution by reintroducing a headspace gas containing H2 into

he electrolyte of the cathode chamber through a recycling system. This
trategy effectively enhanced the H2 utilization rate by the bacteria in
he suspension and enabled efficient acetate production using S. ovata

s a biocatalyst. Rodrigues et al. [51] proposed another solution using
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Table 2 

Different RMs used in MES. 

Type Name Source References 

Endogenous RMs Riboflavin Microbe [ 82,87,91 ] 

Phenazine Microbe [ 83,88 ] 

Anthraquinone-2,6-disulfonate Microbe [54] 

2-Hydroxy-1,4-naphthoquinone Microbe [89] 

Hydroquinone Microbe [89] 

Exogenous RMs Humic acid Nature [ 86 ] 

Neutral red Synthetic [ 31,87 ] 

Methyl viologen Synthetic [ 56,85,87 ] 
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 biocompatible perfluorocarbon (PFC) nanoemulsion as an H2 carrier.
fter being enveloped by PFCs, the solubility of H2 was increased by an
rder of magnitude compared to its solubility in water. This optimiza-
ion ensured an abundant supply of reducing equivalents crucial for the
etabolic activity of S. ovata . As a result, this modified MES system ex-
ibited significant improvements in CO2 conversion, mass transfer rates,
nd Faradaic efficiency. In summary, solubility is a major bottleneck for

2 as an electron donor. However, the hydrogen evolution catalysts used
n practice also affect the total cost and H2 supply. In addition, the safety
roblems associated with hydrogen explosion and the negative effects
f the high overpotential required for hydrogen evolution on energy loss
nd Coulomb efficiency should be considered. 

.1.3. Formate-mediated indirect electron transfer pathway 

Formate is a superior and safer carbon source and electron carrier
han H2 . Due to its high solubility, formate more easily penetrates mi-
robial cells and is captured by formate dehydrogenase (FDH) to provide
educing power ( Fig. 2D ). Additionally, the non-flammable and non-
xplosive safety characteristics of formate make it more convenient for
torage and transportation than H2 [53] . Most importantly, formate is
nvolved in simple electrochemical synthesis with a reduction potential
s low as − 0.42 V (vs. SHE, pH 7.0) [73] , enabling the direct reduction
f cellular electron carriers [74] . Various catalysts, such as tin, lead,
ndium, and carbon have been developed for the efficient conversion
f CO2 to formate [34] . Li et al. [53] developed a heterologous path-
ay for ketoisovalerate supply and 3-methyl-1-butanol synthesis in R.

utropha by simultaneously inhibiting polyhydroxybutyrate production
nd genetic engineering to produce > 1 g L− 1 of biofuel using formate as
he primary electron donor. Chen et al. [31] designed an FDH-assisted
ES system to enhance the efficiency of CO2 fixation by engineered R.

utropha . In this modified system, FDH catalyzes the reduction of CO2 

o formate in the cathode chamber, providing an abundant supply of
educing power and carbon sources for poly-3-hydroxybutyrate biosyn-
hesis. 

While remarkable progress has been made in utilizing formate as an
lectron carrier for biocatalysts, further optimization and improvement
re required to industrialize MES technology. For instance, the high sol-
bility of formate not only escalates the separation costs associated with
ownstream products but also introduces the possibility of anodic de-
omposition, thereby diminishing the yield of the MES system [53] . Fur-
hermore, the generation of formate typically requires various types of
pecialized synthetic catalysts, which limits its large-scale application
n MES due to its complex preparation, low selectivity, low efficiency,
nd dependence on precious metals [75–77] . Additionally, increased
ormate accumulation can cause cytotoxicity to many microorganisms
78] . This heightened cytotoxicity diminishes the proton motive force
79] and inhibits respiratory cytochromes [80] , impeding cellular pro-
iferation. Within the concentration range of 0–1.5 g L− 1 , an increase
n formate concentration is associated with the gradual decrease of
iomass, as exhibited by R. eutropha . However, once the formate concen-
ration exceeds 3.0 g L− 1 , the biomass of R. eutropha approaches negligi-
le levels. Some research also indicated that the formate-mediated MES
ystem is limited by the transfer of CO2 or O2 , which depends on the
as feed composition [73] . The transfer of CO2 to the electrode surface
estricts formate production at high O2 partial pressures, thereby lim-
ting microbial growth. Conversely, at higher CO2 partial pressure, the
as/liquid mass transfer limits the rate of oxygen consumption driven
y microbial respiration, leading to slower microbial growth and for-
ate accumulation to toxic levels. By separating the CO2 electrocat-

lytic reduction and biological conversion of reduced products into two
nterconnected yet independent systems, this scalable coupling employs
ighly soluble formate as an electrochemical intermediate to achieve
he synthesis of high-value compounds from CO2 . This approach not
nly avoids the mutual interference between the electrochemical and
iosynthesis processes but also mitigates the challenges of downstream
5

eparation and associated costs, which offers possibilities for the indus-
rial scale-up of MES systems [81] . 

.1.4. Redox mediator-mediated indirect electron transfer pathway 

Microorganisms can indirectly receive electrons from the cathode
y utilizing endogenously synthesized soluble redox mediators (RMs)
such as flavins [82] , phenazines [83] , and quinones [84] ) or exoge-
ously added electron shuttles (such as methyl viologen and neutral red
 31 , 85 ]). Details about these molecules are shown in Table 2 . 

Endogenous RMs are a class of electron shuttles produced by mi-
roorganisms, among which flavins and quinones are the most studied
nes. Flavin compounds, primarily generated by Shewanella bacteria,
ave been widely applied in MES to facilitate the internal electron trans-
er of various biocatalysts. This class of mediators specifically interacts
ith c-type cytochromes on the outer membrane of biocatalysts, thereby

nhancing the electron uptake process [90] . Therefore, the heterolo-
ous expression of the flavin biosynthesis gene cluster ribD-ribC-ribBA-

ibE in specific biocatalysts may be a promising way to improve MES
ield [91] . Quinone compounds comprise another common type of en-
ogenous RMs. Hydroquinone and 2 ‑hydroxy-1,4-naphthoquinone are
uinones that are deeply investigated in MES applications [89] . Com-
ared to 2 ‑hydroxy-1,4-naphthoquinone, hydroquinone has consistently
hown negative effects on the yield of MES systems. This could be due to
ts smaller molecular weight (110.11 g mol− 1 ), which allows it to quickly
ermeate the cell membrane and act as a decoupler of the electron trans-
er chain to inhibit cellular respiration [89] . Conversely, 2 ‑hydroxy-1,4-
aphthoquinone has a performance-promoting effect on the MES sys-
em at low concentrations. However, it exhibits significant inhibitory
ffects at concentrations above 0.5 mM due to its toxicity on microbial
etabolism [ 92 , 93 ]. From the perspective of redox potentials, the fail-
re of hydroquinone in promoting acetate accumulation in an MES sys-
em is attributed to its significantly higher reduction potential ( + 0.09 V
s. SHE, pH 7.0) compared to that of CO2 conversion to acetate (− 0.29 V
s. SHE, pH 7.0). Similarly, the failure of flavin to serve as an RM in the
eduction of NAD+ can also be attributed to its slightly higher reduc-
ion potential (− 0.4 V vs. Ag/AgCl) compared to that of NAD+ /NADH
− 0.52 V vs. Ag/AgCl) [31] . 

Exogenous RMs are the most abundant electron shuttles and can be
ivided into two categories: artificial and natural mediators. Neutral
ed and methyl viologen are artificial RMs widely used in MES systems.
ethyl viologen and neutral red were found to be coupled with the

lectron transfer complex of microorganisms to achieve electron trans-
er and energy conversion and were conducive to the formation of bu-
yrate [87] . In enzyme-assisted MES systems [31] , neutral red facilitates
he extracellular regeneration of the co-factor NADH for formate dehy-
rogenase and acts as an additional electron mediator beyond formate.
ithout an electron mediator, a cathode potential lower than − 1.6 V

vs. Ag/AgCl) is required for the electrochemical reduction of CO2 to
ormate [53] . By incorporating neutral red, the MES system can effi-
iently synthesize poly-3-hydroxybutyrate at a reduced cathode poten-
ial of − 0.6 V (vs. Ag/AgCl), resulting in considerable electricity savings
31] . 
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Fig. 3. Classification of cathode materials commonly used in MES systems. 
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Due to their relatively low reduction potential and excellent redox
ctivity, RMs improve the indirect transmission of reducing force and
roaden the selection range of electrode materials. Additionally, the in-
olvement of RMs can significantly enhance the reaction rate and energy
fficiency in MES systems, substantially improving energy consumption
nd production efficiency. Despite the numerous advantages of RMs,
hey are mostly expensive and toxic compounds, significantly increasing
perational costs and complicating product separation in MES applica-
ions. Therefore, the optimal solution is to construct engineered strains
hat adaptively regulate the secretion of RMs. 

.2. Cathode materials 

The efficiency of electron transfer between biocatalysts and cathodes
as a direct impact on the process of CO2 reduction in an MES system.
his process is not only dependent on the inherent electron transfer
athway of biocatalysts but is also influenced by the cathode materi-
ls. The MES cathode is the central platform for CO2 recovery and bio-
hemical production [94] . The ideal cathode material for an MES system
ossesses excellent characteristics, including conductivity, chemical sta-
ility, mechanical strength, biocompatibility, high specific surface area,
ydrophilicity, and affordability [95–97] . Other factors, such as the cost
f fabrication and the lifespan of the cathode, also need to be considered
98] . The cathode materials used in MES systems can be broadly classi-
ed into three main categories: carbonaceous, metal, and carbon-metal
omposite modified electrodes, as illustrated in Fig. 3 . 

.2.1. Carbonaceous electrodes 

Carbon is one of the most abundant elements in nature. Its unique
lectron structure makes it difficult to fully occupy or unoccupy an or-
ital state during chemical reactions. Meanwhile, carbonaceous materi-
ls can be readily modified by incorporating foreign atoms into carbon
ybridization compounds [ 99 , 100 ]. These properties confer carbona-
eous materials with excellent physicochemical stability, electrical con-
uctivity, and modification potential. Hence, as a cathode candidate,
arbonaceous electrodes have inherent advantages and are currently the
ost extensively employed materials in MES systems ( Table 3 ). 

Conventional carbon materials, such as graphite plates, graphite
ods, carbon plates, carbon cloth, and carbon paper can be categorized
s planar or two-dimensional (2D) materials consisting of carbon atoms
rranged within sp2 -hybridized orbitals along with two additional atoms
6

101] . Nevin et al. [43] pioneered direct CO2 reduction by employ-
ng negatively charged solid-state graphite block cathodes as electron
ources. In contrast to graphite electrodes, alternative 2D carbon mate-
ials such as carbon plates, carbon cloth, and carbon paper exhibit su-
erior attributes, including lightweightness, flexibility, higher porosity,
nd greater suitability for electrode modification strategies. Although
D carbon materials possess good performance characteristics, they do
ot fulfill the requirements of MES systems in terms of specific surface
rea and porosity availability [ 97 , 101 ]. 

This shortcoming impedes bacterial contact and internal adhesion,
irectly affecting biofilm formation and electron transfer efficiency
102] . In contrast, carbon materials with open three-dimensional (3D)
acro-porous structures, such as graphite felt [103] , carbon felt [104] ,

nd carbon fiber brushes [105] , are the optimal choices for MES sys-
ems. The 3D topology of these carbon materials provides more reac-
ion spaces and contact sites for biomass, significantly reducing mass
ransfer limitations. To further improve the performance of 3D carbon
aterials, researchers have developed a wide range of advanced carbon
aterials for 3D carbon-based electrode modification, including carbon
anotubes [106] , graphene, graphene oxide, reduced graphene oxide
107] , graphitic carbon nitride, activated carbon [108] , reticulated vit-
eous carbon foam [109] , biochar [110] , and other related compounds
111] . These advanced carbon materials play a key role in improving
ass transfer efficiency between the electrode and its surface microen-

ironment and are typically utilized on the surface of substrate mate-
ials to develop novel electrodes. Aryal et al. [112] relied on these ad-
anced carbon materials to fabricate a 3D graphene-modified carbon felt
omposite cathode. Compared with the original electrode, their modi-
ed cathode had a higher electron transfer rate and the yield of the
lectrochemical synthesis of acetate was increased 6.8-fold. The amor-
hous shape of these advanced carbon materials enables the modified
D carbon-based electrode to possess an open, continuous 3D macro-
orous structure [113] . This characteristic offers the possibility of ab-
orbing or entrapping microbial cells within its pores and on the external
urface to facilitate biofilm formation. It also confers good conductiv-
ty over the entire matrix, providing multiplexed and highly conductive
athways for CO2 conversion. 

.2.2. Metal electrodes 

The unique atomic arrangement of metal materials endows them
ith exceptional mechanical strength, ductility, conductivity, and elec-

rochemical catalytic activity [ 120 , 121 ]. The metal materials used as
athodes in MES systems can be broadly classified into two categories:
ure metals and metal alloys ( Table 4 ). 

Metal materials are cathodes with both conductivity and electro-
hemical catalytic properties. Pure metals such as copper, lead, indium,
nd tin have been reported as cathodes in MES systems [34] . For in-
tance, Baek et al. [122] have developed an electroless-Cu cathode with
igh performance and prolonged stability. Wang et al. [123] found that
ickel electrodes possess superior hydrogen evolution capabilities com-
ared to copper electrodes based on methane titer analysis. In addition,
recious metals such as platinum [124] , molybdenum [125] , rhodium,
nd titanium [126] also possess potential applications in MES systems. 

Foam metal materials have been developed for MES systems to en-
ance the limited specific surface area of conventional metal electrodes
 127 , 128 ]. For example, nanofoam copper displays excellent catalytic
erformance in CO2 reduction. Its high surface roughness and hierar-
hical porosity are key factors in determining the final product and the
aradaic efficiency of MES systems [129] . Nanofoam nickel has also
roved to be a superior material for hydrogen evolution [130] . 

Considering the limitations of pure metal materials in terms of stabil-
ty and lifespan, metal alloy catalysts have been developed to optimize
he performance of the reaction interface and enhance the stability and
atalytic activity of the catalyst. Stainless steel is a typical metal alloy
hat can be employed as a hydrogen evolution catalyst in MES systems
o synthesize diverse high-value products [11] . Despite the numerous
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Table 3 

Applications of common carbonaceous cathodes in MES systems. 

Cathode materials Inoculum 

Applied potential 

(V vs. SHE) Current density Products Titer References 

Graphite plate Acetobacterium-dominated mixed culture − 0.8 NR Acetate 1.8 g L− 1 [32] 

Graphite plate C. ljungdahlii − 1.0 NR Acetate 1.1 g L− 1 [32] 

Graphite granules Enriched brewery WW sludge − 0.59 − 2.5 A m− 2 Acetate 175 mM [30] 

Graphite granules Enriched brewery WW sludge − 0.59 − 2.5 A m− 2 H2 1164 mM [30] 

Graphite rod M. maripaludis − 0.70 − 0.22 mA m− 2 CH4 21.85 mM [45] 

Graphite felt Activated sludge − 0.79 − 0.5 mA cm− 2 Acetate 157.6 mmol C L− 1 [114] 

Carbon cloth Salt marsh sediment − 1.2 − 1.8 A m− 2 CH4 4.9 mM [115] 

Carbon cloth Salt marsh sediment − 1.2 − 1.8 A m− 2 Acetate 1.5 mM [115] 

Carbon cloth Mangrove sediment − 1.2 − 1.5 A m− 2 CH4 3.8 mM [115] 

Carbon cloth Mangrove sediment − 1.2 − 1.5 A m− 2 Acetate 3.1 mM [115] 

Carbon Paper S. ovata − 0.69 − 0.37 A m− 2 Acetate 0.1 g L− 1 [116] 

Carbon felt Enriched culture − 1.26 − 5.0 A m− 2 Acetate 1.29 g L− 1 [ 104 ] 

Carbon felt Anaerobic digestate − 0.6 − 0.74 A m− 2 Acetate 162 mg L− 1 [117] 

Carbon brush Anaerobic sludge − 0.76 NR Acetate 630 mg L− 1 [118] 

Reticulated vitreous 

Carbon foam 

Enriched acetogenic culture − 1.1–− 1.3 − 83.3 A m− 2 Acetate 3.6 g L− 1 [119] 

“NR ”: not reported in the reference. 

Table 4 

Applications of metal cathodes in MES systems. 

Materials Inoculum 

Potential 

(V vs. SHE) Current density Product Productivity References 

Stainless steel C. necator C5 NR − 1.6–− 3.2 mA m− 2 Lycopene 0.43 mg L− 1 d− 1 [11] 

Stainless steel Mixed culture − 0.45 − 6 A m− 2 CH4 about 14.06 mL d− 1 [123] 

Cu Mixed culture − 0.48 − 5 A m− 2 CH4 about 16.88 mL d− 1 [123] 

Ni Mixed culture − 0.48 − 9 A m− 2 CH4 about 18.13 mL d− 1 [123] 

Pt C. necato r DSM-541 NR − 500 μA cm− 2 H2 0.23 mL h− 1 [124] 

Ni-Mo alloy M. maripaludis NR − 1 mA cm− 2 CH4 about 3 mL d− 1 cm− 2 [ 125 ] 

Ti alloy Anaerobic sludge − 0.9 − 7.26 A cm− 2 Acetate 2.15 g L− 1 d− 1 [ 126 ] 

Rh Anaerobic sludge − 0.9 − 6.11 A cm− 2 Acetate 1.06 g L− 1 d− 1 [ 126 ] 

“NR ”: not reported in the reference. 
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nticing advantages of metals, most metal electrodes suffer from poor
orrosion resistance due to electrochemical corrosion caused by elec-
rolytic solutions [131] , which can potentially have toxic effects on mi-
robial growth through metal leaching [132] . The efficient alloy catalyst
iMoZn, which has excellent hydrogen evolution performance, cannot
void the production of reactive oxygen species that negatively affect
ell growth [133] . Additionally, the leaching of nickel from alloy mate-
ials exacerbates the toxicity risks to microorganisms. To address these
ssues, Liu et al. [134] optimized Co-P alloy electrodes to mitigate the
imitations associated with the material defects of metals. 

Table 4 reveals a narrower range of metal electrode types used in
ES than carbon-based electrodes, mainly due to their relatively lim-

ted biocompatibility and specific surface area. Nonetheless, metal ma-
erials possess better plasticity, conductivity, and electrocatalytic activ-
ty frequently functioning as modifying materials in composite electrode
onstruction to enhance the catalytic activity of electrodes. 

.2.3. Composite modified electrodes 

Carbonaceous materials naturally possess good biocompatibility and
igh specific surface areas, while metal materials possess conductivity
nd electrochemical catalytic activity. Therefore, the mutual modifica-
ion of these two types of materials can compensate for their respective
hortcomings, resulting in composite electrodes with superior perfor-
ance, as shown in Table 5 . Carbonaceous materials like graphite felt,

arbon felt, and carbon cloth are inexpensive and highly customizable
o accommodate various reactor types [120] . Therefore, these materials
re commonly employed as substrate materials for composite electrode
onstruction. Given the good biocompatibility and high specific surface
rea of carbon materials, modifying them with metals or other materi-
ls could enhance their catalytic activity and conductivity. For instance,
hen carbon felt electrodes modified with cobalt and stainless steel were
sed as cathodes, the acetate titer of an MES system increased by 2-
7

nd 1.7-fold, respectively, compared to the usage of original carbon felt
135] . These enhancements were mainly attributed to the diverse oxi-
ation states of cobalt, which facilitated electron transfer between the
icroorganisms and the cathodes [136] . Meanwhile, stainless steel pri-
arily improves the conductivity of carbon felt [137] . Nickel is also an

xcellent modifying material. As the specific surface area is increased
0-fold, graphite electrodes modified with nickel nanowires can signif-
cantly improve microbial electrochemical activity, with a 2.3-fold in-
rease in bioreduction rates [138] . 

When a metal substrate is modified with a carbon material, its pri-
ary purpose is to provide more abundant microbial attachment sites

nd growth space for the initial metallic material. For instance, a com-
osite electrode integrating porous graphene foam onto the surface of
ollow stainless steel could utilize both the developed pore layer struc-
ure of graphene and the excellent conductivity of stainless steel [139] .
he methane titer of the composite electrode is 3.6 times higher than
hat of the conventional carbon cloth alone [139] . Although compos-
te electrodes may entail more intricate processing techniques and lead
o elevated manufacturing costs, numerous reports have demonstrated
he viable and substantial enhancement of MES system performance for
ure metals or modified carbonaceous electrodes, which will be a key
eterminant in overcoming the production bottleneck of MES systems.
n addition, the design concept of composite electrodes should be based
n the characteristics of biocatalysts rather than simply stacking excel-
ent materials. Moreover, not all modifications or combinations have
ositive effects on MES. 

.3. Cathode applied potentials 

To facilitate CO2 reduction by a bioelectrode, microorganisms must
espire and capture energy to produce ATP, which is necessary for sus-
aining their normal growth [143] . This external power provides energy
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Table 5 

Applications of representative composite cathodes in MES systems. 

Substrate material Modified material Inoculum 

Applied 

potential (V 

vs. Ag/AgCl) Current density Product Productivity 

Fold 

increase 

Coulombic 

efficiency (%) References 

Carbon felt Co-stainless steel Enriched 

anaerobic sludge 

− 0.8 − 1.75 mA cm− 2 Acetate 622.5 g m− 2 d− 1 2 60 [135] 

Carbon felt Stainless steel Enriched 

anaerobic sludge 

− 0.8 − 1.49 mA cm− 2 Acetate 556.6 g m− 2 d− 1 1.7 52 [135] 

Graphite Nickle nanowire Sporomusa − 0.6 − 0.63 A m− 2 Acetate 3.38 g m− 2 d− 1 2.3 82.14 [138] 

Stainless steel Graphene foam MES effluent − 1.0 − 3.1 A m− 2 CH4 848.0 mM m− 2 d− 1 3.6 84.2 [139] 

Carbon cloth Stainless steel Enriched 

homoacetogenic 

consortium 

− 0.4 − 0.22 mA cm− 2 Acetate 610 mg L− 1 d− 1 1.3 48 [140] 

Carbon cloth Stainless steel Enriched 

homoacetogenic 

bacteria 

− 0.8 − 0.011 mA cm− 2 Acetate 0.070 g L− 1 d− 1 1.20 44 [141] 

Carbon cloth Stainless steel-Activated carbon Enriched 

homoacetogenic 

bacteria 

− 0.8 − 0.024 mA cm− 2 Acetate 0.072 g L− 1 d− 1 1.23 47 [141] 

Carbon cloth Graphene S. ovata − 0.89 − 2.45 A m− 2 Acetate 2.28 g L− 1 m− 2 h− 1 6.8 86.5 [ 112 ] 

Carbon felt Mxene Sludge inculum − 0.8 − 174.2 mA m− 2 Acetate 2.13 mg L− 1 d− 1 1.6 41 [142] 

Carbon felt Mxene Sludge inculum − 0.8 − 174.2 mA m− 2 Butyrate 2.42 mg L− 1 d− 1 1.1 41 [142] 

Carbon felt Mxene Sludge inculum − 0.8 − 174.2 mA m− 2 Propionate 4.36 mg L− 1 d− 1 1.7 41 [142] 

Carbon cloth Chitosan S. ovata − 0.8 − 0.47 A m− 2 Acetate 13.51 g m− 2 d− 1 7.6 86 [95] 

Carbon cloth Cyanuric chloride S. ovata − 0.8 − 0.45 A m− 2 Acetate 12.09 g m− 2 d− 1 6.8 81 [95] 

Carbon cloth 3-Aminopropyltriethoxysilane S. ovata − 0.8 − 0.20 A m− 2 Acetate 5.6 g m− 2 d− 1 3.1 82 [95] 

Carbon cloth Polyaniline S. ovata − 0.8 − 0.18 A m− 2 Acetate 5.32 g m− 2 d− 1 3 85 [95] 

Carbon cloth Melamine S. ovata − 0.8 − 0.06 A m− 2 Acetate 1.8 g m− 2 d− 1 

Negative 

80 [95] 

Carbon cloth Ammonia S. ovata − 0.8 − 0.06 A m− 2 Acetate 1.65 g m− 2 d− 1 

Negative 

82 [95] 

Carbon cloth Gold S. ovata − 0.8 − 0.38 A m− 2 Acetate 10.67 g m− 2 d− 1 6 83 [95] 

Carbon cloth Nickle S. ovata − 0.8 − 0.30 A m− 2 Acetate 8.024 g m− 2 d− 1 4.53 80 [95] 

Carbon cloth Palladium S. ovata − 0.8 − 0.32 A m− 2 Acetate 8.32 g m− 2 d− 1 4.7 79 [95] 

Carbon cloth CNT-Cotton S. ovata − 0.8 − 0.22 A m− 2 Acetate 6.618 g m− 2 d− 1 3.4 83 [95] 

Carbon cloth CNT-Polyester S. ovata − 0.8 − 0.21 A m− 2 Acetate 5.66 g m− 2 d− 1 3.2 82 [95] 

“Negative ”: The composite strategy did not achieve positive improvement. 

8
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Table 6 

Cathode potentials required for synthesizing bioproducts in MES systems. 

Cathode potential 

(V vs. SHE) Product Inoculum Cathode materials Configuration References 

− 0.35 CH4 Mixed culture Carbon cloth Single-chamber [148] 

− 0.4 CH4 Methanobacterium -like archaeon strain IM1 Graphite rods Two-chamber [149] 

− 0.5 CH4 Mixed culture Carbon cloth Two-chamber [46] 

− 0.6 CH4 Mixed culture Graphite Two-chamber [155] 

− 0.8 CH4 Mixed culture Granular graphite Two-chamber [156] 

− 0.6 Acetate Mixed culture Graphite Two-chamber [157] 

− 0.66 Acetate Biological sludge Stainless steel Two-chamber [ 62 ] 

− 0.8 Acetate Mixed culture Activated carbon Two-chamber [158] 

− 0.85 Acetate Mixed culture NanoWeb- 

Reticulated vitreous 

Carbon foam 

Two-chamber [159] 

− 0.7 Formate, Acetate Mixed culture Carbon cloth Two-chamber [143] 

− 0.7 Acetate, Butyrate and Propionate Anaerobic sludge Carbon felt Two-chamber [ 153 ] 

− 0.7–− 0.9 CH4 Mixed culture Carbon cloth Two-chamber [143] 

− 0.9 H2 , CH4 Mixed culture Stainless steel felt Three-chamber [160] 

− 0.9 H2 , CH4 and Acetate Mixed culture Graphite Two-chamber [143] 

− 1.0–− 1.1 H2 , CH4 Mixed culture Carbon cloth Two-chamber [146] 

− 1.0 H2 , CH4 Mixed culture Carbon cloth Two-chamber [146] 
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or the catalytic conversion of CO2 in the MES system. The lower po-
ential of the cathode in an MES system increases the electrochemical
riving force, accelerates the reaction kinetics, and improves electron
vailability [144–146] , thus ensuring abundant energy supply for mi-
robial growth [ 143 , 147 ]. The cathode potential is usually set below
he theoretical potential to account for overpotential and losses associ-
ted with MES system design and electrolyte characteristics. Table 6 lists
he cathode potentials applied for synthesizing bioproducts in MES sys-
ems. Different cathode potentials affect the electron transfer behaviors
f microorganisms, leading to the adoption of various reaction pathways
143] . For example, the electrosynthesis of methane can be performed
y methanogenic microorganisms through two distinct electron trans-
er pathways: DET or IET [148] . When biocatalysts produce methane
hrough DET ( Eq. (1) ), the cathode potential theoretically needs to be
s low as − 0.244 V (vs. SHE) to facilitate the reaction [ 46 , 149 ]. Con-
ersely, according to Eq. (2) and (3) , if methane is produced via IET,
he cathode potential must be at least as low as the hydrogen evolution
otential of − 0.421 V (vs. SHE) [150] . However, due to overpotential,
hen the cathode potential was set at − 0.7 or − 0.8 V (vs. SHE), the
ioelectrode still produced methane via the DET pathway. When the
otential increased to − 0.9 to − 1.1 V (vs. SHE), the process shifted to-
ards the IET pathway [143] . Therefore, to produce methane, the cath-
de potential is usually set below − 0.6 V, which is much lower than the
heoretical potential. 

𝑂2 + 8𝐻+ + 8𝑒− → 𝐶𝐻4 + 2𝐻2 O 

(
𝐸𝑜′
𝐻 

= −0 . 224V vs . SHE ; pH 7 . 0 
)

(1) 

𝐻+ + 2𝑒− → 𝐻2 

(
𝐸𝑜′
𝐻 

= −0 . 421V vs . SHE ; pH 7 . 0 
)

(2)

𝑂2 + 4𝐻2 → 𝐶𝐻4 + 2𝐻2 𝑂
(
Δ𝐸𝑜′

𝐻 

= 0 . 170 𝑉 
)

(3)

Additionally, the cathode potential also has a significant influence on
he type and composition of products in an MES system. At a cathodic
otential of − 1.0 V, enriched electromethanogenic communities favored
he production of H2 and CH4 , while only acetate was detected after
perating at − 0.7 V for a 90-minute period [146] . In another study, the
athode was subjected to two different potentials (− 0.36 and − 0.66 V vs.
HE) [62] . Although both potentials were thermodynamically favorable
or the electroreduction of CO2 to acetate, the presence of acetate was
bserved only at a cathode potential of − 0.66 V. This may be because H2 

s a necessary substrate for the synthesis of acetate and is only produced
hen the potential drops below approximately − 0.41 V [ 151 , 152 ]. 
9

External power supply is a key part of the operating cost of a MES
ystem. Although several reasons account for the increase in cathode
verpotential and energy loss in MES systems, estimating the energy re-
uirement (the electrical energy required to produce 1.0 mol of the tar-
et product) by calculating the energy consumed per mole to synthesize
he target product can effectively reduce operating costs. For instance,
lthough the titer of volatile fatty acids steadily increased with the ris-
ng applied potential between − 0.6 and − 1.0 V (vs. SHE), the catalytic
onversion of CO2 has the lowest energy requirement and the highest
conomic benefit only when the cathode potential is set to − 0.7 V [153] .
herefore, designing an MES system with a high electron supply rate

s critical to ensure a high conversion efficiency and low power input
154] . 

.4. pH of the cathode chamber 

The fluctuation of catholyte pH can change the activity and reactivity
f the biocatalysts in the cathode chamber, affecting the performance
f the MES system [157] . As shown in Table 7 , MES systems operated
t different pH levels exhibit significant productivity differences even
hen synthesizing the same product. Therefore, to increase the titer of
igh-value products in an MES system, the pH of the cathode chamber
ust be controlled within the appropriate range according to the specific
H requirements of the chosen biocatalysts. 

Acetate is one of the most common products synthesized in MES sys-
ems and pH value has an important effect on acetate synthesis. The
onversion rate of CO2 and H2 to acetate can be increased by mod-
rately reducing the initial pH of the system [161] . This is because
tabilizing the pH in a weakly acidic environment provides thermody-
amic advantages for converting CO2 into acetate, enhancing substrate
vailability for the biocatalyst [162] . Furthermore, maintaining a rela-
ively low pH ensures a reducing environment in the cathode chamber,
hich favors the synthesis of long-chain compounds [163] . For exam-
le, an MES system successfully generated long-chain compounds such
s C4 and C6 by regularly injecting gaseous CO2 to maintain the pH
f the catholyte to approximately 5.0 [164] . However, during the elec-
rosynthesis of acetate from CO2 , when the pH falls below the pKa value
f acetate (4.75), protonated acetate (CH3 COOH) exhibits negative ef-
ects on the biocatalysts. CH3 COOH can easily permeate microbial cells
hrough passive diffusion to dissociate in the cytoplasm, posing a direct
hreat to biocatalysts involved in the MES system [165] . In addition,
he excess protons from CH3 COOH dissociation require additional en-
rgy consumption, further reducing the energy utilization of the biocat-
lysts [ 166 , 167 ]. pH also plays an indispensable role in methane elec-
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Table 7 

Effects of pH on the synthesis of bioproducts in MES systems. 

Product pH Productivity Configuration Coulombic efficiency Inoculum References 

Acetate 5.2 0.81 mM d− 1 Two-chamber 68.81% Mixed culture [174] 

Acetate 5.5–8.0 137.92 mM m− 2 d− 1 Microbial reverse- 

electrodialysis 

electrosynthesis cell 

24.35% C. ljungdahlii ERI-2 [175] 

Acetate 5.5 49.2 mg L− 1 d− 1 Two-chamber 35% Mixed culture [176] 

Acetate 5.8 0.98 mM L− 1 d− 1 Two-chamber 30% Mixed culture [162] 

Acetate 6.7 1330 g m− 2 d− 1 Two-chamber 99% Mixed culture [177] 

Butyrate 5.25–6.6 37.67 mg L− 1 d− 1 Two-chamber 16.54% Mixed culture [178] 

Butyrate 5.5 30 mg L− 1 d− 1 Two-chamber 35% Mixed culture [176] 

CH4 6.2 290 mL L− 1 d− 1 Single-chamber NR Mixed culture [ 171 ] 

CH4 6.7 750 mL L− 1 d− 1 Single-chamber NR Mixed culture [ 171 ] 

CH4 7.2–7.6 0.03 mM h− 1 Single-chamber 90% Effluent from MES [179] 

CH4 7.5 213.4 m− 3 d− 1 Two-chamber above 90% Effluent from MES [170] 

CH4 7 22.1 mM L− 1 d− 1 Single-chamber 98.9% Mixed culture [180] 

Ethanol 5.5–8.0 130.75 mg L− 1 d− 1 Microbial reverse- 

electrodialysis 

electrosynthesis cell 

66.06% C. ljungdahlii ERI-2 [175] 

Isobutyrate 5.2 0.63 mM d− 1 Two-chamber 68.81% Mixed culture [174] 

Propionate 5.2 0.44 mM d− 1 Two-chamber 68.81% Mixed culture [174] 

2-Piperidone 5.2 0.53 mM d− 1 Two-chamber 68.81% Mixed culture [174] 

“NR ”: not reported in the reference. 

Fig. 4. Advanced MES configurations: (A) 

three-compartment and (B) concentric tube 

types. 
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rosynthesis. When the pH of the cathode chamber exceeds 8.5, the rate
f acetate decomposition into CH4 is reduced, resulting in the forma-
ion of volatile fatty acids and alcohols [168] . The reason may be that,
o mitigate the concomitant toxicity associated with excessive acetate
ccumulation, microorganisms use alternative metabolic pathways to
onvert acetate into alcohol [169] . The maximum methane productiv-
ty was observed under neutral conditions with a pH of 7.5 [170] . This
henomenon that a neutral pH is conducive to efficient methane pro-
uction has been widely recognized [171] . These results demonstrated
hat increased acidity and alkalinity adversely affect the methane titer,
articularly in alkaline environments, where a substantial deposition
f inorganic substances on the electrode surface could notably reduce
ethane production and biofilm growth [ 172 , 173 ]. 

.5. Reactor configuration 

The reactor configuration significantly influences the performance
nd potential applications of MES systems. Tables 6 and 7 show that
 typical MES system is primarily designed as a two-chamber system
eparated by a proton exchange membrane. This configuration facili-
ates easy assembly and sterilization, effectively minimizing mutual in-
erference between the two compartments while expanding the range
f applicable electrode materials [181] . However, it also faces chal-
enges such as increased internal resistance and reduced mass transfer
fficiency [182] , and pH changes in the cathode chamber [178] . 
10
To overcome the inherent limitations of two-chamber reactors, a
embraneless single-chamber MES has been developed. This design sig-
ificantly reduces internal resistance and energy consumption, offering
romising prospects for process scalability. However, the applicability of
his configuration is limited as it is only suitable for select aerobic bacte-
ial strains due to the release of O2 and reactive oxygen species during
nodic water electrolysis [ 53 , 133 ]. In addition, many advanced reac-
ors with different functions and purposes have been developed, such
s the three-chamber reactor and concentric tube reactor ( Fig. 4 ). These
dvanced configurations showed excellent product purification, stable
eaction environments, increased specific surface area, and reduced in-
ernal resistance within the system. Among various MES configurations,
pecial membrane materials such as the cation exchange membrane,
nion exchange membrane, and bipolar membrane are commonly em-
loyed [183] . These membrane materials can have a substantial impact
n MES by maintaining the overall charge balance of the system and
mpeding oxygen diffusion. 

. Conclusions and perspectives 

As a novel energy regeneration strategy, MES technology has advan-
ages in CO2 conversion, including high efficiency, catalyst reusabil-
ty, mild operating conditions, and a wide product range. Further-
ore, the product spectrum of the MES system has been expanded

o poly-3-hydroxybutyrate, terpenes, carotenoids, lycopene, and other
aluable compounds in addition to methane, short-chain fatty acids,
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nd their corresponding alcohols. However, the output of MES re-
ains relatively low as the reported productivity of most systems falls

ar short of practical application requirements. Therefore, many chal-
enges remain in using MES to achieve CO2 conversion, as outlined
elow: 

1) Ability of biocatalysts to capture CO2 needs to be improved 

Autotrophic biocatalysts adapted for MES typically employ the
alvin–Benson–Bassham cycle and Wood–Ljungdahl pathway for CO2 

xation. The efficiency of the Calvin–Benson–Bassham cycle is lim-
ted by the subpar catalytic capability of its key enzyme, ribulose-
,5-bisphosphate carboxylase (Rubisco). Therefore, the molecular-level
odification of Rubisco is essential to enhance its catalytic activity.
he anaerobic Wood–Ljungdahl pathway is the primary carbon fixa-
ion pathway for acetogenic bacteria and methanogenic archaea, the
ost common biocatalysts in MES systems. Enhancing the oxygen toler-

nce of the Wood–Ljungdahl pathway is crucial due to the presence of
xygen-sensitive enzymes. In addition, only a few autotrophic microor-
anisms have biological carbon fixation ability. Another breakthrough
ould be the design and operation of efficient artificial carbon fixation
athways in heterotrophic microorganisms with short routes, low en-
rgy consumption, and high atomic economy, reducing the dependence
f heterotrophic microorganisms on abiotic CO2 electroreduction cata-
ysts and further expanding the selection of suitable biocatalysts for MES
ystems. 

2) CO2 supply of microorganisms needs to be strengthened 

The concentration of extracellular CO2 into the intracellular space is
 critical process in microbial carbon fixation. However, when the CO2 

oncentration is limited, the CO2 demand of intrinsic CO2 -concentrating
utotrophic microorganisms may not be met. Many novel carrier mate-
ials with CO2 adsorption capacity can assist microorganisms in concen-
rating CO2 . Among these CO2 carrier materials, metal-organic frame-
orks consisting of metal nodes and organic ligands may be promising
O2 adsorbents, as they can capture and store CO2 from their ambi-
nt environment. These CO2 carriers can also be combined with CO2 

onvertases such as carbonic anhydrase to facilitate efficient CO2 con-
entration and ensure an adequate supply of CO2 for microorganisms. 

3) Development of rational cathode designs based on the properties of
biocatalysts 

The cathode is the core of an MES production platform and its adap-
ation with biocatalysts determines the production efficiency of an MES
ystem. However, most cathode designs are simple combinations of dif-
erent materials and this random combination does not account for the
roperties of biocatalysts; hence, the efficiency improvement of MES
ystems is limited. Therefore, rational cathode design based on the phys-
ological and biochemical properties of biocatalysts may be an effective
ay of improving the efficiency of an MES system. For instance, factors

ncluding surface charge characteristics, adhesion capacity, and the cell
ize of biocatalysts are crucially considered in cathode design. More-
ver, 3D printing and electrospinning are two promising techniques for
athode preparation. The products fabricated using these techniques are
haracterized by significant advantages, including a high specific sur-
ace area, high porosity, low density, excellent directionality, and ad-
ustable composition. Additionally, both of these techniques enable pre-
ise control at the nanoscale, providing technical support for the rational
esign of cathodes. 

To conclude, as a newly emerging technology, MES offers many op-
ortunities for converting CO2 into high-value products. This review
ummarized the application potential of MES in CO2 conversion and
nalyzed the key factors for CO2 conversion via MES, which will help
esearchers understand the current research progress, challenges, and
pportunities of CO conversion via MES. 
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