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Abstract

Supervised machine learning is an essential but difficult to use approach in biomedical data

analysis. The Galaxy-ML toolkit (https://galaxyproject.org/community/machine-learning/)

makes supervised machine learning more accessible to biomedical scientists by enabling

them to perform end-to-end reproducible machine learning analyses at large scale using

only a web browser. Galaxy-ML extends Galaxy (https://galaxyproject.org), a biomedical

computational workbench used by tens of thousands of scientists across the world, with a

suite of tools for all aspects of supervised machine learning.

This is a PLOS Computational Biology Software paper.

Introduction

Machine learning (ML) has become an essential tool in biomedicine to make sense of large,

high-dimensional datasets such as those found in genomics, proteomics, and imaging [1–3].

In supervised machine learning, these datasets are used to build statistical models from high-

dimensional feature sets that can predict continuous values (regression analysis) or discrete

classes (classification). Example applications of ML to biomedicine include developing predic-

tive models for drug metabolism rates using brain images [4,5], genotype-phenotype associa-

tions [3], and drug response in model systems [6,7]. Deep learning, which leverages multi-

layer neural networks, has been used for prediction of splice sites [8], protein structures [9],

and cancer diagnosis from histopathology images [10].

Despite these successes, machine learning is often difficult to use in biomedicine. A success-

ful ML application to biomedical data spans from biological analysis tools to machine learning

tools for feature engineering, model building, and evaluation. Integrating ML and biological

analysis tools is critical because the biological tools are used to create the features, such as

genomic variants and protein abundance levels, that are used in the predictive model. In addi-

tion to tool integration challenges, ML tools must also be easily accessible, scale to large
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datasets, and reproducible. As the size and number of biomedical datasets continue to grow,

computational infrastructure such as workflow engines, software package managers, and job

schedulers are needed for scaling and reproducing machine learning applications in biomedi-

cine. Addressing these challenges requires an integrated software solution that (1) makes

machine learning accessible to biomedical scientists who have limited programming and

informatics knowledge and (2) connects machine learning with the broader ecosystems of bio-

medical analysis tools and a scalable computational workbench.

To meet this need, we have developed Galaxy-ML (Fig 1), a toolkit for the Galaxy platform

(http://galaxyproject.org) [11] that features a large and diverse suite of supervised machine

learning tools. Galaxy is a user-friendly web-based computational workbench used by tens of

thousands of scientists across the world for a wide variety of biomedical data analysis, includ-

ing genomics, proteomics, metabolomics, cheminformatics, image processing, and flow

cytometry. The goal of Galaxy-ML is to provide the worldwide Galaxy user community with

the ability to incorporate machine learning into their analyses. Galaxy-ML has already gained

substantial usage in the Galaxy community. Based on download statistics from the Galaxy

ToolShed [12], a tool repository for Galaxy, we estimate that Galaxy-ML has been installed on

80 Galaxy servers across the world. Galaxy-ML tools have also been run more than 12,000

Fig 1. Panel A: The Galaxy-ML platform provides all the tools necessary to define a learner, train it, evaluate it, and visualize its performance. Panel B is a screenshot of

the Galaxy tool to create a gradient boosted classifier. Panel C shows a Galaxy workflow to create a learner using a pipeline, perform hyperparameter search, and visualize

the results.

https://doi.org/10.1371/journal.pcbi.1009014.g001
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times on the public U.S. server (https://usegalaxy.org, see “Machine Learning” section in the

tool panel on the left or use tool search and type in “Machine Learning”) and European Union

Galaxy server (https://ml.usegalaxy.eu for the machine learning portal or https://usegalaxy.eu

for the general portal with all tools).

A key aspect of Galaxy is its web-based user interface, enabling anyone to use complex anal-

ysis tools and multi-tool workflows without requiring detailed knowledge of workflows, soft-

ware dependencies, or job schedulers. Galaxy-ML uses the Galaxy web interface to make

machine learning tools and pipelines widely accessible. Iterative development is very common

in machine learning, from engineering and selecting features to tuning model hyperpara-

meters. With Galaxy’s web interface and Galaxy-ML tools, it is simple to repeatedly perform

some or all facets of machine learning, from feature engineering to model development and

evaluation. Importantly, Galaxy-ML does not restrict what users can do: nearly all tools in

Galaxy-ML are fully featured and provide the same level of flexibility that is found in their cor-

responding programmatic tools. Galaxy-ML tools and workflows can also be run programmat-

ically via Galaxy’s application programming interface (API), which may be preferred for large

or automated analyses.

Design and implementation

Galaxy-ML provides key benefits in scalability, reproducibility, and workflow development.

Large machine learning analyses, such as optimizing hyperparameters and model evaluation

across many different datasets, can require building tens of thousands of models. Galaxy-ML

uses Galaxy’s workflow system to execute large-scale analyses by distributing them across one

or more computing clusters and running them in parallel. Galaxy ensures reproducibility by

recording all parameters and tools used, so all analyses, including those for machine learning,

are completely reproducible. This is critical, as reproducibility has become critical in machine

learning research [13,14]. Galaxy-ML enables end-to-end machine learning analyses that

begin with processing primary biological data and ends with trained machine learning models

that can make predictions of phenotypic attributes like demographics or prognosis. For

instance, this interactive tutorial [15] uses Galaxy-ML to reproduce a study that predicts an

individual’s chronological age from RNA-seq data [16,17]. End-to-end workflows are possible

because Galaxy-ML’s machine learning tools can be connected to any of the more than 7,800

tools available in the Galaxy ToolShed [12] for analyzing genomics, proteomics, imaging, and

other kinds of biomedical data.

Galaxy-ML supports four major steps in machine learning—preprocessing, modeling,

ensembling, and evaluation—by integrating six machine learning libraries (Table 1) together

with additional visualization and conversion tools. Scikit-learn [18] provides the foundation

for Galaxy-ML with approaches for all four major steps. Additional libraries are included to

Table 1. Software libraries integrated into Galaxy-ML and their applications.

Software Library Applications

Scikit-learn [18] Various approaches for preprocessing, modeling, ensembling, and evaluation

Scikit-rebate [19] Feature selection

Imbalanced-learn [20] Approaches for working with imbalanced datasets

XGBoost [21] Modeling using high-performance gradient boosting with decision trees or linear models

Keras [22] Modeling using deep learning

Mlxtend [23] Modeling using meta-ensembles

LightGBM [28] Modeling using gradient boosting with the LightGBM algorithm

https://doi.org/10.1371/journal.pcbi.1009014.t001
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meet key needs for machine learning in biomedicine, including feature selection, approaches

for working with imbalanced datasets, and modeling approaches using gradient boosted deci-

sion trees, deep learning, and ensembling. Documentation, along with tutorials, is available at

https://galaxyproject.org/community/machine-learning/, and links to the Galaxy-ML code

and tool repositories are available in the Methods section.

Results

We demonstrate the utility of Galaxy-ML in three use cases: (1) extending a machine learning

benchmark experiment where 4,000 models were created and evaluated on 276 biomedical data-

sets [24]; (2) predicting drug response activity in cancer cell lines using gene expression datasets

using stacked meta-ensembles; and (3) validating deep learning models for genomics that pre-

dict, among other attributes, the functional impact of genetic variants. The Methods section pro-

vides links to complete analysis histories and results so that all analyses can be fully reproduced

on any Galaxy server with the Galaxy-ML tool suite. All analyses were performed on a public

Galaxy server at https://usegalaxy.eu and are listed at https://ml.usegalaxy.eu. All workflows,

data and results can be accessed via a web browser and analyses can be reproduced directly.

Automatically creating and evaluating thousands of machine learning

models

In the first use case, we used Galaxy-ML to extend an analysis of machine learning models

across 276 biomedical datasets [25]—164 classification datasets and 112 regression datasets

[25]. The original analysis compared performance of 13 models on the 164 classification data-

sets. We applied 15 models to the classification datasets and 14 models to the regression data-

sets, creating a total of 4,028 trained models with hyperparameters optimized using grid search

(S1 Text and S1 Table). We evaluated all models using 10-fold cross-validation (CV). Because

many datasets were imbalanced, F1 scoring rather than ROC AUC was used to evaluate perfor-

mance of classification models, and Pearson’s R2 was used to evaluate performance of regres-

sion models. Performance of classification models are concordant with the initial publication:

(i) boosted tree models perform best overall (Fig 2A) and (ii) automated hyperparameter opti-

mization improves performance for many models (Fig 2B). Performance of regression models

are similar to those in classification, though boosted tree models only modestly outperform

random tree models, and hyperparameter optimization often improves results most for mod-

els with low overall performance (S2 Text and S1 Fig).

Developing meta-ensembles for predicting cell line drug response

For the second use case, we used Galaxy-ML to apply sophisticated machine learning models,

including stacked meta-ensemble predictors, to predict drug response in cancer cell lines from

high-throughput gene expression data from RNA-seq (S3 Text). Because cancer cell lines serve

as models for patient tumors, accurate predictions of drug response can be used to improve

understanding of cancer systems biology and inform patient treatment recommendations

[26]. Gene expression and drug response data was obtained from DepMap [27]. There are two

key challenges for this dataset: (1) there are ~50,000 gene expression features but only ~1,000

cancer cell lines and ~700 drugs, so preventing overfitting is essential, and (2) the dataset is

highly imbalanced because there is a small number of cell lines that respond to each drug.

Using Galaxy-ML, we built a meta-ensemble as well as other learners for each drug. The

meta-ensemble included a linear boosted model, tree boosted model, and k-nearest neighbor

regression, and principal component analysis (PCA) was used for dimensionality reduction in

several learners. Dimensionality reduction was used to address the challenge of using a dataset
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with a very large number of features. We developed predictors for both regression and classifi-

cation; labels for classification were generated by thresholding drug response values and label-

ing cell lines as responders or non-responders to each drug using a cutoff of z-score< -1 for

responders. Predictors were scored using average precision to address the challenge of assess-

ing model performance on a highly imbalanced dataset, where the goal is to identify respond-

ers (true positives) amongst a very large number of non-responders. To compare regressors

and classifiers, average precision for regressors was calculated using rank-ordered predictions,

which has been done in past machine learning work in this space [6]. We evaluated each

learner using nested CV, with 5-fold CV for 4 repetitions for the outer splits and 5-fold CV

with two repetitions for the inner splits. Our results show that stacking regressors performed

best for both regression (Fig 2C) and classification (Fig 2D). Linear boosting approaches also

performed very well, with results that were on par with the meta-ensembles. Successful com-

pletion of these two use cases shows that Galaxy-ML can support large and diverse machine

learning experiments.

Fig 2. Pairwise performance comparisons for use cases 1 and 2. Use case 1 pairwise comparisons for classification tasks on 164 structured biomedical datasets [25] show

decision tree forests perform best (panel A) and hyperparameter optimization can improve the performance of most models (panel B). Use case 2 results for prediction

using regression (panel C) and classification (panel D) show ensemble approaches that use stacking perform best, though linear-based gradient boosting also performs. In

panels A, C, and D, heatmaps show the percentage of datasets for which the model listed along the row outperforms the model along the column. For instance, in panel A,

XGBoost outperforms Gradient Tree Boosting (GTB) from scikit-learn on 38% of datasets, GTB outperforms XGBoost on 11% of datasets, and they perform equivalently

on 51% of datasets.

https://doi.org/10.1371/journal.pcbi.1009014.g002
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Reproducing deep learning models for DNA sequence analysis

In the third use case, Galaxy-ML was used to validate key results from Selene [28], a deep

learning toolkit for biological sequence data built on the PyTorch library. Using Galaxy-ML,

we reimplemented two deep learning architectures originally implemented in Selene that

model and predict regulatory elements, including transcription factor binding sites, DNase I

hypersensitive sites, and histone marks (S4 Text). Results from these models are within 1% of

those reported for Selene (Figs 3 and S2 and S3 and S2 Table). Critical to this work was the

implementation of data generators in Galaxy. Data generators meet two important needs: (1)

producing new examples from existing data to increase the number of instances available for

training, and (2) feeding small sets of examples to the deep learning model so that the entire

training dataset does not need to be loaded into memory. This use case demonstrates that Gal-

axy-ML deep learning tools are general and powerful enough to support realistic use cases and

that Selene results validated across different deep learning implementations.

Reproducibility and extensibility

All analyses in Galaxy are highly reproducible from individual tool executions to complete

workflows because Galaxy records and stores all parameter settings, tool versions, and

Fig 3. (A) Galaxy workflow to create and train a deep learning model, then use the model for visualization and prediction. (B)

Precision-recall curve for a deep neural network trained to predict binding sites for a single transcription factor. (C) Precision-

recall curves for a deep neural network that predicts 919 regulatory element binding profiles, with each curve in the plot

denoting a precision-recall curve for 1 regulatory element.

https://doi.org/10.1371/journal.pcbi.1009014.g003
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workflow versions used in an analysis. This reproducibility extends to all Galaxy-ML tools as

well as Galaxy workflows that include Galaxy-ML tools. There are ongoing efforts to enable

reproducibility of Galaxy workflows outside of the Galaxy platform via interoperable work-

flows. The primary focus of these efforts are to make Galaxy compatible with workflows writ-

ten in Common Workflow Language (CWL) [29]. CWL is a community standard for

workflow definitions that is embraced by many workflow engines. When Galaxy’s CWL fea-

tures are complete, Galaxy will be able to execute CWL workflows as well as export Galaxy

workflows in CWL format. Once in CWL format, Galaxy workflows can be executed in any

workflow engine that supports CWL, and this interoperability will extend to workflows com-

posed of Galaxy-ML tools.

It is possible to extend Galaxy-ML with additional machine learning software libraries and

custom methods. Galaxy-ML has tools for data preprocessing, data generators, model defini-

tion, model training, and model evaluation, providing clear integration points where addi-

tional machine learning approaches can be added based on their functionality. These

integration points mirror the scikit-learn application programming interface, which

is widely used across the machine learning community. For instance, if a new library for

creating gradient boosted decision trees becomes available, tools such as Model Fit and

Hyperparameter Search can be augmented so users can create and use models from this

library. As part of the use cases in the previous sections, we implemented custom modules for

preprocessing, modeling, data splitting, and evaluation.

Availability and future directions

The website https://galaxyproject.org/community/machine-learning/ provides a hub for

machine learning in Galaxy and access to all Galaxy-ML tools, workflows and tutorials. We

anticipate that this hub will serve as a community starting point to foster accessible machine

learning in biomedicine. The Galaxy tool wrappers for our machine learning suite are available

at the following URLs: (1) main tools: https://github.com/bgruening/galaxytools/tree/master/

tools/sklearn and (2) utilities and custom classifiers: https://github.com/goeckslab/Galaxy-ML,

and the entire suite can be installed onto any Galaxy server through the Galaxy ToolShed at

http://bit.ly/galaxy-ml-toolshed.

Galaxy-ML accelerates biomedical research by making machine learning more accessible,

scalable, and reproducible. We applied Galaxy-ML in three complex use cases that yielded

novel insights from several large and diverse biomedical datasets. Galaxy-ML’s tools are

completely generalizable and have applications well beyond these use cases. With Galaxy’s

web-based user interface, an entire machine learning pipeline from normalization, feature

selection, model definition, hyperparameter optimization, and cross-fold evaluation can be

created and run on large datasets in parallel across a computing cluster using only a web

browser. This makes scalable and reproducible machine learning accessible to biomedical sci-

entists regardless of their informatics skills. By leveraging the more than 7,800 analysis tools

available in Galaxy, comprehensive end-to-end analyses can be performed, which begins with

primary analysis of -omics, imaging, or other large biomedical dataset and continues to down-

stream machine learning tools that build and evaluate predictive machine learning models

from features extracted from the primary data.

Looking forward, additional machine learning tools, libraries, and datasets will be inte-

grated into Galaxy-ML. High priority work includes support for deep learning with imaging

datasets and integration of predefined and pretrained models. Future versions of Galaxy-ML

will also include additional integration points to make it easier to implement and use new

machine learning libraries and individual tools.
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Supporting information

S1 Text. Use Case 1: PennML benchmark.

(DOCX)

S2 Text. Regression analysis: Comparison of 14 regressors on 112 Penn regression datasets.

(DOCX)

S3 Text. Use Case 2: DepMap Cancer Cell Lines.

(DOCX)

S4 Text. Use Case 3: Deep Learning for Genomics using Selene.

(DOCX)

S1 Table. A list of Galaxy histories and workflows used for the benchmarks in use case 1.

Each history/workflow ensures that an analysis can be completely reproduced because it lists

all analysis steps and parameters. Each algorithm runs with two parameter configurations:

default and best. Default configuration is a default value of parameters in Galaxy toolbox and

best parameters are obtained by hyperparameter optimization.

(DOCX)

S2 Table. Performance results obtained using Galaxy-ML models fully trained using GPU

and Selene models. All datasets used were obtained from Selene. AUPRC is the area under the

precision-recall curve, and is also known as the average precision. “N.R.” means that the mod-

els did not report this information.

(DOCX)

S1 Fig. Comparison of different regression models. In panels A and C, heatmaps show the

percentage of datasets for which the model listed along the row outperforms the model along

the column. Panel A shows a heatmap in which each square contains a number of datasets for

which the regressor on the left (wins) performed better than the regressor on the bottom

(losses). For example, by mapping the color of the square between adaboost (shown on y-axis)

and linear regression (LR) shown on x-axis to the adjacent color-scale, we conclude that the

adaboost regressor performs better on 75–80 datasets (out of 112) than the linear regressor.

The subplot also shows a comparison of different regressors (on y-axis). The ensemble regres-

sors perform better on average than the other categories which include linear, tree and nearest

neighbors regressors. Panel B shows a comparison between the running time and accuracy of

different regressors. We compute an average running time of each regressor over all 112 data-

sets. The running time of a regressor on a dataset is the sum of the training and validation

times for the best regression model. The regressors such as xgboost, gradient boosting and

extra trees achieve > 0.80 r-squared score, but extra trees regressor requires significantly more

time to finish compared to the other two regressors. Regressors such as linear regression,

huber and elastic net are fast, but their accuracy is low. Decision and extra tree regressors are

also fast, but their accuracy is better (> 0.7 r-squared score) than the linear regressors. Panel C

shows the r-squared scores of each regressor for all datasets. The linear regressors at the bot-

tom-left of the subplot achieve lower scores than the ensemble regressors such as xgboost, gra-

dient boosting at top-left of the subplot. We can also see that for a few datasets, none of the

regressors perform well. Panel D shows the importance of tuning the hyperparameters of the

regressors for each dataset. It is not recommended to compute the performance of predictive

algorithms over multiple datasets using the same or default values of their hyperparameters.

The performance of a regressor varies for different values of hyperparameter for a dataset.

Therefore, we computed the best set of values of hyperparameters for each dataset using an
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exhaustive search strategy (grid-search). The figure shows an improvement in r-squared scores

for each regressor due to hyperparameter optimisation. Regressors such as elastic net, k nearest

neighbours, decision tree and linear svr show higher improvements than bagging, random for-

est, adaboost, gradient boosting, xgboost, extra trees, linear regression, huber and gradient

boosting in their respective r-squared scores averaged over all 112 datasets.

(TIFF)

S2 Fig. Visualized results obtained using the DeepSEA architecture to model regulatory

elements for a single tissue-specific transcription factor.

(TIFF)

S3 Fig. Visualized ROC curve results obtained from using the extended DeepSEA architecture

[30] to model 919 regulatory elements: (A) average ROC for all elements and (B) individual

ROC curves for each element.

(TIFF)
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