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Abstract

This study was designed to identify potential radiosensitizing (RS) agents for combined

radio- and chemotherapy in a murine model of human lung carcinoma, and to evaluate the

in vivo effect of the RS agents using diffusion-weighted magnetic resonance imaging (DW-

MRI). Radioresistance-associated genes in A549 and H460 cells were isolated on the basis

of their gene expression profiles. Celastrol was selected as a candidate RS by using con-

nectivity mapping, and its efficacy in lung cancer radiotherapy was tested. Mice inoculated

with A549 carcinoma cells were treated with single ionizing radiation (SIR), single celastrol

(SC), or celastrol-combined ionizing radiation (CCIR). Changes in radiosensitization over

time were assessed using DW-MRI before and at 3, 6, and 12 days after therapy initiation.

The tumors were stained with hematoxylin and eosin at 6 and 12 days after therapy. The

percentage change in the apparent diffusion coefficient (ADC) value in the CCIR group was

significantly higher than that in the SC and SIR group on the 12th day (Mann–Whitney U-

test, p = 0.05; Kruskal–Wallis test, p < 0.05). A significant correlation (Spearman’s rho corre-

lation coefficient of 0.713, p = 0.001) was observed between the mean percentage tumor

necrotic area and the mean ADC values after therapy initiation. These results suggest that

the novel radiosensitizing agent celastrol has therapeutic effects when combined with ioniz-

ing radiation (IR), thereby maximizing the therapeutic effect of radiation in non–small cell

lung carcinoma. In addition, DW-MRI is a useful noninvasive tool to monitor the effects of

RS agents by assessing cellularity changes and sequential therapeutic responses.
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Introduction

Lung cancer is the most common type of cancer and the leading cause of cancer-related deaths

worldwide, with non-small cell lung carcinoma (NSCLC) being the main type of lung cancer.

Currently, radiation and radiosensitizing (RS) chemotherapy, which trigger cancer cell death

through different mechanisms, are the conventional treatment methods because concurrent

RS chemotherapy and thoracic radiation resulted in increased survival rates for NSCLC

patients [1–7].

More recently, drug repositioning combined with in silico approaches has been used to

identify RS agents. Microarray technology and innovative bioinformatic frameworks, such as

the Connectivity Map, are helpful web-based tools comprising a large gene expression database

generated from human cancer cell lines treated with different chemicals [8,9]. The Connectiv-

ity Map is based on chemical genomics to identify drugs modulating biological processes by

querying gene expression patterns [10–15]. Several studies in clinical medicine and molecular

genetics have made use of this powerful tool, and Connectivity Map-based drug discovery has

the potential to identify novel RS compounds.

Noninvasive imaging tools such as magnetic resonance (MR) techniques are used to evalu-

ate the efficacy of radiation therapy as they can assess altered metabolism and normalization in

treatment-responsive tumors [16,17]. Specifically, diffusion-weighted magnetic resonance

imaging (DW-MRI) has been applied to detect the loss of cellularity, which is the end result of

extensive necrosis [18–21], and other types of cell death such as mitotic catastrophe and apo-

ptosis [22].

The aim of this study was to 1) identify RS agents that are potential candidates for lung can-

cer radiotherapy by using Connectivity Map, and 2) to evaluate their in vivo effect using

DW-MRI in conjunction with radio- and chemo-combination therapy in a xenograft lung

cancer murine model.

Materials and methods

In silico study

NSCLC samples were characterized on the basis of their sensitivity or resistance to IR-induced

apoptosis as previously described [23,24]. Gene expression data were normalized using dChip

[25] and were filtered with a max-min = 100 and max/min = 4. The probe sets that correlated

with the sensitive/resistant distinction were determined using signal-to-noise statistics and

permutation testing. The 157 probe sets with p< 0.0005 were part of an IR sensitivity/resis-

tance profile and were used for subsequent comparisons.

The Connectivity Map included instances that represented a radiation treatment and con-

trol pair, and the list of genes was ordered according to the extent of the differential genome-

wide expression of the genes between the radiation treatment and control pair. The connectiv-

ity score consisted of a group of perturbagens with the enrichment scores from the up- and

downregulated genes. Instances were rank-ordered in descending order of the connectivity

score. All instances in the database were then ranked according to their connectivity scores;

those at the top were most strongly correlated to the query signature and those at the bottom

were most strongly anti-correlated [26]. All data used for the connectivity map were found at

http://www.broad.mit.edu/cmap/ and in the Gene Expression Omnibus. The RS candidate

agents were nominated on the basis of their connectivity score-based rank. Finally, we selected

those agents that showed concurrent results in both A549 and H460 cells.
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Radiation and chemotherapy reagents

A549 and H460 human lung carcinoma cells were purchased from the Korean Cell Line Bank,

and were cultured in Roswell Park Memorial Institute (RPMI) 1640 medium supplemented

with 10% fetal bovine serum (FBS) and 1% penicillin–streptomycin. The cells were cultured at

37˚C in a humidified environment containing 7.5% CO2. Celastrol and dimethyloxalylglycine

(DMOG) were purchased from Sigma-Aldrich Corp. (St. Louis, MO, USA). For the in vitro
treatments, celastrol was dissolved in dimethyl sulfoxide (DMSO; Sigma-Aldrich Corp.) to a

concentration of 0.4 mM. DMSO in the final solution did not exceed 0.2% (v/v). DMOG was

dissolved in phosphate-buffered saline to a concentration of 25 mM and was further diluted to

the appropriate final concentration in RPMI 1640 with 10% FBS.

To compare the in vivo RS efficacy of celastrol in the A549 carcinoma murine model, the

mice were randomly divided into three groups of six each: a single ionizing radiation (SIR)

group, single celastrol (SC) group, and celastrol-combined IR (CCIR) group. The SC and

CCIR group were treated with celastrol (2 mg/kg daily for 5 days), and the SIR group was

treated with vehicle (10% DMSO, 70% kolliphor EL/ethanol [3:1] and 20% PBS). Celastrol or

vehicle solution was injected intraperitoneally. The posterior base of the mouse tumor was

aligned with the treatment isocenter using the On-board Imager system (Varian Medical Sys-

tems, Palo Alto, CA, USA). A single IR dose (10 Gy) was applied using a 6-MV photon beam

with a nominal dose rate of 6 Gy/min at the isocenter. Each mouse was protected with a lead

cover for reducing normal tissue injury with only tumor exposed, allowing local irradiation.

Cell viability assay

A549 and H460 cells were seeded into 96-well plates and were pretreated with celastrol (0.125–

4 μM) or DMOG (15.625–250 μM) at increasing concentrations for 4 h. Cell viability was

determined using a water-soluble tetrazolium salt (WST-1) cell viability assay per the manu-

facturer’s instructions (Premix WST-1, Takara, Japan). The absorbance was measured at 450

nm using a Bio-Rad plate reader (Bio-Rad Model 680 system with Microplate Manger 5.2 soft-

ware; Bio-Rad, Hercules, CA, USA). The values were calculated as the ratio of celastrol-treated

cells to baseline control cells, and were the average from four independent experiments.

Colony formation assay

A549 and H460 cells were seeded into 60-mm dishes at 500 cells per dish. Celastrol (2 μM) and

DMOG (250 μM) were added to each dish 4 h prior to IR treatment (2–10 Gy). After 15 days,

the media were removed, the cells were stained with 1% crystal violet (Sigma-Aldrich Corp.,

St. Louis, MO, USA) in 10% ethanol, and the number of cells was counted. The experiments

were performed in triplicate. The highest ranking drug for the in vivo validation in the A549

xenograft murine model was selected on the basis of the results of the colony formation assay.

Lung tumor xenograft mouse model

Experimental procedures were performed with approval from the Institutional Animal Care

and Use Committee of Wonkwang University (approval No. WKU14-93). Nude mice were

purchased from Central Laboratory Animal, Inc., (Seoul, Korea) and were bred in-house in

our pathogen-free animal facility. A total of 18 male nude mice (aged 5 weeks and weighing 20

g each) were used for this study. All the mice used in this study were maintained in an individ-

ual ventilation cage under specific pathogen-free condition in a 12-h light-dark cycle and were

provided standard mouse chow ad libitum. The body weight of all mice was measured daily
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during the experiment. All procedures adhered to the ARRIVE Guidelines for reporting ani-

mal research [27]. A checklist is included in S1 Checklist.

A549 cells were removed from the culture flasks using trypsin. About 5 × 107 cells in 100 μL

of media were immediately injected in the back subcutaneously of each mouse. The assessment

of tumor radiosensitivity modification by the selected agents was initiated when the tumor

volume was about 150–200 mm3. The tumor volume was measured more precisely using

T2-weighted MRI (fast spin-echo). The tumor volumes were calculated from the entire region

of interest (ROI) drawn around the tumor and by the perimeter method using the formula:

volume = slice thickness X (A1+A2+. . .An), where An is the area of the nth slice of the tumor

[28].

Diffusion-weighted magnetic resonance imaging

Approximately 4–6 weeks after inoculation of the mice with the A549 cells, volume-matched

tumors were imaged before treatment and 3, 6, and 12 days following treatment with SIR, SC,

or CCIR. The mice were placed in an induction chamber filled with 4% isoflurane in oxygen to

induce anesthesia. During imaging, the mice remained anesthetized using 1.5% isoflurane in

oxygen. The mice recovered from the anesthesia between the images acquisitions.

During MRI acquisition, the animals were anesthetized using 1.5% isoflurane in oxygen-

enriched air supplied with a facemask. The respiration rate and rectal temperature were moni-

tored using a small-animal monitoring system (SA Instruments, Stony Brook, NY, USA). MRI

acquisitions were performed using a 4.7-T horizontal MRI device (BioSpec; Bruker, Ettlingen,

Germany) with a 65-mm diameter shielded gradient. The experiments were performed using a

38-mm internal diameter birdcage coil. A diffusion-weighted spin echo sequence was used

with the following acquisition parameters: echo time = 32 ms; repetition time = 6600 ms; b-

values = 0, 100, 200, 300, 400, 600, and 800 sec/mm2; slice thickness = 1 mm; 22 slices; field-of-

view = 4 × 4 cm; and 6 averages. Images were acquired in a 128 × 128 matrix resulting in a res-

olution of 0.0312 cm/pixel. ADC maps were constructed from diffusion-weighted imaging

sequences with b-values 200–800 sec/mm2 using the ParaVision 4.0 software (Bruker BioSpin,

Ettlingen, Germany). The diffusion coefficient for the entire tumor ROI, as well as the ADC

map, was calculated using the image-sequence analysis tool.

Histological analysis

Six and twelve days after treatment initiation, the three mice in each group were euthanized by

cervical dislocation for histological analysis of the subcutaneous tumors. No mice died before

the euthanasia process in all groups. The tumors were fixed in 10% formalin and were subse-

quently paraffin-embedded before staining with hematoxylin and eosin (H&E). The percent-

age of necrosis was determined by measuring the total dimension of the field-of-view and

comparing it with the dimension of the necrotic area.

Statistical analysis

The non-parametric Kruskal–Wallis (KW) test was used for comparing the mean between the

different treatment groups. The Mann–Whitney U (MWU) test was used as a post hoc test if

significant differences were found. The MWU was used for comparisons between two inde-

pendent groups. The Spearman’s rank-order correlation test was used to investigate correla-

tions between quantitative variables. The data are represented as the mean ± SEM, unless

otherwise stated. Statistical analysis was performed using the SPSS software version 11.5

(SPSS, Inc., Chicago, IL, USA). Statistical significance was set at p� 0.05.
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Results

Analysis of RS candidates using a connectivity map

The gene expression data of the A549 and H460 cells after IR were collected and reanalyzed

using statistical comparisons with thresholds of p< 0.05 and a 1.5-fold difference. Among the

genes analyzed, 115 (up) and 117 (down) genes were regulated in A549 cells, and 57 (up) and 49

(down) genes were regulated in H460 cells, with 1 (up) and 0 (down) overlapping genes (Fig 1).

Based on the overlapping signature genes, we independently listed the top 30 drugs for

A549 and H460 cells (Table 1), in addition to the drugs that showed significant effects in the

meta-analysis (FDR, p< 0.05). The drugs present in both drug lists are DMOG, celastrol, sco-

poletin, and menadione (Fig 2). Among these, celastrol and DMOG have the highest ranks.

The effect of combined treatment on cell survival and proliferation

Cell viability was evaluated using the WST-1 assay (S1 Fig). The viability of celastrol-treated

(4 μM) A549 and H460 cells was significantly decreased compared to that of untreated cells

(p< 0.01). The maximal non-toxicity dose of celastrol was 2 μM in A549 and H460 cells as

confirmed using the WST-1 assay. The viability of DMOG-treated (250 μM) H460 cells was

Fig 1. Venn diagram summarizing the differentially expressed genes (DEGs) in radiation-treated A549

and H460 cells. (A) The radiation-related gene expression signatures of A549 and H460 cells were collected

using cDNA microarrays. (B) The differential gene expression in each group was shown for the unique

upregulated and unique downregulated DEGs. (C) The number of up-regulated genes in each group and the

number shared by the different groups are depicted in a Venn diagram. (D) The number of down-regulated

genes in each group is also expressed in a Venn diagram.

https://doi.org/10.1371/journal.pone.0178204.g001
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significantly increased compared to that of untreated cells (p< 0.01). We found that the maxi-

mal non-toxicity dose of DMOG was 250 μM, and was higher in A549 and H460 cells accord-

ing to the WST-1 assay.

A clonogenic assay showed that celastrol at 2 μM significantly decreased the survival of

A549 cells exposed to an IR of 2–10 Gy, and of H460 cells exposed to an IR of 2–6 Gy com-

pared to that of celastrol-untreated cells (p� 0.05) (Fig 3A). On the contrary, DMOG at

250 μM significantly increased the survival of both A549 and H460 cells exposed to an IR of

8–10 Gy compared to that of DMOG-untreated cells (p� 0.05) (Fig 3B). Celastrol was selected

among the candidate drugs for in vivo validation in a A549-xenograft murine model on the

basis of these results.

In vivo tumor growth measurement

To determine if celastrol reduced tumor growth, the tumor volumes in the mice were mea-

sured using T2-weighted MR imaging. A549 tumor growth was decreased irrespective of

Table 1. The top 30 drugs for A549 and H460 cells that were selected using connectivity map.

Rank A549 Rank H460

1 Fisetin 1 U0125

2 DMOGa 2 DMOGa

3 Celastrol 3 Pancuronium bromide

4 N-phenylanthranilic acid 4 Celastrol

5 Blebbistatin 5 Budesonide

6 Etomidate 6 Tioguanine

7 Tyrphostin AG-1478 7 Gefitinib

8 Chrysin 8 Oxamic acid

9 Quinostatin 9 Bromperidol

10 Tyrphostin AG-825 10 Dopamine

11 Mevalolactone 11 Isoconazole

12 Demecolcine 12 2-Deoxy-D-glucose

13 Menadione 13 Ifenprodil

14 5109870 14 Ouabain

15 Phenyl biguanide 15 BAS-012416453

16 Fluorometholone 16 Fenoterol

17 Scopoletin 17 Salsolinol

18 Ursodeoxycholic acid 18 PHA-00816795

19 Thapsigargin 19 3-Aminobenzamide

20 Etanidazole 20 Levcycloserine

21 Urapidil 21 Vinpocetine

22 Phenindione 22 Scopoletin

23 Oxybutynin 23 Digoxin

24 Piperlongumine 24 Cantharidin

25 Moxonidine 25 Dexverapamil

26 Atropine methonitrate 26 Difenidol

27 Remoxipride 27 Omeprazole

28 Ivermectin 28 Sanguinarine

29 Cantharidin 29 Menadione

30 Artemisinin 30 Rimexolone

aDimethyloxalylglycine

https://doi.org/10.1371/journal.pone.0178204.t001
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celastrol or IR treatment; however, we observed significant differences at days 3 and 6 between

the SIR with vehicle, SC, and CCIR group (S2A Fig). Notably, the CCIR group showed signifi-

cantly suppressed tumor growth at day 12 (p< 0.05, MWU). There was no significant differ-

ence in the reduction of body weight between all 3 groups (S2B Fig), suggesting low toxicity.

Diffusion-weighted magnetic resonance imaging analysis

DW-MRI was used to monitor the response of the A549 tumor xenografts to the celastrol and/

or IR treatments. Representative images from tumors treated with SIR, SC, or CCIR are shown

in Fig 4A. The ADC values of the tumors were calculated (mean ± SEM) (all voxels) for each

group at 0, 3, 6, and 12 days after treatment (Fig 4B). The ADC changes for the four groups

on Day 0 were 0.001216 ± 0.000055 mm2/s on average (n = 18). The mean ADC increases

in the CCIR group on the 12th day were significantly higher than those in the SC and SIR

groups (MWU, p = 0.05). The mean ADC changes of the CCIR, SC, and SIR groups were

38.66 ± 1.55%, 21.34 ± 1.79%, and 11.89 ± 4.21%, respectively, 12 days after treatment initia-

tion (Fig 4C). The ADC change in the CCIR group was significantly higher than that in the

SIR group on day 3 (MWU, p< 0.05) and in the SIR group on day 6 (MWU, p< 0.05; and

KW, p< 0.005) after treatment initiation.

Histological analysis

Histological studies of tumor sections were performed post mortem to visualize the necrotic tis-

sue in the experimental and control mice. Fig 5A shows representative micrographs of H&E-

and TUNEL-stained tumor sections at 6 and 12 days after the initial treatment, respectively.

On day 6, the tumor necrosis fraction calculated from the H&E-stained tumor sections was

26.53 ± 11.63%, 48.38 ± 8.61%, and 61.23 ± 21.21% in the SIR, SC, and CCIR group, respec-

tively (Fig 5B). Notably, the necrotic fraction on day 12 was significantly increased in the

CCIR group (76.92 ± 7.91%) compared to that in the SIR (29.99 ± 7.41%) and SC group

(47.32 ± 9.74%) (MWU, p = 0.05; and KW, p = 0.05). As shown in Fig 6, a significant correla-

tion (Spearman’s rho correlation coefficient of 0. 713, p = 0.001) existed between the mean per-

centage tumor necrotic area and the mean ADC increase measured after therapy initiation.

Fig 2. Identification of candidate radiosensitizers using a connectivity map. Genes with a false

discovery rate-adjusted p value (p < 0.05) and a fold change >1.5 were considered DEGs. Connectivity

mapping between A549 and H460 cells gene signatures is shown. Four drugs show overlap in the top 30 drug

list for both lung cancer cell lines.

https://doi.org/10.1371/journal.pone.0178204.g002
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These data suggested that there was an association between the mean ADC values and the

increase in apoptosis and necrosis.

Discussion

In this study, we analyzed the genomic signature of human lung cancer cells after radiation to

identify potential RS agents for combined radio- and chemotherapy of lung cancer. RS agents

were subsequently identified using Connectivity Map analysis of the resultant genomic signa-

ture. We also used DW-MRI in an in vivo murine model of human lung cancer to determine if

the combined therapy consisting of RS agents and radiation was effective. To this end, we

assessed the cellularity changes and sequential therapeutic responses and compared these to

Fig 3. The effect of celastrol-combined IR treatment on cell survival and proliferation. The clonogenic

survival was significantly decreased in both (A) A549 and (B) H460 cells exposed to an IR of 2–6 Gy and

celastrol treatment (p� 0.05). DMOG did not significantly reduce the survival of A549 and H460 cells exposed

to these IR doses (p > 0.05). IR, ionizing radiation; DMOG, dimethyloxalylglycine.

https://doi.org/10.1371/journal.pone.0178204.g003
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Fig 4. Diffusion-weighted image analysis of the tumor response to treatment. (A) T2-weighted images and

apparent diffusion coefficient (ADC) maps obtained before, during, and at different times after therapy in mice treated

with ionizing radiation (IR, 10 Gy), celastrol (2 mg/kg/5 days), or IR combined with celastrol therapy. The tumors were

indicated with the dotted contours. The intratumoral ADC value (B) and ADC change (C) measured at 3, 6, and 12 days

after the mice had been treated with IR (10 Gy), celastrol (2 mg/kg/5 day), or the combination therapy. The data

Celastrol as a radiosensitizing agent for lung carcinoma
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the same parameters in radiation-only controls. We found that the efficacy of IR combined

with Connectivity Map-discovered RS agents might be determined with noninvasive

DW-MRI to detect tumor therapeutic responses.

The Connectivity Map integrated our data to identify stable lists of candidate therapeutics

by automated drug repurposing. It identified the following four RS candidates: DMOG, celas-

trol, scopoletin, and menadione. Of these, celastrol is a pentacyclic triterpene extracted from

the plant, Tripterygium wilfordii Hook F (thunder god vine), and is used as a natural medicine

in China for many years [29]. As shown in recent studies, celastrol has diverse cellular effects

such as angiogenesis suppression, antioxidation, and anticancer activity [30–33]. Our present

study demonstrates that the Connectivity Map is a very powerful tool to search for candidate

RS agents. For example, it revealed the potent anticancer activity of celastrol in IR-induced

tumor cells as shown using clonogenic survival assays (Fig 3).

DW-MRI is based on the mobility of water molecules within tissue in vivo. Water move-

ment is less restricted in necrotic areas compared to that in viable tissue because of the

decrease in cellularity in necrotic regions and a concomitant increase in the extracellular

space. DW-MRI is used to discriminate between healthy and malignant tissue, and to assess

tumor responses to chemotherapy, IR, and gene therapy [34–38]. In this study, DW-MRI

detected the tumor response sequentially 0–12 days after initiation of the IR and celastrol ther-

apy in a preclinical lung tumor model. Further, we showed that the therapeutic efficacy of

celastrol in combination with IR could be assessed by measuring the percentage change in the

represent the mean ± SEM. Statistically significant differences between the groups are indicated by the following

symbols: *p� 0.05 vs SIR; #p� 0.05 vs SC. SIR, single ionizing radiation; SC, single celastrol; CCIR, celastrol-

combined ionizing radiation.

https://doi.org/10.1371/journal.pone.0178204.g004

Fig 5. Histologic analysis of the tumor response. (A) The mean percentage tumor necrotic fraction was

determined from hematoxylin and eosin- (H&E) stained sections after ionizing radiation (IR), celastrol, and

combined IR celastrol therapy at day 6 and 12 after treatment initiation (original magnification, ×100). (B)

Graph of the percentage necrotic area in H&E-stained sections. Tumors treated with the combined IR and

celastrol therapy showed a significantly (p = 0.05) larger necrotic area at day 6 and 12 than that observed in

the IR and celastrol mono-treatment groups. *p = 0.05 (statistically significant). SIR, single ionizing radiation;

SC, single celastrol; CCIR, celastrol-combined ionizing radiation.

https://doi.org/10.1371/journal.pone.0178204.g005
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ADC values. One of the interesting findings of our study was the significant decrease in the

ADC values in the SIR group at day 3 after therapy initiation, while the ADC values were

increased in the SC and CCIR group at this same time point. It was presumably caused by the

increased tumor cell density over time leading to a decrease in extracellular water in the SIR

group. The increase in the ADC values in the SC and CCIR group on 6 day after therapy initia-

tion was likely caused by an increase in celastrol-induced apoptosis during the 5-day infusion

period. At day 12 after therapy initiation, the percentage change in the ADC values indicated

that the therapeutic efficacy in the CCIR group was significantly higher than that in all other

groups. This result suggested that the IR-celastrol combination therapy might have signifi-

cantly increased the number of apoptotic cells as shown by DW-MRI, which highly correlated

with the histological measurements of necrotic areas in the H&E analysis. This trend of

restricted diffusion was likely due to edema induced by acute ischemia in the tumor cells and

secondary water influx into the intracellular space, with a relative decrease in the extracellular

space.

We acknowledge that our study has some limitations. First, our study was limited by the

utilization of only one animal tumor model. Thus, further investigation is needed to determine

if the interaction between RS agents and IR can be generalized to other tumor types. Second,

the mechanism of action underlying the radiosensitizing parameters of celastrol has not been

investigated in this study. Some studies using cancer cells have reported that the efficacy of

celastrol as an RS agent is similar to that of a heat shock protein 90 inhibitor and a p53 activa-

tor in combination with radiation therapy [33,39]. Additional studies are needed to clarify the

in vivo biological processes affected by candidate RS agents using specific molecular imaging

in animal tumor models.

In summary, we found that celastrol, a novel RS agent, increased the therapeutic effect of

radiation in a lung cancer mouse model. Further, we showed that DW-MRI might be a useful

Fig 6. Correlation between the mean ADC change and percentage tumor necrotic fraction. The mean

ADC values correlated with the percentage tumor necrotic fraction calculated from the H&E-stained sections

from the A549 tumors. Spearman’s rank-order correlation test was applied to calculate the Spearman

correlation coefficient (rho = 0. 713, p = 0.001). The solid lines are the result of the linear regression on the

data.

https://doi.org/10.1371/journal.pone.0178204.g006

Celastrol as a radiosensitizing agent for lung carcinoma

PLOS ONE | https://doi.org/10.1371/journal.pone.0178204 May 23, 2017 11 / 14

https://doi.org/10.1371/journal.pone.0178204.g006
https://doi.org/10.1371/journal.pone.0178204


noninvasive tool to monitor responses to RS agents as evidenced by cellularity changes and

sequential therapeutic responses.
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