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ABSTRACT
◥

In the TRANSCEND NHL 001 study, 53% of patients with
relapsed/refractory large B-cell lymphoma (LBCL) treated with
lisocabtagene maraleucel (liso-cel) achieved a complete response
(CR). To determine characteristics of patients who did and did
not achieve a CR, we examined the tumor biology and micro-
environment from lymph node tumor biopsies. LBCL biopsies
from liso-cel–treated patients were taken pretreatment and
�11 days posttreatment for RNA sequencing (RNA-seq) and
multiplex immunofluorescence (mIF). We analyzed gene
expression data from pretreatment biopsies (N ¼ 78) to identify
gene sets enriched in patients who achieved a CR to those
with progressive disease. Pretreatment biopsies from month-3
CR patients displayed higher expression levels of T-cell and
stroma-associated genes, and lower expression of cell-cycle

genes. To interpret whether LBCL samples were “follicular
lymphoma (FL)–like,” we constructed an independent gene
expression signature and found that patients with a higher
“FL-like” gene expression score had longer progression-free
survival (PFS). Cell of origin was not associated with response
or PFS, but double-hit gene expression was associated with
shorter PFS. The day 11 posttreatment samples (RNA-seq,
N ¼ 73; mIF, N ¼ 53) had higher levels of chimeric antigen
receptor (CAR) T-cell densities and CAR gene expression, gen-
eral immune infiltration, and immune activation in patients with
CR. Further, the majority of T cells in the day 11 samples were
endogenous. Gene expression signatures in liso-cel–treated
patients with LBCL can inform the development of combination
therapies and next-generation CAR T-cell therapies.

Introduction
The tumor microenvironment (TME) is an important predictor of

outcomes in B-cell non-Hodgkin lymphoma (NHL). TME and tumor-
associated macrophage stromal gene signatures have been associated
with adverse outcomes to standard anthracycline and rituximab-based
chemoimmunotherapy in patients with diffuse large B-cell lymphoma
(DLBCL; ref. 1). The TME is also highly variable between different
lymphoma subtypes and appears to impact prognosis and outcomes to
novel immuno-oncology agents and targeted inhibitors (2–7). Path-
ogenesis of DLBCL involves evasion of immune recognition by T and
natural killer cells as well as activation of immunosuppressivemechan-
isms [e.g., programmed cell death ligand 1 (PD-L1) pathway].Multiple
lymphoma studies have explored the role of the TME in response to
checkpoint blockade (5, 8, 9). Specifically, the lymphoma TME has
been described as exhibiting a spectrum between amore inflammatory
environment such as in Hodgkin lymphoma, and a less inflammatory
environment facilitating escape from immune surveillance observed in

follicular lymphoma (FL) and DLBCL. On the basis of the relative
responsiveness of these lymphomas to checkpoint inhibition, a more
inflammatory TME has been associated with responsiveness to check-
point inhibition (5).

How the TME affects CD19-directed chimeric antigen receptor
(CAR) T-cell therapy is less well understood. Preclinical in vitro and
in vivo evidence indicates that immunosuppressive macrophages
can inhibit CAR T-cell function (10). Translational data from clinical
B-cell NHL studies has shown that an inflammatory pretreatment
TME with elevated CD3þ T cells correlated with response to CAR
T-cell therapy (11–13).

Lisocabtagene maraleucel (liso-cel) is a CD19-directed, autologous
4-1BB co-stimulated CAR T-cell product administered at equal target
doses of CD8þ and CD4þCARþ T cells (14). The TRANSCENDNHL
001 (TRANSCEND; NCT02631044) study enrolled patients with
relapsed/refractory (R/R) large B-cell lymphoma (LBCL) who had
progressed after two or more prior treatments. Eligible patients had
DLBCL not otherwise specified (NOS), high-grade B-cell lymphoma
with rearrangements ofMYC and BCL2 and/or BCL6 (HGL), primary
mediastinal B-cell lymphoma (PMBCL), LBCL transformed from
indolent B-cell NHL, and grade 3B FL. Patients were heavily pretreated
with amedian of three prior lines of therapy, and two-thirds of patients
were considered chemotherapy-refractory. The complete response
(CR) rate after liso-cel treatment was 53%, with a low observed
incidence of severe cytokine release syndrome (2%) and neurologic
events (10%; ref. 15). Despite these encouraging results in a very high-
risk patient population, and a probability of continued response at
2 years of 49.5% [95% confidence interval (CI), 41.4–57.0; ref. 16], not
all patients achieve a CR or a durable response to liso-cel. Therefore, it
is important to better understand what factors may influence response
and durability.

Here, we examine tumor biopsies with associated long-term follow-
up from a cohort of liso-cel–treated patients with LBCL to understand
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how the pretreatment TME may influence response. In addition, we
identify changes in the posttreatment TME that are associated with the
pretreatment TME and response.

Materials and Methods
Clinical efficacy

The efficacy outcomes of TRANSCEND have been reported pre-
viously (15). The primary efficacy endpoint was objective response
rate, defined as the proportion of patients who achieved a best overall
response (BOR) of CR or partial response (PR) based on assessment by
the independent reviewcommittee (IRC)perLugano2014 criteria (17).
Protocol-specified efficacy assessments occurred at 1, 3, 6, 9, and
12months after liso-cel infusion, respectively, and then every 6months
thereafter until study completion. For this study, main analyses are
based on the assessments of CR and progressive disease (PD) per IRC
to focus on patient subgroups with the largest differences in response.
For the analyses based on assessment time points of 1, 3, 6, 9, or
12months, a patient is classified as CR if the assessment was CR at that
time point, and PD if a patient had progressed at any time up to that
time point. Most analyses compared patients who achieved and
maintained a CR (N ¼ 27) at 3 months (month-3 CR) to those with
PD (N ¼ 32) by 3 months (month-3 PD).

Patient biopsies
Needle biopsy samples were obtained from patients with R/R LBCL

who were enrolled in the TRANSCEND study (Table 1). The first
biopsy was obtained before lymphodepleting chemotherapy, which
preceded liso-cel infusion [day < 0 pretreatment (PRE)] by 2 to 7 days.
The PRE biopsy was required per protocol unless an archival biopsy
with no intervening treatments was available. In many cases, the PRE
biopsy was not available for RNA sequencing (RNA-seq) analysis
because the quality or quantity of the sample was not sufficient or
because the biopsy material was needed for protocol-required disease
confirmation.

An optional biopsy was obtained 11 days (�4 days) post-infusion
[day 11 posttreatment (D11)], which was near the anticipated day of
maximal liso-cel expansion. The D11 biopsy site was not necessarily
the same location as the PRE biopsy site, as the site of both biopsies was
at investigator discretion. Because the D11 biopsy depended on
presence of accessible tumor, it could have led to a sample collection
bias, so we compared the baseline characteristics of the patients with a
D11 biopsy with those who had a pretreatment sample (Table 1).

The needle biopsy samples were formalin-fixed, paraffin-embedded
(FFPE) material and were shipped to Charles River Laboratories
or to Juno Therapeutics, a Bristol-Myers Squibb Company. Slides
were cut from the FFPE blocks and were examined by a pathologist
to determine and record the amount of tumor present, which was
roughly 5 to 20 mm2 and 20% to 100% tumor cell content, with
most samples >60%.

In the TRANSCEND study (15), 269 patients with LBCL were
infused with liso-cel and followed for a median of 12months. Seventy-
eight PRE samples and 73 D11 samples yielded quality RNA-seq data.
To determine whether the RNA-seq study population was reflective of
the full study population, we compared the response rates and
progression-free survival (PFS) in the full study population with the
patients in the PRE or D11 sets.

Institutional review boards at participating institutions (listed
in Supplementary Appendix) approved the study protocol and amend-
ments. The clinical study was done in accordance with the Declaration
of Helsinki, International Conference on Harmonization Good

Clinical Practice guidelines, and applicable regulatory requirements.
All patients provided written informed consent for the use of biopsy
material for analyses.

RNA-seq
At Q2 Solutions/EA Genomics, RNA was extracted from slides or

curls from FFPE biopsy material without macrodissection. After
extraction, TruSeq RNA Exome kits (Illumina) were used to yield
barcoded libraries and sequencing was performed using Illumina

Table 1. Patient anddisease characteristics of thosewithRNA-seq
samples.

PRE (N = 78) D11 (N = 73)

Sex, n (%)
Male 55 (70.5) 50 (68.5)
Female 23 (29.5) 23 (31.5)

Age, n (%) 62 (56–69) 64 (59–70)
≥65 years 34 (43.6) 34 (46.6)
≥75 years 6 (7.7) 9 (12.3)

Histologic subtype, n (%)
DLBCL, NOS 44 (56.4) 36 (49.3)
DLBCL, transformed from FL 18 (23.1) 14 (19.2)
DLBCL, transformed from other
indolent NHL subtypes

4 (5.1) 9 (12.3)

High-grade B-cell lymphoma with
gene rearrangements in MYC and
either BCL2, BCL6, or both

9 (11.5) 8 (11.0)

Primary mediastinal B-cell
lymphoma

1 (1.3) 4 (5.5)

FL grade 3B 2 (2.6) 2 (2.7)
ECOG PS at screening, n (%)

0 35 (44.9) 34 (46.6)
1 40 (51.3) 37 (50.7)
2 3 (3.9) 2 (2.7)

Before lymphodepleting
chemotherapy
SPDa (cm2), median (IQR) 42.8 (20.1–95.1) 36.1 (19.1–98.0)
≥50 cm2, n (%) 36 (46.2) 31 (42.5)
LDH (U/L), median (IQR) 351 (229–626) 290 (219–520)
≥500 U/L, n (%) 27 (34.6) 20 (27.4)

C-reactive protein (mg/L), median
(IQR) at liso-cel infusion

59.6 (14.9–97.0) 32 (7.0–93.8)

Previous lines of systemic therapy,
n (%)
1 prior regimen 2 (2.6) 2 (2.7)
2 prior regimens 34 (43.6) 36 (49.3)
3 prior regimens 18 (23.1) 17 (23.3)
≥4 prior regimens 24 (30.8) 18 (24.7)

Chemotherapy refractory,b n (%) 51 (65.4) 45 (61.6)
Prior HSCT, n (%) 27 (34.6) 19 (26.0)
Never achieved CR with previous
therapy,c n (%)

35 (44.9) 35 (48.0)

Secondary CNS lymphoma, n (%) 3 (3.9) 2 (2.7)

Abbreviations: CNS, central nervous system; ECOG PS, Eastern Cooperative
Oncology Group performance status; HSCT, hematopoietic stem cell transplan-
tation; IQR, interquartile range; LDH, lactate dehydrogenase; PRE, day <0
pretreatment; SPD, sum of the product of perpendicular diameters.
aSPD was calculated per central review assessment before lymphodepleting
chemotherapy. One patient with a PRE biopsy was not evaluable for SPD.
bRefractorymeans no response to or PD after the last chemotherapy-containing
regimen, or relapse <12 months after autologous HSCT.
cNot only primary refractory but also refractory to subsequent lines of
treatment.
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HiSeq 2500 instruments. The target sequencing depth was 25 million
paired-end reads for the first two batches and 50 million for the
remaining four batches, with a sequencing length of 50 bp.

The quality of the reads in the fastq files was evaluated using FastQC
(version 0.11.5). Illumina adapters were trimmed using cutadapt
(version 1.15) and the resulting fastq files were used for downstream
analyses. Sequence alignment was performed using STAR software
(version 2.5.2b) using a two-pass mode and human genome reference
hg38 (GENCODE GRCh38.p5 and the annotation from GENCODE
Release 24). Counts were obtained using the quantMode GeneCounts
option. Furthermore, the CAR sequence of liso-cel was joined to the
genome so that the CAR sequence could be quantified. Alignments
were evaluated using Picard tools (version 2.18) and samples with low-
quality sequencing metrics were removed from analysis.

To assess how CAR T cells impacted the TME, PRE and D11
biopsies were compared. The final data set with passing quality RNA-
seq data had 78 PRE samples and 73 D11 samples, with matching PRE
and D11 samples for 30 patients.

Batch correction and differential expression analysis
The samples were collected and processed across six batches over

2.5 years. Although the key methodology was the same (sequencing
vendor, library preparation kit, and Illumina sequencing technology),
some procedures changed over time, including the total number of
reads sequenced, the switch to a dual DNA/RNA extraction protocol,
and the inclusion of samples with lower tumor fractions on the slides
(Supplementary Table S1). Several batch correction approaches were
explored by adding covariates to the DESeq2 (18) differential expres-
sion analysis (Supplementary Fig. S1) for the following key contrasts in
this study: (A) CR versus PD at 3 months in the PRE samples and (B)
D11 versus PRE. In both of those contrasts, using no batch correction
yielded the highest number of differentially expressed genes. Adding a
categorical covariate for six batches reduced the number of differential
genes by ≥50% in the D11 versus PRE contrast. Batch 5 was all PRE
samples and Batch 6 was mostly D11, so when they were treated as
separate batches, the number of differential genes fell dramatically.
Combining Batch 5 andBatch 6 preservedmany of theD11 versus PRE
differences. Several other covariates in the differential expression
model were tested (e.g., percentage of tumor on slide, DV200, batches),
and the resulting fold-changes highly overlappedwith the simple batch
model (Supplementary Fig. S2). Given the above, all further analysis
was performed using five batches (Batches 1–4with 5 and 6 combined)
as a covariate.

For sample level analyses, such as single sample gene set enrichment
analysis (ssGSEA) scores and gene plot figures, we used the expression
values adjusted by vst (DESeq2 R package; ref. 18), followed by
removeBatchEffect (limma R package; ref. 19) for the five batch groups
using the STAR counts as inputs. When performing differential
expression analysis between two groups of samples, we used
DESeq2 with the raw gene-level counts from the STAR output,
with the five batch groups as a covariate. Supplementary Figure S3
shows the comparison of the fold-changes between response groups
of the PRE samples.

Gene sets and enrichment analysis
For gene set enrichment analysis (GSEA; ref. 20), we used the

clusterProfiler R package (version 3.14), which uses the R package
fGSEA (21) internally and used 1,000 permutations to estimate the
significance. With clusterProfiler, we searched the MSigDB (20) H
(Hallmark; ref. 22) and C2 (Curated; ref. 20) gene sets as provided by
the msigdbr R package (version 7.0.1). We used the GSEA module in

ArrayStudio (version 10; Qiagen) to complement the MSigDB-based
approach. The EZH2 gene sets, NUYTTEN_EZH2_TARGETS (UP
and DN; ref. 23), were identified in the MSigDB C2 and ArrayStudio
analysis. Additional EZH2 gene sets were generated from a reanalysis
of the Affymetrix microarray data for GEO Series GSE49284 (24),
which included three lymphoma cell lines (WSU-DLCL2, KARPAS-
422, and SU-DHL-6) that had been treated with and were sensitive to
the EZH2 inhibitor EPZ-6438. The three cell lines were analyzed to
identify the genes most downregulated or upregulated by EZH2
inhibition. The three individual lists were then merged and named
the Knutson_EZH2_inhib (up and dn). Another pair of gene sets
identified in the top MSigDB C2 results were the SHIPP_DLBCL_vs_
FOLLICULAR_LYMPHOMA (UP and DN; ref. 25).

We added several other lymphoma-related gene sets to our analysis
that have been used to characterize lymphoma biology or patient
subsets: molecular high-grade signature (26), stromal-1 and -2 (1),
activated B-cell versus germinal center B-cell (27), and double-hit
positive versus negative (28). We added several immune-related solid
tumor gene sets identified in recent publications: IFNg , Thorsson/
Institute for Systems Biology scores (29), and a melanoma T-cell
exclusion signature (30).

With these gene sets, we calculated single-sample scores using
ssGSEA (with the R package GSVA version 1.42.0). We compared
two groups of samples using a Wilcoxon rank sum test (R 3.6.1;
refs. 31, 32).

Lymphoma gene set scores and classifiers
To further explore the biologic differences between DLBCL and FL,

we used a proprietary data set, plus NHL data from the International
Cancer Genome Consortium (ICGC; https://dcc.icgc.org/releases/
current/Projects/MALY-DE) and the Cancer Genome Characterization
Initiative (CGCI; https://ocg.cancer.gov/programs/cgci/data-matrix).
The proprietary data set was generated from commercially sourced
FFPE samples (Avaden Biosciences): 70DLBCL and 61 FL samples with
RNA-seq performed using the same methods as applied to the liso-cel
study samples. For the public data sets, ICGC had 40 DLBCL and 41 FL
samples, while CGCI had 105 DLBCL and 13 FL samples.

We performed differential expression analysis with the commer-
cially sourced DLBCL and FL samples and selected the top 200 genes
for FL and 200 for DLBCL (Supplementary Table S2). These two
gene lists were used to calculate ssGSEA scores for each sample and
named FL_vs_DLBCL (genes higher in FL than DLBCL) and
DLBCL_vs_FL (genes higher in DLBCL than FL). The two ssGSEA
scores were combined to form a composite score (FL_like_score or
FL-like score) by subtracting the DLBCL_vs_FL score from the
FL_vs_DLBCL score.

In a prior study from the sponsor (33), a DLBCL TME classifier
was constructed to identify a DLBCL high-immune infiltration phe-
notype, referred to herein as the DLBCL TME classifier. We applied
the RNA-seq version of the classifier algorithm to label samples as
TME-classifier positive or TME-classifier negative; otherwise, we
used the classifier confidence score as a continuous score for charac-
terization. We also used the RNA-seq data to construct a score and
perform classification for the cell of origin (COO; ref. 34) and double-
hit gene expression status (28) using the methods described in those
publications.

T-cell co-expression network
We used Pearson correlations to find genes in PRE samples that

were correlated (r > 0.8) to several TME-related genes (CD3E, CD163,
COL1A1), and iteratively added genes correlated to any of the new
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genes converging to 1,051 genes. We then performed community
detection based on label propagation (R/igraph; ref. 35) and selected
the T-cell community, which had 42 genes. We used R/igraph for the
network visualization and colored the nodes using the log2-fold change
of either month-3 CR versus PD in the PRE samples or CD8þ versus
CD4þ log2-fold change from a dataset of purified immune cells
(GSE60424; ref. 36).

FL lasso classifier
We used the internal DLBCL and FL data sets to train an FL

classifier using a lasso model (cv.glmnet in R; ref. 37) to predict
whether an NHL sample has FL histology (Supplementary Fig. S4).
The classifier was then tested on the CGCI and ICGC public data
sets and yielded an area under the curve of the receiver operating
characteristic curve of 0.93.

Core FL andDLBCL samples to use in the training were determined
by removing outliers beyond the 0.9 � interquartile range of both the
FL-like and DLBCL-like ssGSEA scores to train the lasso classifier on
themost confident samples. In the core training set, after removing the
0.9 � interquartile range outliers, there were 57 DLBCL and 53 FL
samples. A lasso model (using cv.glmnet in R; ref. 37) with 10-fold
cross-validation (family ¼ “binomial”, standardize ¼ T) was trained

on the core samples using the 5,000 genes with the highest standard
deviation. This resulted in 30 nonzero coefficients at the minimum
lambda. The ssGSEA-based FL-versus-DLBCL score was concordant
with the lasso FL classifier for >85% of the PRE samples in this dataset
(Supplementary Fig. S5).

Logistic regression and random forest
We used logistic regression and random forest models to compare

importance of transformed FL (tFL) status and the FL-like gene
signature with month-3 CR as the outcome. We used all 78 patients
who had PRE tumor biopsy RNA-seq data and defined the binary
outcome as a 1 if the patient was in CR at month 3 and used a 0 if the
patient had any other outcome. When tFL was in the model, it was
encoded as 1 if the patient was tFL and 0 otherwise. We show the
different logistic regression models in Supplementary Table S3. The
input signature scores for the random forest were reduced to a set of
features with a Pearson correlation of <0.75. If scores in the starting set
had a correlation or anticorrelation >0.75, then one of the scores was
manually selected for input into the model (Supplementary Fig. S6A).
The variable importance was determined and reported in Supplemen-
tary Fig. S6B using the mean decrease in the Gini coefficient where
higher values are more important.

Figure 1.

Differential gene expression in pretreatment samples and gene sets associated with month-3 CR or PD. A, The height of the bar shows the number of differentially
expressed genes when splitting the PRE samples into two groups based on various response assessments: CR versus PD at month-1, -3, -6, -9, or -12 or the BOR of
CR/PR versus SD/PD or CR versus PR/SD/PD. In each bar, blue is the number of genes higher in patients achieving the noted response and orange is the number of
genes for the noted nonresponse assessment. The numbers of samples in each comparison group are 38 (month 1), 59 (month 3), 62 (month 6), 63 (month 9), 60
(month 12), and all 78 samples were used in the BOR comparisons. B, Volcano plot of the contrast of month 3 CR versus month-3 PD in PRE samples. Orange points
represent geneswith higher expression in PRE samples of patientswithmonth-3 PD, while blue points denote geneswith higher expression in patientswithmonth-3
CR. For both panels, a gene is labeled as differential if the fold changewas more than�1.5 (equivalent to a 0.585 log2-fold change) and the adjusted P value was less
than 0.05 (threshold designated in panel B with red lines). C, The strongest GSEA scores comparing PRE samples of month-3 CR versus month-3 PD. Gene sets
with a positive normalized enrichment score are associated with CR, while gene sets with a negative normalized enrichment score had a significant association with
PD.D, ssGSEA scores for the EZH2 inhibitor gene set (Knutson_EZH2_inhib_dn) and the Jerby-Arnon T-cell exclusion gene set are shown for PRE samples, split into
month-3 CR and month-3 PD, with the Wilcoxon P value shown above the groups.
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Survival analysis
Kaplan–Meier curveswere used to visualize PFS differences between

groups. Hazard ratios and Cox proportional hazard statistics were
calculated using either a continuous covariate or discretized categorical
variable. For the Kaplan–Meier curves using the FL_like_score score
and the Risue~no TME score, an optimized threshold between the two
groups of patients was greedily determined by finding the most
significant split by Cox proportional hazard likelihood ratio test.

Multiplex immunofluorescence
Three panels of five antibodies each were used to characterize the

cellular content of the patient needle biopsy samples using multiplex
immunofluorescence (mIF) with a PerkinElmer Vectra instrument as
described previously (38, 39). Visiopharm was used to calculate the
cell marker densities based on the hematoxylin and eosin–stained
nuclei and marker intensities. Each panel was applied on a different
slide; cell densities from each slide were analyzed independently
(Supplementary Tables S4–S6).

The first panel had antibodies for the EGFR (to identify the CAR T
cells that were engineered to have EGFR protein expressed), CD19,
CD20, CD4, and CD8. The second panel had antibodies for CD73,
FOXP3, IDO1, CD163, and PD-L1 and was originally intended to
look for immune-suppressive pathways. The third panel had anti-
bodies for EGFR, KI67, GZMB, CD3, and programmed cell death
protein 1 (PD-1) and was intended to characterize the state of both the
endogenous and CAR T cells.

For this study, regions of high background were manually
excluded from analysis. Next, cells were segmented and phenotyped
on the basis of individual algorithms to implement models that were
qualitatively assessed, per fluorophore and per serial slide. These
algorithms, implemented in Visiopharm, included preprocessing
steps to reduce background noise and compute textural features
(e.g., polynomial blob filters) to accentuate nuclei, membrane, or
the entire cell where appropriate. After initial segmentation of
cellular objects, a series of post-processing steps apply morphologic
operations (e.g., erosion, dilation, splitting) and filtering on the
basis of a combination of spatial properties (e.g., area, shape),
preprocessed signal intensities, and textural information. Thus, the
final cell marker positivity was not based simply on thresholding of
raw signal intensity, but rather a series of filters and processing to
maximize cellular signal relative to background noise. Where chro-
mogenic immunohistochemistry was available, that was used as a gold
standard to guide algorithm development for the mIF quantitation.
That said, there were some samples where the signal-to-noise ratio was
low for certain markers and the false negative rate high for those
individual cases. Such cases were noted and if the signal-to-noise ratio
was deemed too low, they were excluded from analysis.

The following combinations of markers were also used to calculate
cell densities in cells/mm2: KI-67þCD3� [non–T-cell proliferation
(we could not directly measure B-cell proliferation, as KI-67

and CD19 were not on the same panel)], CD3þPD-1þ (activated
or exhausted T cells), CD3þGZMBþ (cytolytic T cells), and
CD163þPD-L1þ or CD163þIDO1þ (activated macrophages). Differ-
ential analysis between groups of samples was performed using these
markers or marker combinations with a Wilcoxon rank-sum test.

Data sharing
Bristol-Myers Squibbpolicy ondata sharingmay be found at https://

www.bms.com/researchers-and-partners/independent-research/data-
sharing-request-process.html. Data requests can be made using the
link above. RNA-seq data for 14 of the 121 patients cannot be shared
due to the informed consent agreement.

Results
PRE tumor biopsies exhibited gene expression differences
associated with response

To identify gene expression differences in the PRE samples between
responders and nonresponders, several definitions of response were
explored. To focus on the differences between patient subgroups with
the largest differences in response, we performed differential testing
between PRE samples of patients who achieved a CR versus those with
PD at defined time point response assessments of 1, 3, 6, 9, and
12 months. We additionally grouped patients by their BOR by
comparing CR versus all other responses or CR/PR versus all other
responses. Across those comparison groups, the highest number of
differentially expressed genes in the PRE biopsies were found between
patients whowere in a CR at 3months (month-3 CR) versus those who
had PD by 3 months (month-3 PD; Fig. 1A). Although the number of
differential genes from the comparisons varied, we found significant
correlation between them (Supplementary Fig. S3). Using a�1.5-fold
change cutoff and a 0.05 FDR cutoff, 98 genes showed higher expres-
sion in PRE samples of patients with a month-3 PD (N ¼ 32) and
205 genes had higher expression in PRE samples of patients with a
month-3 CR (N ¼ 27; Fig. 1B).

PD-associated gene sets were related to cell-cycle pathways
The full ranked list of genes from the differential test betweenmonth-

3 CR and PD in the PRE samples was used for GSEA, which used gene
sets from the Hallmark, lymphoma publications, and solid tumor
signatures (Fig. 1C; Supplementary Table S7). The top normalized
enrichment score for month-3 PD was from a gene set with higher
expression in biopsies from patients with DLBCL versus patients with
FL (DLBCL_vs_FL). Another gene set, Knutson_EZH2_inhib_dn,
included genes that were downregulated by an EZH2 inhibitor applied
to threeDLBCLcell lines (GSE49284; ref. 24).Other gene sets included a
variety of Hallmark gene sets related to various transcription regulators
(e.g., MYC, E2F, MTORC1) and other proliferative and cell-cycle
pathways (e.g., G2M and oxidative phosphorylation). For example,
the EZH2 inhibitor and Jerby-Arnon T-cell exclusion (30) ssGSEA

Figure 2.
FL-like gene expression signature is associated with response and is higher in a subset of patients across NHL subtypes. A, These plots show the respective ssGSEA
scores for the PRE sampleswith the patients split into twogroupsbased on theirMonth 3 response. TheP valueof theWilcoxon test is shown, alongwith the likelihood
ratio P value from the Cox proportional hazard (PH) model for each score as a continuous predictor across all patients with PRE samples. B, Survival plots for the
patientswith LBCLwith the top quartile of composite FL-like scores (top) and the optimal HR split (bottom). The log-rank P value is shown. C, The left plot shows the
distribution of the composite FL-like ssGSEA score from PRE samples across the DLBCL subtypes: DLBCL NOS, FL3B (FL grade 3B), HGL, PMBCL, tiNHL (DLBCL
transformed from indolent NHL), and tFL (DLBCL transformed fromFL). TheDLBCLNOSgroup is split into COOgroups, as determinedby gene expression: activated
B cell (ABC), germinal center B cell (GCB), and unclassified (Unclass). The P value is showing theWilcoxon test between all the samples in the DLBCLNOS group and
the tFLgroup. The right side of panel C is showing the FL-like score on the y-axis and is splitting the samples bymonth-3 response andbydisease state (DLBCLNOSor
HGL on the left and tFL on the right), with the Wilcoxon P value comparing the CR and PD groups.
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scores calculated for each sample were significantly higher in patients
with month-3 PD (Fig. 1D).

CR-associated gene sets were related to FL-like, immune, and
stromal gene sets

Several gene sets in the PRE samples were associated with month-3
CR (Fig. 1C). The top gene set in patients achieving amonth-3 CRwas
a gene set derived from an independent set of FL and DLBCL samples
and defined by genes with higher expression in FL (FL_vs_DLBCL).
Therefore, the patients with a month-3 CR displayed a more FL-like
tumor phenotype (Fig. 2A). Figure 2B shows the PFS curves when
patients were divided into two groups based on the 25% of patients
with the highest FL-like scores (19 FL-like vs. 59 others; log-rank P ¼
0.042) or with the optimal FL-like score threshold that resulted in the
smallest Cox proportional hazards P value (10 FL-like vs. 68 others;
log-rank P ¼ 0.014). A gene expression–based lasso classifier was
generated to label samples as FL-like, which gave similar results
(Supplementary Figs. S4 and S5). Several LBCL biopsies with a high
FL-like score had tFL; however, the FL-like score was also high in
several DLBCL NOS and HGL samples, and about half of the tFL
samples had a low FL-like score (Fig. 2C). Further, in samples from
patients with tFL, the FL-like score was significantly higher in patients
achieving month-3 CR compared with those with PD (P ¼ 0.012);
whereas, in patients with DLBCL NOS or HGL, the FL-like score only
trended higher in patients withmonth-3 CR comparedwith those with
PD (P ¼ 0.17; Fig. 2C). In addition, the FL-like score had a stronger
association with PFS in the tFL patients than the combined group of
DLBCL NOS or HGL patients (Supplementary Fig. S6C). There was a
trend toward more tFL patients with a high FL-like score (44%) than
DLBCL NOS/HGL patients with a high FL-like score (19%, P¼ 0.066;
Supplementary Fig. S6C). Finally, to directly compare tFL status and
the FL-like gene expression score in predicting month-3 CR as the
outcome, we performed several logistic regressions and random forest
models (Supplementary Fig. S6A and S6B). We found that the FL-like
score was more significant and had more importance in predicting
month-3 CR than the tFL status (Supplementary Table S3).

The immune and stromal gene sets also showed higher expression in
PRE samples from the month-3 CR patient group. The gene sets
representing the Lenz stromal-1 and -2 signatures (1) and the Immu-
nosign 21 signature (11, 12) were enriched in patients with month-3
CR (Fig. 1A andC). Some of the strongest individual geneswith higher
expression in PRE samples of patients in month-3 CR include KLRB1,
CD40LG, ICOS, CD28, and CCL21. Consistent with the PD sets, one of
the CR-associated gene sets was upregulated by EZH2 inhibition in
DLBCL cell lines (24). Taken together, these results indicate the PRE
tumor biopsies of patients with a month-3 CR following liso-cel
therapy have a higher expression of immune and stromal-related
genes than those with PD.

We constructed a co-expression network of T-cell–related genes to
explore T-cell biology in the PRE samples (Fig. 3). For each gene in the
network, we compared the association with CR to the CD4þ/CD8þ

expression ratios of the purified T-cell data gene set (36). Half of the
network was more CD4þ-biased and had a stronger association with
month-3 CR (P ¼ 0.049). However, these analyses show that expres-
sion of CD4þ- and CD8þ-biased genes in the PRE biopsies were both
associated with month-3 CR.

After liso-cel infusion, patientswith CR had a greater increase in
immune cell gene expression

Gene expression analysis of D11 post-infusion samples showed that
expression of T-cell– and macrophage-related genes were higher in

patients achieving month-3 CR compared with patients with month-3
PD. CD3D and the liso-cel CAR construct (Fig. 4A and B) plus
macrophage-associated genes (e.g., CD14) were also generally higher
in D11 samples of patients withmonth-3 CR and increased more from
PRE to D11 in patients with month-3 CR (Fig. 4C). Other T-cell– and
myeloid-expressed genes show a similar pattern to CD3D and CD14
expression, respectively. B-cell genes (e.g., CD19) displayed a larger
decrease at D11 in patients achieving month-3 CR (Fig. 4D).

Cell-cycle gene setswere anticorrelatedwith PRE and D11 T-cell
infiltration

Upon further exploration of the gene sets associated with month-3
CR, we found that pretreatment samples with high expression of cell
cycle–related genes or genes positively regulated by EZH2 tended to
have lower infiltrating T-cell levels. To inform this relationship with T
cells, we found that theCD3E genewas anticorrelated to theEZH2 gene
(r¼ –0.32), a panel of 5 proliferation-associated genes (r¼�0.36), and
the EZH2i ssGSEA score (r ¼ �0.43; Supplementary Fig. S7A).
Similarly, the EZH2i ssGSEA score had significant association with
month-3 PD (P¼ 0.014), as did the EZH2 gene (P¼ 0.021), and the 5
proliferation genes (P ¼ 0.032; Supplementary Fig. S7B). In addition,
we verified the relationship between EZH2 and T-cell genes by
replicating it in two additional public data sets with DLBCL and FL
samples (Spearman r of �0.62 and �0.49 for ICGC and CGCI,
respectively; Supplementary Fig. S7C).

To identify genes in the PRE samples that were associated with D11
T-cell or liso-cel CAR expression, we investigated correlations between
PRE and D11 for 30 patient-matched samples. We first established a
high correlation (Spearman r ¼ 0.59) between the T-cell gene score
and the liso-cel CAR in the D11 samples (Supplementary Fig. S8A).
Next, using paired samples from patients with both a PRE and D11
sample, we calculated that CD3E in the PRE samples has a correlation
(0.52) with the T-cell genes in the D11 samples, but a lower correlation
(0.32) with the liso-cel CAR gene. Conversely, PRE levels of EZH2 had
a stronger anticorrelation with D11 liso-cel CAR (�0.22) than with
D11 T cells (�0.04), and PRE levels of CD14 had a positive correlation
with D11 T cells (0.39), which was not as strong as the T-cell
correlation (Supplementary Fig. S8B).

To characterize the PRE genes most associated with D11 T-cell and
liso-cel infiltration, we sorted the PRE genes by average correlation
with D11 T-cell and liso-cel CAR genes from the 30 patient-matched
samples and then performed a GSEA (Supplementary Fig. S8C).
Overall, the gene set results are similar to those foundwhen comparing
month-3 CR versus month-3 PD PRE samples. For example, the
DLBCL_vs_FL and Knutson_EZH2_inhib_dn gene sets were both
enriched in the negatively correlated direction, consistent with those
same gene sets enriched in the month-3 PD samples. However, the
gene sets with the highest positive enrichment were the Lenz stromal-1
set, two EZH2i upregulated sets, the Hallmark IFNg response set, and
the FL-like set. The top gene sets were similar to the month-3 CR gene
sets, although the Hallmark IFN sets here were not significantly
enriched in the month-3 CR analysis.

Other lymphoma molecular features showed a mixed
relationship with response and infiltration

Continuous scores or categorical classifiers were calculated for other
DLBCL- and lymphoma-related molecular features and are summa-
rized in Supplementary Fig. S6D and S6E. The Reddy COO score (34)
and intrinsic apoptosis (40) scores were not associated with month-3
CR or PFS (Supplementary Fig. S6F). Notably, although only 11% of
patients in this cohort were classified as HGL based on the presence of
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gene rearrangements inMYC and either BCL2, BCL6, or both, 40% of
patients had positive double-hit gene expression (ref. 28; Supplemen-
tary Fig. S6G), and those with positive double-hit gene expression had
significantly shorter PFS (log-rank P ¼ 0.0044; Supplementary
Fig. S6H). The recently described DLBCL TME classifier (33) did not
show a different PFS when using the published threshold (Supple-
mentary Fig. S6I), but if a new threshold was used that optimally split
the patients into TMEþ and TME�, then the patients with a TMEþ

phenotype had a significantly longer PFS (log-rank P¼ 0.011), and the
continuous probability score suggested that patients with a low TME
score were enriched for nonresponders (Supplementary Fig. S6J and
S6K). Although trending, neither the Immunosign 21 signature nor the
death receptor signature (40) were significant in the month-3 CR
versus PD comparison despite previous reports (11, 12).

mIF confirmed RNA-seq observations and additionally showed
a large endogenous T-cell increase post-infusion

The PRE (N¼ 58) andD11 (N¼ 53) tumor biopsies were examined
by mIF to further examine the immune cell subsets (38, 39). On
average, for the samples with matched RNA-seq and mIF data, the
correlation between gene expression and cell density was moderate to
high (Supplementary Fig. S9A), as measured by Spearman r. The T-
cell genes (CD3D, PDCD1, and CD8A) were highly correlated (0.62–
0.73) with their respective T-cell marker densities. Macrophage-
related markers (CD163, PD-L1, and IDO1) had a similar range of
correlations (0.66–0.79). However, B-cell markers CD19 and CD20
had lower correlations: 0.39 and 0.58, respectively.

Examination of the measured cell densities in the PRE samples
demonstrated that the T-cell association trends with CR were highest
for PD-1þ T cells using the month-1 assessment, while PD-1þ T cells
with later time point assessments and general CD3þ cells (i.e., irre-
spective of the PD-1þ marker) did not trend with CR (Fig. 5A;
Supplementary Fig. S9B). Conversely, a subset of CD163þ macro-
phages, those that were IDO1þ or PD-L1þ, and proliferating tumor
cells (measured as KI67þ and CD3– cells) appeared to be higher in the
PRE samples of patients with PD (Fig. 5A; Supplementary Fig. S9C
and S9D).

In D11 biopsies, the EGFR marker was used to distinguish CAR T
cells from endogenous T cells, with a correlation of 0.691 (Spearman r)
between the liso-cel CAR gene expression in the RNA-seq data and the
EGFRþ cell density in the mIF data (Supplementary Fig. S9A). Both
endogenous (EGFR�) and CAR (EGFRþ) CD4þ and CD8þ cells were
higher in D11 samples of patients achieving month-3 CR versus
patients with PD (Fig. 5B). Furthermore, the CAR T cells comprised
on average 5% of the T-cell density in the D11 samples (Fig. 5B).

Discussion
Although previous studies have described the influence of tumor

and TME biology on CAR T-cell therapy outcomes, this is the largest
study using both RNA-seq and mIF to examine the role of the
pretreatment and posttreatment TME in patients with LBCL with
long-term follow-up.On the basis of patient and disease characteristics
of the PRE and D11 patient groups, the groups are generally similar to
one another. The patient and disease characteristics of both groups are
also similar to those of the overall study population as previously
reported (15), except for numerically highermedianC-reactive protein
and lactate dehydrogenase in the PRE group and numerically higher
proportion of the sum of the product of perpendicular diameters
(SPD) ≥50 cm2 in both the PRE and D11 groups (Table 1). The
C-reactive protein is considered a measure of inflammatory state and
lactate dehydrogenase and SPD are considered markers of tumor
burden. The CR rate in patients with PRE and D11 RNA-seq samples
was 47% and 59%, respectively, and, therefore, within the 95%CI of the
CR rate reported for the overall population [CR rate of 53% (95% CI,
46.8–59.4; ref. 15]. Because the D11 biopsy requires accessible tumor,
there is a concern that the patients with aD11 biopsy could have higher
tumor burden compared with the PRE group. However, we found this
not to be the case, as the D11 patient group had lower tumor burden

Figure 3.

T-cell correlation network in PRE samples.A, Circles are colored by the log2-fold
change difference between CR and PD at 3 months, with blue for genes which
are higher in CR versus PD and yellow for genes higher in PD compared with CR.
B, Circles in this plot have the same gene layout as (A) but are colored by the
log2-fold change between CD4þ and CD8þ cells from a public data set of CD4þ

and CD8þ cells purified from blood (GSE60424). Blue indicates the gene was
expressed higher in CD4þ cells and red indicates the genewas expressed higher
in CD8þ cells. In both plots, gene nodes are outlined with a darker circle if that
gene had a significant P value in the corresponding comparison.
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(numerically lower baseline SPD and lactate dehydrogenase) and
better outcomes (higher CR rate) than the PRE group. In addition,
the D11 patient group did not exhibit a different PFS from the full
cohort (log-rank P ¼ 0.84).

CR-associated biology
Some lymphoma subtypes (e.g., classical Hodgkin lymphoma and

T-cell histiocyte-rich LBCL) have a paucity of lymphoma cells amidst a
dominant polyclonal microenvironment and appear to have a better
response to immune checkpoint blockade than DLBCL (5). In a study
with 25 patients, Rossi and colleagues (12) observed elevated Immuno-
sign 21 gene signature and Immunoscore (measure of intratumoral
densities of CD3þ and CD8þT cells; ref. 41) were associated with a CR
to axicabtagene ciloleucel therapy. In a study of 10 patients that
employed a different CD19 CAR T-cell therapy (JWCAR029; ref. 13),
increased expression of immune-related chemokine receptors, adhe-
sion molecules, and activated T cells were observed in patients with a
CR versus PR.Our RNA-seq andmIF data indicate pretreatment levels
of T cells are associated with better response, which is consistent with
the results of prior studies.

The RNA-seq and mIF data allowed us to characterize the subtype
and functional state of the TME immune cells.We found that PD-1þT
cells in the PRE samples are trending as more associated with CR
than total T cells (Supplementary Fig. S9D). However, no significant
correlation was observed between BOR to tisagenlecleucel and PD-1þ

T cells (42). TheT-cell correlation network analysis of the PRE samples

shows that both CD4þ and CD8þ genes are associated with month-3
CR (Fig. 3), although CD4þ genes may be slightly more associated. In
summary, the pretreatment state of T cells demonstrated that CD4þ,
CD8þ, and PD-1þ T cells may be important elements of the TME to
support a positive response to treatment. In the PRE samples, the
greater number of differential genes between CR and PD was found
when using themonth-3 assessment, which could imply that the tumor
biology plays a larger role in the midterm response, whereas initial
response (�1month) and longer-term response (>12months) may be
more related to tumor burden, product composition, or longer-term
CAR dysfunction or persistence.

D11 post-infusion samples showed increased immune infiltration
(T cells and macrophages) in patients who developed a CR versus PD.
In addition, in D11 biopsies, although infiltrating CAR T cells were
associated with a CR, only approximately 5% of the T cells within the
post-infusion biopsies were CAR T cells. This is similar to the
percentage of CAR T cells reported with axicabtagene ciloleucel
treatment in 17 patients (43). We and others (43) hypothesize that
cytokines and other factors produced by CAR T cells invading the
tumor result in an inflamed TME, enabling endogenous T cells and
macrophages to aid in response.

We used the 30 patients with paired PRE and D11 samples to
understand how pretreatment tumor biology may lead to D11 T-cell
infiltration. As expected, there was a significant correlation between
pretreatment levels of T-cell genes and post-infusion levels of CAR T
cells and endogenous T-cell gene expression. However, the gene set in

Figure 4.

Immune gene changes between PRE
and D11 samples. A–D, CD3D, liso-cel
CAR construct, CD14, and CD19 gene
expression in PRE versus D11 samples
and split by month-3 CR and PD. The
P values were calculated using a
Wilcoxon test. The liso-cel CAR con-
struct plot used transcript per million
values without any batch correction.
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Figure 5.

Multiplex immunofluorescence.A,The left plot shows the cell density of PD-1þCD3þ cells from thePREbiopsies, split into twogroupsbasedon theirmonth-1 response
assessment (CR and PD); all other responses are excluded from the plot. The middle panel shows the cell density of KI-67þ non–CD3þ cells, split by the month 9
response assessment. The right panel shows the dual-positive PD-L1þCD163þ cells split by the month 9 response assessment. B, In the grid, the D11 cell densities for
the CART cells (EGFRþ) are shownon the left and the endogenous T cells (EGFR–) are shownon the right. The top plots are CD4þ cells and the bottomplots are CD8þ

cells. The samples are split and colored by themonth-3 response assessment. In all plots, theWilcoxonP value is shownand the y-axis is log10 cell density (cells/mm2).
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the PRE samples that was most correlated to the D11 T cells was the
Lenz stromal-1 signature (Supplementary Fig. S8C). The stromal-1
signature is prognostically favorable in rituximab, cyclophosphamide,
doxorubicin hydrochloride, vincristine sulfate, and prednisone treat-
ment (1) and was also significantly enriched in this study in the PRE
samples of patients achieving a month-3 CR (Fig. 1C). One aspect of
stromal biology is exemplified by the higher expression of chemokines
such as CCL21, a T-cell chemoattractant expressed by stromal cells
that is related to T-cell trafficking in tumor-draining lymph nodes (44)
but is also associatedwithmigrationofmalignant lymphocytes (45, 46).
In summary, a higher pretreatment level of T cells and stromal cells is
correlated with increased immunity after liso-cel infusion and higher
CR rates.

PD-associated biology
Liso-cel–treated patients with LBCL who had month-3 PD

tended to have noninflamed tumors with higher levels of tumor
cell proliferation. Using gene set enrichment, we found that EZH2
targets and transcription regulators (e.g., MYC, E2F, MTORC1, or
other proliferative and cell-cycle pathways) were observed in
patients with PD. We demonstrated that the proliferation and
EZH2 target score in PRE biopsies were inversely correlated with
T-cell gene expression in pretreatment and posttreatment biopsies
in this study and other LBCL cohorts. Recent studies of lymphoma
biopsies have shown DLBCL tumors have higher expression of
proliferation genes than FL tumors (47). In addition, a double-hit
gene expression signature (28) identified 40% of patients with a
positive signature in this study, rather than 13% HGL as seen in the
full study (15), and patients with this signature had shorter PFS.
This is in contrast with the observation that the clinically deter-
mined HGL group had no significant difference in outcome in the
full study. We also found that the melanoma tumor intrinsic gene
set (30) was higher in DLBCL tumors where there were fewer T cells
and where the patients had a worse month-3 response. In addition,
the mIF data confirmed the RNA observation that PRE samples
with higher tumor cell proliferation (i.e., non–T-cell KI-67þ) at
pretreatment had worse response rates.

The DLBCL TME gene expression classifier was developed and
shown to enrich for responders to the cereblon E3 ligase modulator
(CELMoD) agent avadomide (CC-122; ref. 33). DLBCL TME classifier–
positive samples were previously shown to have more stromal, macro-
phage, and/or T-cell content than classifier-negative samples, which
had more B-cell and proliferative gene expression. We found that
patients with very low TME classifier probability scores were more
likely to progress, consistent with both the higher proliferation and
reduced levels of stromal cells observed in the TME classifier–
negative patients. In addition, despite the impact of COO on other
LBCL therapeutic outcomes, there is not an association of COO
with outcome in this cohort.

There are several drugs which could potentially change the tumor
into a more favorable state for liso-cel or CAR T-cell infiltration and
response. In lymphoma, EZH2 activity-enhancing mutations leads to
increased cell proliferation and reduced antigen presentation (5).
CDK4/6 inhibitors have been shown in both posttreatment clinical
samples and mouse models to increase tumor immunity (48). Immu-
nomodulatory drugs (IMiD) and CELMoD agents have been shown to
increase IFN pathway genes in lymphoma cell lines (49) and in tumors
after patients with DLBCL receive avadomide treatment (50). These
observations suggest future experiments with EZH2 or CDK4/6
inhibitors, IMiDs, or CELMoDs to explore the interplay between
tumor biology and the TME.

Impact of macrophages
Myeloid cells can have suppressive functions against CAR T

cells (10). Yan and colleagues showed that 3 patients with higher
levels of macrophage genes had PRs compared with 5 patients with
CRs who had lower levels of macrophages (13). However, in Rossi and
colleagues, patients with higher pretreatment levels of macrophage
genes also had higher levels of T-cell and immune genes in general and
were more likely to respond to treatment (12). In our study, we found
the pretreatment gene expression patterns for myeloid markers were
not associated with CR or PD. However, results obtained throughmIF
indicated that higher PD-L1þ or IDO1þ macrophages may trend
towards being higher in PRE samples of patients with PD (Fig. 5A;
Supplementary Fig. S9). This data, along with the observation that
macrophages were more prevalent in D11 samples of patients with
month-3 CR versus PD, suggest macrophages have both pro- and
antitumor activity depending on their activation state. Thus, depletion
of myeloid cells may be detrimental, and it may be more productive to
alter the functional state of macrophages in LBCL prior to therapy to
improve response to CAR T cells.

FL-like tumor biopsies
The observation that patients with a high FL-like gene expression

pattern had a better response to liso-cel provides additional clues for
understanding at least one of the mechanisms of response. To further
understand FL-like gene expression, amore detailed look at FL biology
is warranted. FL is characterized by tumor-infiltrating lymphocytes,
including regulatory T cells and tumor-associated macrophages, and
the tumor cells depend heavily on the TME for proliferation and
survival (4). We identified a subset of patients with LBCL who
exhibited an elevated FL-like gene expression signature that was
associated with favorable outcomes in response to liso-cel. Although
a high FL-like score was trending to be more common in patients
with tFL, and the latter had a better outcome in the full study (15),
the FL-like score was more important than tFL status in several
statistical models of predicting CR at month 3. This suggests that
FL-like gene expression is not exclusive to tFL and that it could play
an important role in understanding response. The current data set
suggests that an “FL-like” TME in LBCL is associated with favorable
response to liso-cel therapy and provides the basis for further
investigation of the association of pretreatment gene expression
and response to liso-cel.

Limitations
Although the pretreatment gene expression data highlight some

significant correlates for response, gaps remain in our full understand-
ing of the role of the TME. Further analysis of the tumor biopsy
signatures integrated with other patient factors, drug product features,
or persistence of functional CART cells post-infusionmay help inform
a more complete view of the mechanisms of response and relapse. In
addition, lymphoma tumor genetics, such as PD-L1 structural variants
or other tumor genetic alterations (MYC, TP53, NFkB, NOTCH2,
BCL2/6/10, FAS), have been shown to help clarify the mechanisms of
tumor immune escape (5), and tumor genetic data is not available for
these patients.

Conclusion
This analysis identified novel gene expression signatures associated

with response to liso-cel and provided insights into how tumor biology
and the TMEmay affect response to liso-cel and CAR T-cell therapies
in LBCL in general. These data will generate hypotheses to explore
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additional combination therapy strategies and next-generation CAR
T-cell therapies.
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