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Abstract: Significant mortalities of racing pigeons occurred in Australia in late 2011 associated with
a pigeon paramyxovirus serotype 1 (PPMV-1) infection. The causative agent, designated APMV-
1/pigeon/Australia/3/2011 (P/Aus/3/11), was isolated from diagnostic specimens in specific
pathogen free (SPF) embryonated eggs and was identified by a Newcastle Disease virus (NDV)-
specific RT-PCR and haemagglutination inhibition (HI) test using reference polyclonal antiserum
specific for NDV. The P/Aus/3/11 strain was further classified as PPMV-1 using the HI test and
monoclonal antibody 617/161 by HI and phylogenetic analysis of the fusion gene sequence. The
isolate P/Aus/3/11 had a slow haemagglutin-elution rate and was inactivated within 45 min at
56 ◦C. Cross HI tests generated an R value of 0.25, indicating a significant antigenic difference
between P/Aus/3/11 and NDV V4 isolates. The mean death time (MDT) of SPF eggs infected with
the P/Aus/3/11 isolate was 89.2 hr, characteristic of a mesogenic pathotype, consistent with other
PPMV-1 strains. The plaque size of the P/Aus/3/11 isolate on chicken embryo fibroblast (CEF)
cells was smaller than those of mesogenic and velogenic NDV reference strains, indicating a lower
virulence phenotype in vitro and challenge of six-week-old SPF chickens did not induce clinical signs.
However, sequence analysis of the fusion protein cleavage site demonstrated an 112RRQKRF117 motif,
which is typical of a velogenic NDV pathotype. Phylogenetic analysis indicated that the P/Aus/3/11
isolate belongs to a distinct subgenotype within class II genotype VI of avian paramyxovirus type 1.
This is the first time this genotype has been detected in Australia causing disease in domestic pigeons
and is the first time since 2002 that an NDV with potential for virulence has been detected in Australia.

Keywords: pigeon paramyxovirus 1 (PPMV-1); Newcastle disease virus (NDV); avian orthoavulavirus 1
(AOAV-1); avian paramyxovirus 1 (APMV-1); pathogenicity; Australia; pigeon; Columba livia

1. Introduction

Newcastle disease (ND) is one of the most important transboundary viral diseases of
poultry and wild birds worldwide. The causative agent, avian orthoavulavirus 1, also known
as avian paramyxovirus serotype 1 (APMV-1) and Newcastle disease virus (NDV), has an
enveloped virion with a non-segmented, single-stranded, negative-sense RNA genome,
and belongs to the genus Orthoavulavirus of the Paramyxoviridae family [1]. The NDV
genome is approximately 15 kb and comprises six genes encoding six structural proteins
(nucleoprotein [N gene], phosphoprotein [P gene]), matrix [M gene], fusion [F gene],
hemagglutinin-neuraminidase [HN gene], and the RNA-dependent RNA polymerase
[L gene]) [2]. The amino acid sequence at the protease cleavage site of the fusion protein is
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known to be a major determinant of NDV virulence [3]. However, in vitro studies have
demonstrated that five other genes also contribute to the overall pathogenicity of NDV [4].

NDV has been reported to infect over 200 species of birds, but the severity of disease
varies with both host (species, age and immune status) and virus strain (pathotype, dosage
and route of infection) [4–6]. Based on the severity of disease in chickens, NDV strains
are categorized into three main pathotypes, lentogenic (avirulent), mesogenic (moderately
virulent) and velogenic (virulent) [7]. Phylogenetically, NDV is classified into two distinct
classes, class I and II, all within a single serotype [8]. Class I viruses are almost entirely
avirulent and are commonly isolated from waterfowl [9]. Class II viruses comprise the
vast majority of the sequenced NDVs, including viruses virulent for poultry across 21
genotypes [10].

Pigeon paramyxovirus type 1 (PPMV-1) is an antigenically variant genotype of NDV
with a unique monoclonal antibody (MAb) binding profile [11]. Since first emerging in
the Middle East in the late 1970s, it has spread throughout Europe and is now found
worldwide [12].

In Australia, outbreaks of disease associated with PPMV-1 were first detected in
August 2011, in the state of Victoria. The clinical signs observed in these pigeons included
high mortalities (50–100%), along with gastrointestinal and neurological signs. The disease
quickly spread to affect domestic pigeons (hobby and fancy pigeons) and feral rock pigeons
(Columba livia). A spotted turtle dove (Streptopelia chinensis) and a collared sparrowhawk
(Accipter cirrocephalus) were also infected [13].

PPMV-1 has been attributed to a number of outbreaks of ND in chickens and other
species [14] and there was a concern that extensive and widespread outbreaks of ND in
pigeons might affect the Australian poultry industry and native wild avian species. Whilst
the pathogenicity of PPMV-1 for different host species can be variable, a number of studies
demonstrated that the virulence of PPMV-1 can increase the following passages through
chickens [6,15]. The objective of this study was to investigate the biological, antigenic
and genetic properties of the P/Aus/3/11 isolate and undertake both in vitro and in vivo
assessments of pathogenicity. This information could then be used to better understand
the risk that this virus posed to poultry and to inform management decisions.

2. Materials and Methods
2.1. Ethics Statement

Animal work was conducted with the approval of the CSIRO Australian Centre for
Disease Preparedness (ACDP) Animal Ethics Committee (application number AEC 1498).
All procedures were conducted according to the guidelines of the National Health and
Medical Research Council as described in the Australian code for the care and use of
animals for scientific purposes [16].

2.2. Virus Isolation and Identification

Specific pathogen-free (SPF) embryonated chicken eggs (ECEs) were provided by
Australian SPF Services Pty Ltd. (Woodend, Australia). ECEs were used for virus isolation,
sub-culture and titration. Chicken embryo fibroblast (CEF) cells were prepared from
9–10-day-old SPF embryonated eggs as described previously [17].

Virus isolation from oropharyngeal and cloacal swabs was conducted by inoculation
of 9-day-old SPF ECEs via the allantoic cavity. Allantoic fluid that tested positive for
haemagglutination was further tested by HI, as described below. Harvested allantoic
fluid was aliquoted and stored at −80 ◦C for subsequent characterisation and use in for
chicken challenge trials. The infectious titre of the virus stock was determined by titration
in embryonated chicken eggs and the 50% egg infectious dose (EID50)/mL was calculated
according to the method of Reed and Muench [18]. The prototype viral isolate was obtained
from a pigeon cloacal swab and was designated APMV-1/pigeon/Australia/3/2011 (herein
referred to as P/Aus/3/11). Chicken antiserum to this isolate was subsequently prepared
in SPF chickens at ACDP.
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2.3. Hemagglutination (HA) and Hemagglutination Inhibition (HI) Tests

Specific avian influenza (H1–H16) and avian paramyxovirus (APMV) (types 1–4
and 6–10) reference stock antigens and antisera (full list of reagents available on request)
were prepared in SPF chicken embryos and chickens, respectively, at ACDP using proce-
dures previously described [5]. NDV-specific MAbs 617/161, raised against the APMV-
1/Pigeon/Engl/617/83 isolate, and U85, raised against the Ulster 2C isolate, were kindly
provided by Dr Ruth Manvell, Veterinary Laboratories Agency, Weybridge, UK.

HA and HI tests were conducted by conventional microtiter methods [5]. Four HA
units of each test antigen were tested for reactivity with a panel of avian influenza (AI)
and avian paramyxovirus (APMV type 1–4, 6–10) reference antisera as well as the MAbs
617/161 and U85 in HI assays (King 1996). The antigenic relationship between an index
virus and other representative isolates was determined from the HI-titre ratios between
P/Aus/3/11 and NDV V4 isolate using the Archetti’s formula [19].

2.4. Elution Rate and Hemagglutinin Thermostability

The haemagglutinin-elution pattern of the isolate was determined according to previ-
ously described methods [20]. Each strain was performed in triplicate in 96-well HA plates
and held at 4 ◦C whilst haemagglutination and elution patterns were observed. At the end
of 24 h, the test plate was shaken, the contents resuspended and the test read 2 h later. Red
blood cell elution occurring at 24 h or later is recorded as a slow elution time, while elution
prior to 24 h is recorded as a fast elution time. The hemagglutinin thermostability of the
virus at 56 ◦C was measured as previously described [21]. Thermostability was reported as
the period of persistence of agglutination of chicken erythrocytes within a selected period.

2.5. Plaque Formation

Infective allantoic fluid was inoculated onto CEFs and maintained in Minimum Es-
sential Medium (Gibco, Waltham, MA, USA) with and without the addition of 0.1 µg/mL
trypsin to determine trypsin dependency for replication [17,22]. CEF cultures were inocu-
lated with ten-fold dilutions of the P/Aus/3/11 isolate and representative NDV strains in
6-well plates (Nunclon). CEF monolayers were washed after 1 hr absorption at 37 ◦C and
overlaid with 2 mL/well of 1.5% (w/v) carboxymethyl-cellulose (CMC) (Sigma, St. Louis,
MO, USA). The cultures were incubated for 6 days at 37 ◦C in a humidified CO2 incubator
and plaques visualised by fixing and staining overnight with 0.1% (w/v) methylene blue
in 4% (v/v) formaldehyde solution. Following washing and drying, plaque diameters
were measured directly from the 6-well plates by the selection of discrete and predominant
plaques with a millimeter ruler.

2.6. Pathogenicity Tests

Mean death time (MDT) in eggs and experimental infections of chickens were used
to assess the pathogenicity of P/Aus/3/11. The MDT was determined using SPF chicken
embryos using previously described methods [23]. Then, 0.1 mL of each virus dilution
(10−6 to 10−9) were inoculated into the allantoic cavity of five 9–10-day-old embryonated
SPF chicken eggs. All eggs were then incubated at 37 ◦C and examined twice daily for
5 days. The minimum lethal dose is the highest virus dilution that causes all embryos
inoculated with that dilution to die. The MDT was determined as the mean time in hours
for the minimum lethal dose to kill embryos.

Thirteen, 6-week-old SPF chickens were experimentally infected with P/Aus/3/11.
Prior to challenge, serum was collected from each chicken to confirm that birds were
serologically negative for NDV antibodies, as determined by HI test. The inoculum
was prepared by diluting allantoic fluid in phosphate-buffered saline (PBS) and was
administered at a dose of 108.7 EID50 in 0.5 mL to each chicken by droplet via the ocular,
oral and nasal routes. Chickens were monitored daily for the onset of clinical disease.
All birds were swabbed (oral and cloacal) daily and samples were tested by real-time
RT-PCR and, for selected PCR-positive swabs, virus isolation in ECEs. Swabs were placed
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into PBS containing antibiotics at 100 units/mL penicillin (JRH Biosciences, Lenexa, KS,
USA), 100 µg/mL streptomycin (Sigma) and 50 µg/mL gentamycin (Sigma). On days 2,
4, 6 and 8 post inoculation (PI), two birds were randomly selected and euthanased for
pathological analysis, to attempt to detect any early viral replication in tissues. Euthanasia
was performed by cervical dislocation following heart bleed under anaesthesia (ketamine
44 mg/kg, xylazine 8 mg/kg injected intramuscularly). The remaining 5 birds were housed
for 3 weeks and then euthanased.

Histological analysis of chicken tissues following infection was performed as described
previously [24]. Briefly, tissues were fixed in 10% neutral-buffered formalin for 24 h,
processed into paraffin wax, cut and stained using haematoxylin and eosin, along with
immunohistochemistry against the NDV nucleoprotein (MAb Q91-6).

2.7. RT-PCR and Sequencing

Viral RNA was extracted from virus isolate, P/Aus/3/11, or directly from clini-
cal samples using the MagMAX Viral Isolation Kit (Applied Biosystems, Foster City,
CA, USA), as per the manufacturer’s protocol. Real-time RT-PCR was performed to
detect viral RNA in swabs using the AgPath-ID One-Step RT-PCR kit (Applied Biosys-
tems, Foster City, CA, USA). Primer and probe sequences targeting the F gene were: 5’-
GTCAATCATAATCAAGTTACTCCCAAAT-3’ (forward), 5’- GTAGTCAATGTCCTGTTGTA
TGCCTC-3’ (reverse) and 5’-FAM–TTTTGCACACGCCT (probe).

Sanger sequencing of complete F-gene sequence from five original specimens (2011-
3311 to 2011-3315) was performed. These samples were obtained from the first five proper-
ties to be infected with the virus, were all epidemiologically related and were all obtained
within a one-month period. In brief, RT-PCR was performed on extracted RNA using the
Superscript® III One-step RT-PCR system with platinum® Taq DNA polymerase (Invit-
rogen, Carlsbad, CA, USA) using previously published primers [25]. DNA was purified
following agarose gel electrophoresis using QIAquick gel extraction kit (Qiagen, Hilden,
Germany) according to manufacturer’s instructions and then sequenced using the Big Dye
terminator sequencing system (Thermofisher, Waltham, MA, USA). Sequencing reactions
were run and analysed on a 3130XL genetic analyser (Thermofisher). The full-length fu-
sion genes were checked and consensus sequence compiled using Seqman Pro v.15 in the
lasergene software package (DNASTAR, Madison, WI, USA).

Maximum likelihood (ML) phylogenetic trees were constructed using MEGA6 soft-
ware [26]. The phylogenetic dataset consisted of 189 near-complete NDV F gene sequences
(1650 nucleotides in length) from samples in this study along with 125 sequences from
the pilot dataset of the recently updated NDV classification system [8] and additional
representative NDV genotype VI sequences from Genbank.

Whole genome sequencing was performed using the Illumina MiSeq platform (Il-
lumina, San Diego, CA, USA). cDNA was synthesized using extracted RNA by using
cDNA primer: 5’- GTTTCCCAGTAGGTCTCNNNNNNNN-3’, and treated with Klenow
DNA polymerase I (Promega) for end repair and PCR amplification was performed using
the Roche Expand™ High Fidelity Plus kit (Sigma Aldrich, St. Louis, MO, USA) with
primer: cgccGTTTCCCAGTAGGTCTC adapted from Palacios et al. [27]. An Illumina
Nextera XT DNA library was prepared from purified PCR products following manufac-
turer’s instructions. Library DNA was quantified using the Invitrogen Qubit™ ds DNA
HS assay (Thermofisher, MA, USA) and the average library size was determined on a
bioanalyser using the Agilent high sensitivity DNA kit (Integrated Sciences, Chatswood,
NSW, Australia). FASTQ files were obtained following a v2:500 cycle paired end run.
Consensus sequence data were obtained following reference mapping in Geneious Pro v.11
(Biomatters, Auckland, New Zealand).
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3. Results
3.1. Virus Isolation and Identification

SPF eggs inoculated with cloacal swabs from diseased or dead pigeons died between
3 to 5 days PI. Allantoic fluid harvested from these eggs showed HA titres ranging from
22 to 25. The P/Aus/3/11 isolate was inhibited by polyclonal antiserum to NDV V4,
but not AI or other avian paramyxovirus reference sera. Thus, the P/Aus/3/11 isolate
was identified antigenically as avian paramyxovirus serotype 1, and further classified as
PPMV-1 using PPMV-1 specific MAb 617/161 in the HI test.

3.2. Virus Characterization

Serial passages of the P/Aus/3/11 isolate in SPF ECE at a single dilution of inoculum
resulted in increasingly higher numbers of egg deaths following each passage, up until the
fifth passage (Table 1). The majority of ECE replicates had an HA titre of 27.

Table 1. Virus growth in chicken embryonated eggs.

Pass No. Inoculum Number of Dead Eggs Post Inoculation (PI) Number of Live Eggs at
the End of CultureDilution Egg No. D2 D3 D4 D5

1 NA 3 1 (0) * 1 (2) 1 (16) (C5 **)
2 neat 3 1 (0) 1 (16) 1 (64)
3 10−3 21 1 (0) 12(16 †), 6 (32 †) 2 (64 †) (C4)
4 10−3 36 7 (64 †) 28 (128 †) 1 (128) (C3)
5 10−3 6 1 (32) 3 (128 †) 1 (128), 1 (256)

* Number of eggs (HA titre); ** days post inoculation at the end of culture; † pooled allantoic fluids.

The P/Aus/3/11 isolate showed high levels of cross-reactivity to classical NDV
isolates using polyclonal antisera to NDV V4 strain and to P/Aus/3/11 in the HI test
(Table 2). However, comparison of cross-reactivity between P/Aus/3/11 and NDV V4
isolates resulted in an R value of 0.25, indicating a significant antigenic difference between
these two strains [18]. The NDV-specific Mab U85 reacted at varying titres with all APMV-1
isolates tested, including P/Aus/3/11. However, the PPMV-1 specific Mab 617/161 only
reacted with the P/Aus/3/11 isolate.

Table 2. Reactivity of monoclonal antibodies and polyclonal antisera with representative avian
paramyxovirus serotype-1 (APMV-1) isolates by HI.

Isolates Virulence MAbs Polyclonal Antisera

617/161 U85 P/Aus/3/11 V4

P/Aus/3/11 Unknown 1024 4 256 512
Texas GB Neurotropic velogenic <2 32 8 128
Herts 33 Viscerotropic velogenic <2 16 16 512
Komarov Mesogenic <2 512 64 1024

Beaudette C Mesogenic <2 1024 64 1024
B1 Lentogenic 2 256 32 512
V4 Lentogenic <2 4 32 1024

The haemagglutinin-elution pattern of the P/Aus/3/11 isolate was determined by
reading HA titres at 24 hrs and after the resuspension procedure. HA titres were checked
until 120 hrs after resuspension. The P/Aus/3/11 isolate had a slow elution rate from
chicken red blood cells (Table 3).
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Table 3. HA-elution patterns of APMV-1 isolates.

Strain Original
HA Titre

HA-Elution after Elution
Pattern24 h Resuspension 120 h

P/Aus/3/11 128 32 128 <2 Slow
Texas GB 64 32 128 <2 Slow
Herts 33 128 8 256 <2 Slow
Komarov 256 256 512 <2 Slow

Beaudette C 256 64 128 32 Slow
B1 512 <2 <2 <2 Rapid
V4 256 256 512 256 Slow

The hemagglutinin of the P/Aus/3/11 isolate was considerably thermostable and
HA activity was maintained until 45 min incubation at 56 ◦C, whereas thermostability for
APMV-1 isolates B1, Komarov, Herts 33, Texas GB was 5, 15, 25 and 90 min, respectively. The
Beaudette C and V4 isolates retained haemagglutinating activity after 120 min incubation
(Table 4).

Table 4. HA thermostability of the P/Aus/3/11 isolate at 56◦C.

Original
HA Titre

Haemagglutinin Thermostability after (min)

1 5 10 15 20 25 30 45 60 90 120

P/Aus/3/11 128 128 64 64 64 32 32 8 <2 −
Texas

GB 64 64 32 32 32 16 16 16 4 4 <2 −

Herts 33 128 128 128 128 128 <2 <2 −
Komarov 256 128 128 8 <2 −
Beaudette

C 256 256 256 128 64 64 64 64 64 64 32 32

B1 512 512 256 −
V4 256 256 256 256 256 256 256 256 128 128 64 32

The MDT for the P/Aus/3/11 isolate was 89.2 hr, which is close to the cut off between
lentogenic and mesogenic categories of NDVs as per the OIE criteria; that is, lentogenic
strains cause death in >90 h, whereas mesogenic strains cause death in 60–90 h.

The P/Aus/3/11 isolate exhibited syncytia in CEFs in the presence of trypsin, com-
pared with single-cell infection without syncytia when trypsin was absent. However,
using the CMC overlay, the virus caused syncytium formation without exogeneous trypsin
(Figure 1). Although the P/Aus/3/11 isolate may replicate in CEF without the addition of
trypsin, five serial passage of virus in CEF did not result in an increase in HA titre, which
was similar to the findings with virus growth in chicken embryos.

The P/Aus/3/11 isolate caused plaque formation but grew slowly compared to the
reference NDV isolates tested. On day 6 PI, the P/Aus/3/11 isolate produced clear, well-
defined plaques of 1–2 mm in diameter, whereas Komarov, Texas GB and Herts produced
clear 1.5–2 mm, 2–3.5 mm and 3–4 mm plaques, respectively. The lentogenic strain NDV
V4 did not plaque under the experimental conditions used.
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Figure 1. Cytopathic effect (arrowheads) in inoculated chicken embryo fibroblast with P/Aus/3/11, Komorov and CEF
control with (bottom three) and without (top three) the addition of carboxymethyl-cellulose in the absence of trypsin (10×).

When inoculated into chickens, no birds showed any abnormal clinical signs. In
addition, there were no lesions detected histologically and no evidence of positive immuno-
histochemical staining. Virus shedding was assessed by real-time RT-PCR testing of cloacal
and choanal swabs. Relatively low levels of shedding from the cloacal route were observed
in the infection group, beginning on day 2 PI (2/13 birds) and continuing until day 14 PI
(Table 5). However, the percentage of birds shedding on each collection day varied from
0% (day 5 PI) to 60% (day 10 PI). Some birds showed intermittent shedding (# 5, 12, 13),
while virus was detected in swabs collected from bird # 10 from day 7 to 12, indicating
continuous shedding over this period. Relatively higher levels of virus detection were
observed from choanal samples, with all birds testing positive from day 1 to 5 PI (Table 5).
Following this, the number of birds that test positive gradually decreased to single birds
from day 9 PI. All five birds held until the end of the study had seroconverted with titres
ranging between 1:32–1:512/0.05 mL.
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Table 5. Virus detection by real-time RT-PCR testing of cloacal and choanal swabs collected from SPF chickens experimentally infected with P/Aus/3/11 isolate.

Bird No.
Virus Detection (Ct) on Day Post Infection (Cloacal/Choanal Swabs)

1 2 3 4 5 6 7 8 9 10 12 14 21

1 -*/31.6 ± -/34.8 -/36.9 -/36.7 x

2 -/34.0 35.9/34.9 -/31.2 -/33.6 -/35.2 -/- -/- -/- -/- -/- -/- -/38.1 ND
3 -/32.9 -/34.7 x

4 -/32.4 -/34.0 -/32.9 -/33.9 x

5 -/28.1 -/32.7 -/29.9 -/28.4 -/30.6 -/- 36.9/- 37.7/- -/- 36.2/- 34.2/- 33.3/- -/-
6 -/29.4 -/34.3 -/33.5 36.7/28.1 -/35.6 -/37.7 x

7 -/29.5 -/34.4 x

8 -/27.4 -/32.8 -/32.4 -/33.3 -/31.9 -/32.9 -/30.6 -/37.4 x

9 -/32.5 -/34.1 -/33.0 -/33.1 -/36.8 -/- -/37.6 -/38.1 -/- -/- -/- -/- ND
10 -/33.3 -/31.8 -/35.9 -/33.5 -/31.7 -/36.5 36.8/- 33.4/34.8 33.5/36.7 31.7/36.6 38.0/- -/- ND
11 -/30.8 -/35.2 -/34.3 -/29.8 -/28.7 -/31.1 x

12 -/32.5 37.7/34.0 -/31.6 -/32.7 -/34.9 36.2/37.7 -/- -/36.9 -/- 37.3/- -/- 29.8/- ND/-
13 -/30.4 -/31.0 37.6/33.5 -/29.2 -/33.2 35.6/37.7 -/37.0 36.9/− x

+ve% 0/100 15.4/100 9.1/100 9.1/100 0/100 22.2/66.7 28.6/42.9 42.9/57.1 20/20 60/20 40/0 60/20 ND

* realtime RT-PCR negative; ± Realtime RT-PCR Ct value; x Humanely killed; ND, not done.
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3.3. Genetic Analysis

A near complete whole genome of the P/Aus/3/11 isolate was sequenced. Nucleotide
BLAST analysis showed closest (98.09%) sequence similarity to PPMV-1/Belgium/11-
08304/2011-like viruses in Genbank. The amino acid sequence of the F gene of the
P/Aus/3/11 isolate showed the multiple basic amino acid motif 112RRQKRF117 at the
cleavage site of F protein, which is classified as virulent. The terminal extension of the
HN protein, which has long been suspected to affect virulence [28,29] was found to be
zero after the terminal sequence of “KDERV”, consistent with other pigeon paramyxovirus
strains and virulent NDVs (Table 6).

Table 6. Molecular characteristics of P/Aus/3/2011 PPMV-1 compared with closely related PPMV-1 strains and previous
NDV isolated from Australia.

Strain F Cleavage Site HN-Extension (Length: Sequence) Classification Genbank Acc. No.

P/Aus/3/2011 RRQKRF 0 VI.2.1.1.2.2 MN462666

Aus-V4/66 GKQGRL 45: REARSSRLSQLREGWKDDIVSPIFC-
DAKNQTEYRRELESYAASWP I.1.1 JX524203

Aus/98-1252 RRQRRF 9: REARSSRLS I.1.1 AY935493
Belgium/11-08304 RRQKRF 0 VI.2.1.1.2.2 JX901123

China/BJ-2013 RRQKRF 0 VI.2.1.1.2.2 KJ808819

In contrast to the genome sequence of the classical vaccine strain V4 (genotype I),
the P/Aus/3/11 isolate contains a 6-nt (TCTAAA) insertion in the 3’ UTR of the NP gene
at nucleotide 1647. Due to their influence on a range of critical virus functions such as
receptor binding, glycosylation sites were examined. Analysis of the F gene revealed six
potential glycosylation sites: 85N-R-T87, 191N-N-T193, 366N-T-S368, 447N-I-S449, 471N-N-S473

and 541N-N-T543 with the HN gene containing five potential sites: 119N-N-S121, 341N-N-T343,
433N-K-T435, 481N-H-T483 and 508N-I-S510.

The fusion gene sequences from the 2011 Australian outbreak samples shared 99.9%
sequence identity indicating the same virus strain. Phylogenetic analysis of the complete
F gene sequences (1650 bp) of the P/Aus/3/11 isolate and the related outbreak samples
revealed that they belong to Class II, genotype VI, subgenotype 2.1.1.2.2 (Figure 2), us-
ing the recently updated classification system [8]. The P/Aus/3/11 isolate had 98.7%
nucleotide identity with APMV-1/pigeon/Germany/5224/2011 and was most similar to
contemporary strains circulating in the EU since 2000 (pers. comm. Chad Fuller and Ian
Brown, AHVLA, UK). In addition, the P/Aus/3/11 isolate was not related to previous
virulent Australian NDVs (Supp. Figure S1), which belong to Class II, genotype I [10].
Virus sequences generated in this study have been deposited into Genbank under accession
numbers MN413534 to MN413538 and MN462663 to MN462668.

Analysis of the P/Aus/3/11 genome did not show any notable substitutions in amino
acid residues which have been associated with enhanced virulence [31]. In particular,
virulence associated substitutions in the L-polymerase (V169E, N1564S) and the phospho-
protein (N37D) were not observed. Instead, the S37 residue in the phosphoprotein, which
is the NDV consensus, was present in P/Aus/3/11 and closely related PPMV-1 strains
from Belgium and China. Similar to other closely related PPMV-1 strains the P/Aus/3/11
isolated also did not exhibit any of the key F (D72Y, R10M, D114R) and HN (D115S, G362K,
E347Q) mutations known to be associated with cross-species adaptation [32,33].
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Figure 2. Maximum Likelihood (ML) tree based on the virus fusion protein gene showing genotype VI 2.1.1.2.2 (extracted
from Supp. Figure S1 and denoted by vertical lines to the right of tree) with the 2011 Australian PPMV-1 virus samples
(denoted by N) belonging in genotype VI.2.1.1.2.2. The P/Aus/3/11 isolate is indicated in red. Phylogenetic relationships
were inferred using the ML method based on the General Time Reversible model [30]. Horizontal scale bar indicates the
number of substitutions per site.
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4. Discussion

The last outbreaks of Newcastle disease in Australia occurred from 1998–2002, in
which virulent ND viruses were found to evolve from endemic, less virulent, lentogenic
strains [34]. After eradication of ND in 2002, a vaccination and surveillance program was
implemented to minimise the risk associated with ND outbreaks in Australia and this
program is still in place today [35]. It was therefore concerning when in 2011, significant
mortalities in racing pigeons were detected in association with PPMV-1. As a result,
there was a need to further characterise this virus and assess its potential pathogenicity
for poultry.

A number of PPMV-1 isolates have been isolated and characterized since ND cases in
pigeons were reported in many countries in the 1970s [14,36–38]. Although the PPMV-1
isolates comprise a unique subset of NDV based on MAb binding profile, their biological
properties frequently overlap the classical NDV isolates with different pathotypes [11].
During this outbreak of PPMV-1 in pigeons in Australia in 2011, the prototype isolate
P/Aus/3/11 isolate was biologically, antigenically and genetically characterized. Genetic
analysis of F and HN genes showed that the Australian isolate had similar properties
to other mesogenic PPMV-1 strains in terms of the F protein cleavage site, the terminal
extension of the HN protein and amino acids associated with virulence.

Kommers et al. (2001) stated that not all NDV isolates from pigeons are typical of the
variant classified as PPMV-1 [12]. It is well documented that the Mab U85 reacts with most
APMV-1, whereas the Mab 617/161 reacts only with PPMV-1 isolates within the APMV-1
group by HI [39]. Thus, we further characterised the P/Aus/3/11 isolate and 24 APMV-1
strains of different virulence with two Mabs 617/161 and U85, revealing that Mab 617/161
only reacts with the P/Aus/3/11isolate, which supported this finding. Additionally, the
P/Aus/3/11 isolate showed extensive cross-reactions to classical NDV strains in the HI
test with polyclonal antisera against the V4 and P/Aus/3/11 isolates. This indicates that
the P/Aus/3/11 isolate is antigenically indistinguishable from classical APMV-1 strains
using conventional HI with polyclonal sera.

The HA titre of PPMV-1 has been reported to differ from classical NDV strains, with
the HA titre of PPMV-1 antigen used for the formulation of inactivated vaccine being lower
than that of NDV strains La Sota and Ulster [40]. Conversely, some Italian PPMV-1 isolates
had HA titres equal to or greater than 640, which was similar to the NDV strains La Sota and
B1 [19]. In the current study, HA titres of the pigeon isolates mostly ranged from 26 to 27,
with occasional titres of 28 or 29. Serial passage of the isolate in both embryos and CEFs
did not significantly increase the HA titres. This is in agreement with the previous study
that the HA activity was not affected by serial passage of PPMV-1 isolates in embryos [11].

One early study [41] showed that the period of hemagglutinin thermostability ranged
from 30 to 120 min at 56 ◦C for the virulent strains of NDV tested and less than 5 min
for lentogenic strains, suggesting that virulence of NDVs for chickens may be related to
thermostability of the hemagglutinin. Further studies showed that virulence of NDVs for
chickens was not related to thermostability of the hemagglutinin. Despite this, thermosta-
bility of the hemagglutinin of NDV has been used as a strain marker in epizootiologic
studies [21]. Our results showed that the HA activity of the P/Aus/3/11 isolate was
lost within 45 min at 56 ◦C, which was in agreement with reports of between 30 and 60
min [19], or 10 to 60 min [40]. As little information is available on HA thermostabilty of
other PPMV-1 isolates, the possibility that HA thermostability could be used as a marker
for virulence, or in epidemiological investigations merits further study.

The P/Aus/3/11 isolate had a slow elution rate from chicken red blood cells, which was
consistent with that of some PPMV-1 strains [19]. The MDT results were also similar to other
reports of pigeon isolates, with a range of nearly 90 hrs to as high as 160 hrs [19,31,42,43].
Therefore, these biological characteristics of the P/Aus/3/11 isolate were similar to those of
other PPMV-1 strains.

Lentogenic NDV strains need the addition of exogenous trypsin to form syncytia
in cell culture monolayers, whereas virulent strains do not [44]. Therefore, this property
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could be used to determine virulence of NDVs. It was suggested that the plaque size was
directly related to virulence of NDVs [45]. However, other studies have shown that it
cannot be considered as a reliable indicator for viral virulence as the plaque size highly
depends on the use of certain viral mutants, strains and cell types [46,47]. Despite this, the
plaque assay may be used to characterize NDV strains in modern ND research, particularly
for recombinant NDV strains [48] due to it being less costly in comparison with live bird
inoculation and it does not require the use of animals [49]. In the current study, the
P/Aus/3/11 isolate and other reference NDV strains following infection of CEF cells were
compared. The P/Aus/3/11 isolate formed plaques without exogenous trypsin and the
plaque size was similar to a mesogenic reference isolate (Komarov), but slightly smaller
than that of representative velogenic NDV isolates, whereas the lentogenic NDV V4 strain
did not form plaques. This agrees with previous studies showing that NDV strains with
avirulent F protein cleavage site motifs are not expected to form plaques on CEF without
additional trypsin [36]. Based on the in vitro data, it is reasonable to speculate that the
P/Aus/3/11 isolate appeared to be of intermediate virulence but is less virulent than the
virulent NDVs used in the study.

Useful tests for the assessment of NDV virulence are the MDT in embryonated chicken
eggs, the intravenous pathogenicity index (IVPI) in six-week-old chickens and the intrac-
erebral pathogenicity index (ICPI) in one-day-old chickens. Besides providing a useful
indication of virulence, MDT and IVPI are also considered to be sufficiently reliable, par-
ticularly for the assessment of NDV strains isolated from hosts other than chickens [50].
Currently, the OIE accepted methods to assess virulence of NDVs are either ICPI or the
sequence analysis of the fusion protein cleavage site. The P/Aus/3/11 isolate displayed a
112RRQKRF117 motif at the fusion protein cleavage site, which is a typical motif for virulent
NDV [44]. However, virulence of PPMV-1 does not always correlate with the cleavability
of its fusion protein [51]. Due to the animal welfare implications of using the ICPI and
IVPI tests, they were not conducted in this study, however, based on the in vitro data of
virus growth in CEFs, plaque size, MDT and F protein cleavage site motif, the P/Aus/3/11
isolate seemed likely to be of mesogenic pathogenicity in chickens.

Phylogenetic analysis using complete fusion gene sequence revealed that P/Aus/3/11
and associated outbreak virus samples were most closely related to 2011 viruses from
Belgium and China within genotype VI.2.1.1.2.2 but were not related to previous virulent
NDVs responsible for ND outbreaks in chickens in Australia (Figure 2 and Figure S1). This
indicates that the P/Aus/3/11 isolate, responsible for current outbreaks in pigeons, is
likely to have arisen from the incursion of an exotic strain of NDV/PPMV-1. Genotype
VI is the most diverse of all the NDV genotypes [8]. This is consistent with its viruses
being derived from widespread columbid species and with the viruses being responsible
for an ongoing panzootic since the 1980s. Interestingly, the Australian sequences analysed
occupy a distinct clade within subgenotype VI.2.1.1.2.2, suggesting that the Australian
strain evolved independently from the other European and Chinese viruses that belong to
this group.

Reverse genetic studies have shown the importance of the viral replication complex
in virulence [4,31,46]. The L-polymerase was shown to be associated with virulence
following studies comparing the lentogenic La Sota strain and the mesogenic Beaudette C
strain [4]. Similar studies between the PPMV-1 strain AV324-96 and the velogenic Herts 33
showed that the NP, P and L proteins were more active in Herts 33 than AV324 and played
a significant role in virulence. Passaging the pigeon variant AV324 strain in chickens
increased virulence and resulted in mutations in the virus replication complex. Virus
replication was enhanced with residue changes, P-protein N37D, L-polymerase N1564S
and V1694E [52]. None of these mutations were observed in the P/Aus/3/11 strain.

Previous studies showed that NDV strains isolated from other bird species may not
indicate their potential virulence for chickens in standard pathogenicity tests unless the
viruses were passaged several times in chickens [6,12,15]. This makes the risk assessment
for transmission and pathogenicity to poultry difficult. In this study, inoculation of chick-
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ens with a high dose of the P/Aus/3/11 isolate did not produce any clinical signs of
disease or indications of pathogenicity. However, it has previously been noted that a high
challenge dose of PPMV-1, whilst not producing clinical signs, may induce viral shedding
in chickens [32] and this is consistent with our findings which confirmed shedding from
both the choana and cloaca (Table 3). Confirmation of infection was seen via seroconversion
to P/Aus/3/11 in those birds that were sampled 3 weeks PI.

Given that virus shedding may occur with exposure of chickens to PPMV-1 (albeit at
high doses), the possibility therefore exists that this virus may increase in pathogenicity
with continued transmission and serial passage, as may occur in commercial poultry flocks
housed in high densities. Therefore, PPMV-1 may still pose a significant risk to Australian
poultry and further investigation of the potential pathogenicity of this virus is warranted.

Supplementary Materials: The following are available online at https://www.mdpi.com/1999-491
5/13/3/429/s1, Figure S1: Maximum Likelihood (ML) tree.

Author Contributions: Conceptualization, S.S., D.T.W. and D.M.; methodology, S.S., K.B., V.S.,
F.Y.K.W., J.W., D.J., D.M, K.O., D.T.W., J.B.; formal analysis, S.S., V.S., F.Y.K.W., D.T.W. and J.B.;
Writing—Original draft preparation, S.S.; Writing—Review and editing, S.S., F.Y.K.W., J.W., D.T.W.,
J.B.; supervision, D.T.W. and D.M.; project administration, S.M. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: All work involving animals was reviewed and approved by
the CSIRO Australian Centre for Disease Preparedness (ACDP) Animal Ethics Committee (application
number AEC 1498).

Data Availability Statement: The genome sequences generated in this study have been deposited
into Genbank under accession numbers MN413534 to MN413538 and MN462663 to MN462668.

Acknowledgments: We gratefully acknowledge the assistance of Geoff Gard in obtaining some of
the monoclonal antibodies and of Susie Daglas in growing the initial isolate. We also thank Trevor
Ellis and Paul Selleck for early reviews of the manuscript. We also acknowledge the support of the
ACDP animal studies team, particularly Leah Frazer and the histopathology team led by Jean Payne.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Amarasinghe, G.K.; Ayllón, M.A.; Bào, Y.; Basler, C.F.; Bavari, S.; Blasdell, K.R.; Briese, T.; Brown, P.A.; Bukreyev, A.; Balkema-

Buschmann, A.; et al. Taxonomy of the order Mononegavirales: Update 2019. Arch. Virol. 2019, 164, 1967–1980. [CrossRef]
2. Cattoli, G.; Susta, L.; Terregino, C.; Brown, C. Newcastle disease: A review of field recognition and current methods of laboratory

detection. J. Vet. Diagn. Investig. 2011, 23, 637–656. [CrossRef] [PubMed]
3. Panda, A.; Huang, Z.; Elankumaran, S.; Rockemann, D.D.; Samal, S.K. Role of fusion protein cleavage site in the virulence of

Newcastle disease virus. Microb. Pathog. 2004, 36, 1–10. [CrossRef]
4. Rout, S.N.; Samal, S.K. The Large Polymerase Protein Is Associated with the Virulence of Newcastle Disease Virus. J. Virol. 2008,

82, 7828–7836. [CrossRef] [PubMed]
5. OIE. Terrestrial Manual Chapter 2.3.14 Newcastle Disease (Infection with Newcastle Disease Virus); OIE: Paris, France, 2012; pp. 555–574.
6. Kommers, G.D.; King, D.J.; Seal, B.S.; Brown, C.C. Virulence of six heterogeneous-origin Newcastle disease virus isolates before

and after sequential passages in domestic chickens. Avian Pathol. 2003, 32, 81–93. [CrossRef] [PubMed]
7. Brown, C.; King, D.J.; Seal, B.S. Pathogenesis of Newcastle disease in chickens experimentally infected with viruses of different

virulence. Vet. Pathol. 1999, 36, 125–132. [CrossRef]
8. Dimitrov, K.M.; Abolnik, C.; Afonso, C.L.; Albina, E.; Bahl, J.; Berg, M.; Briand, F.-X.; Brown, I.H.; Choi, K.-S.; Chvala, I.; et al.

Updated unified phylogenetic classification system and revised nomenclature for Newcastle disease virus. Infect. Genet. Evol.
2019, 74, 103917. [CrossRef] [PubMed]

9. Aldous, E.W.; Mynn, J.K.; Banks, J.; Alexander, D.J. A molecular epidemiological study of avian paramyxovirus type 1 (Newcastle
disease virus) isolates by phylogenetic analysis of a partial nucleotide sequence of the fusion protein gene. Avian Pathol. 2003, 32,
239–257. [CrossRef]

10. Dimitrov, K.M.; Ramey, A.M.; Qiu, X.; Bahl, J.; Afonso, C.L. Temporal, geographic, and host distribution of avian paramyxovirus
1 (Newcastle disease virus). Infect. Genet. Evol. 2016, 39, 22–34. [CrossRef]

11. King, D.J. Avian Paramyxovirus Type 1 from Pigeons: Isolate Characterization and Pathogenicity after Chicken or Embryo
Passage of Selected Isolates. Avian Dis. 1996, 40, 707–714. [CrossRef]

https://www.mdpi.com/1999-4915/13/3/429/s1
https://www.mdpi.com/1999-4915/13/3/429/s1
http://doi.org/10.1007/s00705-019-04247-4
http://doi.org/10.1177/1040638711407887
http://www.ncbi.nlm.nih.gov/pubmed/21908305
http://doi.org/10.1016/j.micpath.2003.07.003
http://doi.org/10.1128/JVI.00578-08
http://www.ncbi.nlm.nih.gov/pubmed/18550657
http://doi.org/10.1080/0307945021000070750
http://www.ncbi.nlm.nih.gov/pubmed/12745384
http://doi.org/10.1354/vp.36-2-125
http://doi.org/10.1016/j.meegid.2019.103917
http://www.ncbi.nlm.nih.gov/pubmed/31200111
http://doi.org/10.1080/030794503100009783
http://doi.org/10.1016/j.meegid.2016.01.008
http://doi.org/10.2307/1592284


Viruses 2021, 13, 429 14 of 15

12. Kommers, G.D.; King, D.J.; Seal, B.S.; Brown, C.C. Virulence of Pigeon-Origin Newcastle Disease Virus Isolates for Domestic
Chickens. Avian Dis. 2001, 45, 906–921. [CrossRef] [PubMed]

13. Wildlife Health Australia Avian Paramyxoviruses and Australian Wild Birds. Available online: https://wildlifehealthaustralia.
com.au/FactSheets.aspx (accessed on 1 November 2019).

14. Alexander, D.J.; Wilson, G.W.; Russell, P.H.; Lister, S.A.; Parsons, G. Newcastle disease outbreaks in fowl in Great Britain during
1984. Vet. Rec. 1985, 117, 429–434. [CrossRef]

15. Alexander, D.J.; Parsons, G. Pathogenicity for chickens of avian paramyxovirus type I isolates obtained from pigeons in great
britain during 1983–1985. Avian Pathol. 1986, 15, 487–493. [CrossRef]

16. National Health and Medical Research Council. Australian Code for the Care and Use of Animals for Scientific Purposes; NHMRC:
Canberra, Australia, 2013.

17. Swayne, D.E.; Senne, D.A.; Beard, C.W. Avian Influenza. In A Laboratory Manual for the Isolation, Identification and Characterization
of Avian Pathogens, 5th ed.; American Association of Avian Pathologists: Jacksonville, FL, USA, 2008.

18. Reed, L.J.; Muench, H. A simple method of estimating fifty per cent endpoints. Am. J. Epidemiol. 1938, 27, 493–497. [CrossRef]
19. Biancifiori, F.; Fioroni, A. An occurrence of Newcastle disease in pigeons: Virological and serological studies on the isolates.

Comp. Immunol. Microbiol. Infect. Dis. 1983, 6, 247–252. [CrossRef]
20. Spalatin, J.; Hanson, R.P.; Beard, P.D. The hemagglutination-elution pattern as a marker in characterizing Newcastle disease virus.

Avian Dis. 1970, 14, 542–549. [CrossRef]
21. Hanson, R.P.; Spalatin, J. Thermostability of the hemagglutinin of Newcastle disease virus as a strain marker in epizootiologic

studies. Avian Dis. 1978, 22, 659–665. [CrossRef] [PubMed]
22. Shan, S.; Ellis, T.M.; Fenwick, S.; Edwards, J.; O’Dea, M.; Parkinson, J. Biological and genetic characterization of a low-

pathogenicity avian influenza H6N2 virus originating from a healthy Eurasian coot. Arch. Virol. 2010, 155, 403–409. [CrossRef]
23. Bu, Y.-W.; Yang, H.-M.; Jin, J.-H.; Zhao, J.; Xue, J.; Zhang, G.-Z. Recombinant Newcastle disease virus (NDV) La Sota expressing

the haemagglutinin–neuraminidase protein of genotype VII NDV shows improved protection efficacy against NDV challenge.
Avian Pathol. 2019, 48, 91–97. [CrossRef]

24. Bergfeld, J.; Meers, J.; Bingham, J.; Harper, J.; Payne, J.; Lowther, S.; Marsh, G.; Tachedjian, M.; Middleton, D. An Australian
Newcastle Disease virus with a virulent fusion protein cleavage site produces minimal pathogenicity in chickens. Vet. Pathol.
2017, 54, 649–660. [CrossRef] [PubMed]

25. Kattenbelt, J.A.; Stevens, M.P.; Gould, A.R. Sequence variation in the Newcastle disease virus genome. Virus Res. 2006, 116,
168–184. [CrossRef]

26. Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol.
Biol. Evol. 2013, 30, 2725–2729. [CrossRef] [PubMed]

27. Palacios, G.; Quan, P.L.; Jabado, O.J.; Conlan, S.; Hirschberg, D.L.; Liu, Y.; Zhai, J.; Renwick, N.; Hui, J.; Hegyi, H.; et al.
Panmicrobial oligonucleotide array for diagnosis of infectious diseases. Emerg. Infect. Dis. 2007, 13, 73–81. [CrossRef]

28. Zhao, W.; Hu, H.; Zsak, L.; Yu, Q.; Yang, Z. HN gene C-terminal extension of Newcastle disease virus is not the determinant of
the enteric tropism. Virus Genes 2013, 47, 27–33. [CrossRef] [PubMed]

29. Sato, H.; Hattori, S.; Ishida, N.; Imamura, Y.; Kawakita, M. Nucleotide sequence of the hemagglutinin-neuraminidase gene of
Newcastle disease virus avirulent strain D26: Evidence for a longer coding region with a carboxyl terminal extension as compared
to virulent strains. Virus Res. 1987, 8, 217–232. [PubMed]

30. Nei, M.; Kumar, S. Molecular Evolution and Phylogenetics; Oxford University Press: New York, NY, USA, 2000.
31. Dortmans, J.; Koch, G.; Rottier, P.; Peeters, B. Virulence of Newcastle disease virus: What is known so far? Vet. Res. 2011, 42, 1–11.

[CrossRef] [PubMed]
32. Ferreira, H.L.; Taylor, T.L.; Dimitrov, K.M.; Sabra, M.; Afonso, C.L.; Suarez, D.L. Virulent Newcastle disease viruses from chicken

origin are more pathogenic and transmissible to chickens than viruses normally maintained in wild birds. Vet. Microbiol. 2019,
235, 25–34. [CrossRef] [PubMed]

33. Afonso, C.L. Virulence during Newcastle Disease Viruses Cross Species Adaptation. Viruses 2021, 13, 110. [CrossRef]
34. Gould, A.R.; Kattenbelt, J.A.; Selleck, P.; Hansson, E.; Della-Porta, A.; Westbury, H.A. Virulent Newcastle disease in Australia:

Molecular epidemiological analysis of viruses isolated prior to and during the outbreaks of 1998–2000. Virus Res. 2001, 77, 51–60.
[CrossRef]

35. Animal Health Australia. Newcastle Disease Management. Available online: https://www.animalhealthaustralia.com.au/what-
we-do/endemic-disease/newcastle-disease/ (accessed on 13 February 2021).

36. Gelb, J.; Fries, P.A.; Peterson, F.S. Pathogenicity and Cross-Protection of Pigeon Paramyxovirus-1 and Newcastle Disease Virus in
Young Chickens. Avian Dis. 1987, 31, 601–606. [CrossRef] [PubMed]

37. Barbezange, C.; Jestin, V. Quasispecies nature of an unusual avian paramyxovirus type-1 isolated from pigeons. Virus Genes 2005,
30, 363–370. [CrossRef] [PubMed]

38. Meulemans, G.; Van den Berg, T.P.; Decaesstecker, M.; Boschmans, M. Evolution of pigeon Newcastle disease virus strains. Avian
Pathol. 2002, 31, 515–519. [CrossRef]

39. Collins, M.S.; Alexander, D.J.; Brockman, S.; Kemp, P.A.; Manvell, R.J. Evaluation of mouse monoclonal antibodies raised against
an isolate of the variant avian paramyxovirus type 1 responsible for the current panzootic in pigeons. Arch. Virol. 1989, 104, 53–61.
[CrossRef] [PubMed]

http://doi.org/10.2307/1592870
http://www.ncbi.nlm.nih.gov/pubmed/11785895
https://wildlifehealthaustralia.com.au/FactSheets.aspx
https://wildlifehealthaustralia.com.au/FactSheets.aspx
http://doi.org/10.1136/vr.117.17.429
http://doi.org/10.1080/03079458608436309
http://doi.org/10.1093/oxfordjournals.aje.a118408
http://doi.org/10.1016/0147-9571(83)90017-6
http://doi.org/10.2307/1588616
http://doi.org/10.2307/1589642
http://www.ncbi.nlm.nih.gov/pubmed/749891
http://doi.org/10.1007/s00705-010-0588-1
http://doi.org/10.1080/03079457.2018.1548754
http://doi.org/10.1177/0300985817705173
http://www.ncbi.nlm.nih.gov/pubmed/28494702
http://doi.org/10.1016/j.virusres.2005.10.001
http://doi.org/10.1093/molbev/mst197
http://www.ncbi.nlm.nih.gov/pubmed/24132122
http://doi.org/10.3201/eid1301.060837
http://doi.org/10.1007/s11262-013-0903-5
http://www.ncbi.nlm.nih.gov/pubmed/23549884
http://www.ncbi.nlm.nih.gov/pubmed/3687202
http://doi.org/10.1186/1297-9716-42-122
http://www.ncbi.nlm.nih.gov/pubmed/22195547
http://doi.org/10.1016/j.vetmic.2019.06.004
http://www.ncbi.nlm.nih.gov/pubmed/31282376
http://doi.org/10.3390/v13010110
http://doi.org/10.1016/S0168-1702(01)00265-9
https://www.animalhealthaustralia.com.au/what-we-do/endemic-disease/newcastle-disease/
https://www.animalhealthaustralia.com.au/what-we-do/endemic-disease/newcastle-disease/
http://doi.org/10.2307/1590747
http://www.ncbi.nlm.nih.gov/pubmed/2960315
http://doi.org/10.1007/s11262-004-6780-1
http://www.ncbi.nlm.nih.gov/pubmed/15830155
http://doi.org/10.1080/0307945021000005897
http://doi.org/10.1007/BF01313807
http://www.ncbi.nlm.nih.gov/pubmed/2647061


Viruses 2021, 13, 429 15 of 15

40. Stone, H.D. Efficacy of Oil-Emulsion Vaccines Prepared with Pigeon Paramyxovirus-1, Ulster, and La Sota Newcastle Disease
Viruses. Avian Dis. 1989, 33, 157–162. [CrossRef]

41. Hanson, R.P.; Upton, E. Heat stability of hemagglutinin of various strains of Newcastle disease virus. Proc. Soc. Exp. Biol. Med.
1949, 70, 283–287. [CrossRef]

42. Ide, P.R. Virological studies of Paramyxovirus type 1 infection of pigeons. Can. Vet. J. 1987, 28, 601–603. [PubMed]
43. Shirai, J.; Tsukamoto, K.; Hihara, H. Newcastle disease viruses isolated from racing pigeons in Japan. Jpn. J. Vet. Sci. 1986, 48,

1091–1095. [CrossRef] [PubMed]
44. Rott, R.; Klenk, H.D. Molecular basis of infectivity and pathogenicity of Newcastle disease virus. In Newcastle Disease; Alexander,

D.J., Ed.; Kluwer Academic Publishers: Boston, MA, USA, 1988; pp. 98–112.
45. Reeve, P.; Poste, G. Studies on the Cytopathogenicity of Newcastle Disease Virus: Relation between Virulence, Polykaryocytosis

and Plaque Size. J. Gen. Virol. 1971, 11, 17–24. [CrossRef] [PubMed]
46. Dortmans, J.; Rottier, P.; Koch, G.; Peeters, B. The viral replication complex is associated with the virulence of Newcastle disease

virus. J. Virol. 2010, 84, 10113–10120. [CrossRef] [PubMed]
47. Yan, Y.; Samal, S.K. Role of intergenic sequences in newcastle disease virus RNA transcription and pathogenesis. J. Virol. 2008, 82,

1323–1331. [CrossRef]
48. Peeters, B.P.; de Leeuw, O.S.; Koch, G.; Gielkens, A.L. Rescue of Newcastle disease virus from cloned cDNA: Evidence that

cleavability of the fusion protein is a major determinant for virulence. J. Virol. 1999, 73, 5001–5009. [CrossRef] [PubMed]
49. Dortmans, J.; Koch, G.; Rottier, P.; Peeters, B. Virulence of pigeon paramyxovirus type 1 does not always correlate with the

cleavability of its fusion protein. J. Gen. Virol. 2009, 90, 2746–2750. [CrossRef]
50. Pearson, A.J.E.; Senne, D.A.; Alexander, D.J.; Taylor, W.D.; Peterson, L.A.; Russell, H. Characterization of Newcastle Disease Virus

(Avian Paramyxovirus-1) Isolated from Pigeons. Avian Dis. 1987, 31, 105–111. [CrossRef] [PubMed]
51. Collins, M.S.; Strong, I.; Alexander, D.J. Evaluation of the molecular basis of pathogenicity of the variant Newcastle disease

viruses termed “pigeon PMV-1 viruses”. Arch. Virol. 1994, 134, 403–411. [CrossRef] [PubMed]
52. Dortmans, J.; Rottier, P.; Koch, G.; Peeters, B. Passaging of a Newcastle disease virus pigeon variant in chickens results in selection

of viruses with mutations in the polymerase complex enhancing virus replication and virulence. J. Gen. Virol. 2011, 92, 336–345.
[CrossRef] [PubMed]

http://doi.org/10.2307/1591081
http://doi.org/10.3181/00379727-70-16899
http://www.ncbi.nlm.nih.gov/pubmed/17422869
http://doi.org/10.1292/jvms1939.48.1091
http://www.ncbi.nlm.nih.gov/pubmed/3820911
http://doi.org/10.1099/0022-1317-11-1-17
http://www.ncbi.nlm.nih.gov/pubmed/5103539
http://doi.org/10.1128/JVI.00097-10
http://www.ncbi.nlm.nih.gov/pubmed/20660202
http://doi.org/10.1128/JVI.01989-07
http://doi.org/10.1128/JVI.73.6.5001-5009.1999
http://www.ncbi.nlm.nih.gov/pubmed/10233962
http://doi.org/10.1099/vir.0.014118-0
http://doi.org/10.2307/1590781
http://www.ncbi.nlm.nih.gov/pubmed/3579779
http://doi.org/10.1007/BF01310577
http://www.ncbi.nlm.nih.gov/pubmed/8129624
http://doi.org/10.1099/vir.0.026344-0
http://www.ncbi.nlm.nih.gov/pubmed/20965986

	Introduction 
	Materials and Methods 
	Ethics Statement 
	Virus Isolation and Identification 
	Hemagglutination (HA) and Hemagglutination Inhibition (HI) Tests 
	Elution Rate and Hemagglutinin Thermostability 
	Plaque Formation 
	Pathogenicity Tests 
	RT-PCR and Sequencing 

	Results 
	Virus Isolation and Identification 
	Virus Characterization 
	Genetic Analysis 

	Discussion 
	References

